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ABSTRACT

The field of Complex Event Recognition (CER) on streams of data has shown remarkable
growth the last few years. CER systems use streaming data in order to detect composite
phenomena expressing relations between the input data. The amount of developed CER
systems has created the need to examine and compare their capabilities. In this study
we have chosen two systems, originating form the most dominant categories. From
automata-based approaches we have selected FlinkCEP and from Logic-based systems
we have selected RTEC. We present a theoretical comparison of the two systems’ expres-
siveness, along with an empirical evaluation of the efficiency, using real data.

SUBJECT AREA: Logic Programming, Theory of Computation

KEYWORDS: event, recognition, complex events, automata, event calculus, data streaming



ΠΕΡΙΛΗΨΗ

Ο κλάδος της Αναγνώρισης Σύνθετων Γεγονότων πάνω σε ροές από δεδομένα έχει επιδεί-
ξει αξιοσημείωτη ανάπτυξη τα τελευταία χρόνια. Τα συστήματα αναγνώρισης σύνθετων
γεγονότωνπεριεργάζονται ροές από δεδομένα με σκοπό τον εντοπισμό σύνθετων φαινομέ-
νων, που εκφράζουν σχέσεις ανάμεσα στα δεδομένα εισόδου. Ο αριθμός των συστημάτων
που έχουν αναπτυχθεί τα τελευταία χρόνια έχει δημιουργήσει την ανάγκη για μελέτη και
σύγκριση των δυνατοτήτων τους. Σε αυτήν την μελέτη επιλέγουμε δύο συστήματα από τις
πιο επικρατούσες κατηγορίες. Διαλέγουμε το FlinkCEP από τα συστήματα βασισμένα σε
αυτόματα και το RTEC από τα συστήματα που χρησιμοποιούν λογική. Παρουσιάζουμε μια
θεωρητική σύγκριση της εκφραστικότητας των δύο συστημάτων, μαζί με μια πειραματική
αξιολόγηση της αποδοτικότητας τους, χρησιμοποιώντας πραγματικά δεδομένα.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Λογικός Προγραμματισμός, Θεωρία Υπολογισμού

ΛΕΞΕΙΣΚΛΕΙΔΙΑ: αναγνώριση γεγονότων, σύνθετα γεγονότα, αυτόματα, λογισμός δράσης,
ροή δεδομένων
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1. INTRODUCTION

In today’s world the use of large data sources to extract useful information of a higher value
than the data itself is a default component to most industries. Νumerous projects include
applications with sources that continuously feed the system with information. These appli-
cations range from handling messages arriving to a communications satellite, to detecting
market trends on financial matters or evenmonitoring the movement of military operations.
These data are included into streams and provided as separate packages of information
(events) as time moves forward. Streaming applications are focused on forgetting already
processed events.

Patterns between the included events can be detected on multiple occasions. These
patterns may be simple sequences of events, the occurrences of singular events with
certain characteristics or even more complex patterns. The detection of these patterns is
a process that intends to find Complex Events [22].

1.1 Motivation

We examine two engines originating from the most dominant categories, automata-based
and logic-based CER systems. A brief summary for each system is provided below, as
well as a more descriptive presentation of their features throughout the rest of this thesis.

FlinkCEP Developed by Apache, the FlinkCEP system 1 is built on top of one of the most
widely used Streaming Platforms in the world, Flink, and thus it enjoys all its capabilities
and its efficiency regarding handling big loads of data [11]. The patterns that can be
expressed using FlnkCEP’s dialect are based on an enhanced version of automata. They
are se-
quences of events equipped with the filtering options and conditions that might concern a
single or multiple of the match’s components. Developed using the JVM capabilities and
allowing the user to use both Java and Scala programming languages, FlinkCEP takes
advantage of numerous features not available on other systems.

RTEC As an indicative system based on logic, RTEC : Event Calculus for Run-Time
reasoning 2, is based on the principles of Event Calculus [7]. It has been used for multiple
fields, such as Maritime monitoring or camera surveillance applications. Capable of using
temporal windows (partitions of the stream based on time), RTEC approaches the recogni-
tion process as the detection of the maximal intervals, defined by conditions on events
occurring on the stream.

1.2 Contributions

The contributions of this study include:

1https://ci.apache.org/projects/flink/flink-docs-stable/dev/libs/cep.html
2https://github.com/aartikis/RTEC
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• A theoretical comparison of FlinkCEP and RTEC , focusing on their expressiveness.

• An empirical comparison in monitoring themovement of vessels at sea and detection
of human interactions based on surveillance footage.

1.3 Outline of Thesis

The rest of the report consists of the following chapters: first (Chapter 2) we present related
articles and papers that have investigated the capabilities and uses for several CER
systems. Afterwards, (on Chapter 3) we present the two systems in question, along with
few information regarding the recognition model they follow. Moreover, we theoretically
compare the capabilities of the two systems by enlisting possible scenarios where a differ-
ence on the behavior of both systems can be spotted (Chapter 4). Moving on, we are
describing the empirical evaluation we transacted; before providing the implementations
of the patterns for those experiments and giving our remarks upon the results (Chapter 5).
Finally, (Chapter 6) we summarized our conclusions, as well as mention several aspects
of the comparison that could be expanded in future studies.

A.N. Troupiotis-Kapeliaris 14
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2. RELATED WORK

In this chapter we present previous work published that deals with streaming, describing
the field of CER. Also we present the features ofmajor CER engines, alongwithmentioning
studies that compare such systems and their capabilities.

2.1 Complex Event Processing and Recognition Systems

As mentioned, the growth that the field of Data Science and Data Analysis has shown
over the last years has been remarkable. The fact that the load of data is of a great
scale in increasingly more applications creates a challenge. Handling it using traditional
databases with few and infrequent insertions, seems to be an inefficient approach. As
mentioned in [33], developing algorithms that handle data streams as their input, provides
us with elegant solutions to problems such as sampling and extracting frequent items,
similarity comparisons and summarizing.

Furthermore, techniques and architectures for performing Complex Event Processing
(CEP) has been proposed by [25], as different algorithms are described. It has been
suggested that these Complex Events can be expressed as queries on an Dynamic Query
Evaluation Database System; though evidence has shown that major motivation exists in
order to study and develop algorithms that concern queries that could be computationally
lower when evaluated using CEP systems [47]. A more theoretical approach of CEP
can be found in [29]; describing a formal CEP language and its operators, providing also
examples of Complex Events and individual stream scenarios, without though providing
an evaluation on real data, focusing on a more theoretical approach.

Several different implementations to the problem of CER have been developed. As
mentioned by [28] a classification method for those types of approaches separates CER
systems into three categories:

• The first, and most popular category, is comprised of systems based on automata.
The patterns designed by the user are translated into an automaton. These resulting
compiled automata follow rules of finite-state automata (FSA), but are also equipped
with features regarding the attributes of input events as well as registers that allow
storing information (usually previous events) during the recognition process. Furthermore,
in this approach the concept of time is treated simply as an extra attribute of the input
events. Several operators in our patterns, like optionally skipping events, may result
in non-deterministic automata; hence the set of all potential matches could become
exponential in the number of events being processed.

• The second is the category of engines that are built upon tree-based models, regard-
ing both Complex Event modeling and recognition. Patterns designed by systems
that fall into this category are modeled as trees of operators, such as sequence
of events, with the input event usually appearing on leaf nodes. Moreover, tree
based techniques are of paramount importance in several recognition algorithms,
and combined with other techniques (like automata-based recognition) lead to hybrid
approaches. Fewer systems have been developed using this approach, with the
most prominent one probably being Zstream [37].

A.N. Troupiotis-Kapeliaris 15
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• The third category refers to logic-based engines. As with tree based models, these
approaches can be applied on the modeling of our patterns and/or the detection
methods. These systems tend to be more expressive and their modeling follows
rigorous mathematical models. The recognition may be implemented using a logic
programming language or be simulated by other types of approaches, such as
automata or temporal constraint networks [8].

A question that arises at this point is how do systems from each category differ between
them. Below we expand on several systems based on automata and logic before moving
on several comparisons of CER systems that have been conducted.

2.1.1 Automata-based Complex Event Recognition systems

While taking all the attributes desired for a Complex Event language into consideration,
the resemblance to automata theory and grammar comes as conspicuous to the reader.
Features like the expression of the pattern as a sequence of input events or the need
of iteration throughout the elements of the accepted pattern-match on the recognition
process, come as the most significant example [28]. As a result, recognition based on
automata appears to be probably the most dominant approach, as systems like SASE,
Caguya or FlinkCEP tend to be substantially popular among commercial and academic
applications.

Being one of the earliest examples of CER engines, SASE [30], played a major role on
the rise of popularity of CER systems around the world. SASE’s language uses sequence
based logic in order for the user to define Complex Events for recognition over a stream,
translating them into (possibly non-deterministic) automata and performs a recognition
process over the input stream. One of the most cited systems, SASE owes its popularity
to the simplicity of its language and most precisely the similarity of its patterns to SQL
queries.

Several systems that have similar design principles with SASE are available for users
to experiment. Similar to SASE’s pattern modeling techniques are followed by Cayuga
[10] and Esper [1] [27]. Attributes like the selection policies or contiguity options may
differ from one system to another. For example, the SASE+ implementation expands on
the principles of SASE, allowing the use of Kleene closure as an operator onto a pattern
[19], expanding the expressiveness of its language as a result. Moving on more recent
implementations, two of the most prominent systems are FlinkCEP [41]- on which we
expand further on the rest of this study- and Siddhi [45]. These systems differ in the way
they approach modeling, with the former using a sequence of events each one assigned
one or more conditions on its attributes and the latter following a method closer to SASE,
as conditions are stated at the end of the pattern, regardless of the event they refer to.

2.1.2 Logic-based Complex Event Recognition systems

Logic has been used a the basis for systems that detect patterns on streams of real data
in different occasions [5] [44] [9] [26]. The process of designing Complex Events based
on logic can be divided on two separate types: Chronicle recognition and Event Calculus.

A.N. Troupiotis-Kapeliaris 16
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Chronicle Recognition Chronicle Recognition Systems interpret time relations between
SDEs as Complex Events [21]. During recognition, these systems use windows of increas-
ing size to find a successful match with the new events included on each step, based on the
chronicle modeled initially [20]. The CER process tends to be computationally complex,
as all possible partial matches are being identified by the system. Applications of chronicle
recognition include monitoring gas turbines, traffic or even telecommunication networks
[32]. Moreover, based on the components of the chronicle matched at any moment, it can
generate possible
developments, making some sort of prediction on events that have yet to occur. Examples
of CER engines following this approach include TESLA [16] and Amit [2], with the former
offering operator for negation and the latter allowing input events to have a duration and
not be strictly instantaneous.

Event Calculus As proposed by [14] and [13], Event Calculus can be represented as
a methodology for creating and handling automated workflows; the process of CER can
easily be regarded as such aworkflow. While automata focus on sequences of happenings
within the stream, Event Calculus deals with determining the consequences of actions
(SDEs) [38]. As any representation of logic, Event Calculus faces the question of the frame
problem [36], on the need of providing enough axioms to determine a viable description of
the environment for a machine. The essence of this problem is the simple representations
of the effects of some actions omitting at the same time the need for further description on
their non-existent effects [31] [43]. The solution provided in Event Calculus is concept of
inertia, which plays a major role in its understanding. Inertia dictates that a fluent (property
that holds values over time) has got a value in a precise point in time, if at a previous point it
was assigned this value, triggered by the occurrence of an event, and if no other event has
resulted in the change of this value in the meantime [35]. Moreover, the use of negation is
also a prominent concept within logic based calculus and thus naturally appears on event
calculus.

The RTEC system [6] can be considered an Event Calculus efficient dialect, implementing
its fundamental properties. Focusing on fluents, the RTEC engine uses windows and
interval manipulation in order to return fluent-value pairs, according to the rules it was
provided, in order to detect the maximal intervals where they holds a certain value.

2.2 Comparisons

Regardless of the fact that CER systems are often based on established fields such as
automata theory [15] [34] and logic, a strict definition on the semantics of their operators
is rarely provided. Therefore, comparing these types of CER engines requires a more
elaborate examination of each system’s capabilities. Our study focuses on comparing
state-of-the-art systems that belong to the twomost dominant categories (automata-based
and logic-based) CER.

There has been a few studies that include the comparison of several CER systems.
A major work devoted in presenting the different aspects of CER, as well as providing
a description of several Information Flow Processing (IFP) engines (as they are called
in the paper) was presetned in [17]. Similarly, surveys such as [18] and [28] present
different Stream Processing Engines, comparing the features of such engines, with the
latter focusing also on the paralellism capabilities of each system. A different study that

A.N. Troupiotis-Kapeliaris 17
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focused mainly on probabilistic engines is [4]. While these papers present a range of
systems, our study focuses on two specific implementations, and provides elaborate
examples and a thorough examination of different scenarios including potential patterns
and streams that may appear during a recognition process.

As the previous approaches to comparing CER systems do not include scenarios
of execution of the recognition process, a paper that has more common ground and scope
to our own is [23]. This study describes how Event Calculus can be used to calculate and
detect intervals where fluents hold a certain value, but also expanding on [12] provides a
modeling technique for reasoning based on timed automata, in other words finite automata
enhanced with time constrains upon the transitions between states. Moreover, a empirical
comparison has been conducted using such a machine, resulting on positive results on
such and interpretation of automata. While this work focuses on timed automata, we
are examining a more wide category for pattern modeling, provided by the FlinkCEP
implementation, that allows these transitions to include all attributes of involved events
or even more complex conditions.

Finally, in [3] we find a study that compares two individual systems in both terms of
expressiveness and by using an empirical evaluation; with the systems described and
examined being RTEC and the SQL-based Esper. After presenting major concepts of
both systems, such as inertia and pattern hierarchy, the conclusions of this study denote
that implementing and representing patterns from one language to the other, though not
a minor task, is possible. Similarly, we attempt to compare two systems by examining
whether Complex Events expressed on one system can be translated into the dialect of
the other, as well as evaluating their performance over streams of real data.

A.N. Troupiotis-Kapeliaris 18
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3. BACKGROUND

In this chapter, we provide a deeper look on the two systems we use in our comparison.
First, we present the basics for CER based on automata; listing the capabilities of FlinkCEP
and giving some simple examples to display its use. Afterwards, we present the basics
regarding Event Calculus and describe how the RTEC system approaches both modeling
Complex Events and the recognition process.

3.1 The FlinkCEP System

A state-of-the-art engine, FlinkCEP is provided by the Apache Software Foundation.
Because it is built on top of Flink, Apache’s own streaming environment, it enjoys all
its streaming attributes and can be combined with other streaming implementations, like
Kafka’s environment. As it is with Flink , the FlinkCEP library is available for both Java
and Scala applications 1.

Flink Streams Flink streams consist of events defined by the user. These events may
include several attributes or values assigned to them, as they are implemented and behave
as Scala Objects. The stream should be comprised by the same type of Objects; all
attributes andmethods/functions are available at any point during its process. Furthermore,
the Flink environment provides an operator that reorders our current stream based on the
values of one of the event attributes. Usually, because CER includes tasks over temporal
attributes, we are assigning the time value of each event onto an Object attribute. This way
we are able to reorder the stream accordingly if necessary and impose temporal condition
within our patterns.

Flink is also able to split our stream into different sub-streams based on the attributes of the
input events, as they arrive at the system. Using this feature, the parallelism capabilities of
our machine can be used to the fullest, as each thread would undertake to handle certain
partitions of the original stream. Here, we should note that the Flink system provides us
with the choice of having several operators (components of our streaming application) to
be applied with a different parallelism factor than the rest of the system. More precisely,
this feature can be used when reading data from a consumer, so that we would avoid an
unsorted input stream. Expanding on that last option, we should mention that it can also
be used as an effective method for our patterns to be simpler, omitting conditions that
ensure all events of the match concern the same entity.

FlinkCEP Patterns All patterns created using FlinkCEP ’s dialect can be characterized
as sequences of events, that may be found within the stream. The way a pattern is
structure plays an important role on its semantics. More precisely, the order in which
the events are included in our pattern is of decisive importance. Each single event (or
more precisely component of our pattern) is characterized and thus can be accessed
and retrieved if necessary by a unique name it is assigned during the patterns definition.
A simple pattern example, assuming we have a stream describing the progress of the

1In our study and experiments we use the Scala syntax and environment for FlinkCEP .
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velocity of a vehicle, that detects a remarkable change of velocity of this vehicle can be
expressed as follows:

val changePattern = Pat te rn . begin ( ” s t a r t ” )
. fo l lowedBy ( ” chng ” )
. where ( ( ev , prev )=>
prev . getEventsForPat tern ( ” s t a r t ” ) . l a s t . ge tVe l oc i t y ( )
− ev . ge tVe l oc i t y ( ) > 30)
. w i t h i n ( Time . seconds (15) )

In this example we get introduced onmultiple capabilities of the FlinkCEP system, including
the condition operator, the relaxed contiguity option as well as more complex features. We
would be expanding on these system features on the remaining part of this chapter.

Conditions When facing a new event of the stream, the CEP operator should be able to
decide whether it should accept it and include it as part of our (partial) match or discard it
and move on. The rules that determine the outcome of this decision are included within the
conditions that accompany the event on the pattern’s definition. These conditions can be
divided into two categories: those who include solely the attributes of the event in question
and those that involve attributes of multiple events on our match, and use the properties of
previously accepted events to produce an answer. The latter set of conditions is defined
as Iterative Conditions, while the former is called Simple Conditions. These conditions
are formed by the use of boolean operators between attributes of the including events
or even involving the values of external to the CER process variables. Although there
is a certain freedom regarding whats included in the conditions, the use of variables in
order to keep certain values between the parts of our matches is highly discouraged.
The reason behind this last remark, relies on the fact that the values kept would change
according to the method the system generates candidate matches. As one might easily
deduce, restricting conditions on the attributes of a single event would limit the system
significantly in terms of expressiveness. Thankfully, the FlinkCEP system includes an
option to retrieve parts (meaning events) of our current partial match, in order to formmore
complex and meaningful Complex Events, the getEventsForPattern function. Deciding on
which component to retrieve based on the component name provided by the user, this
function is indicated to have varying computational cost, and thus is recommended to limit
its use on all implementations. This feature can be used upon already accepted events of
the stream, and thus conditions that include future events are not permitted.

Contiguity Options As already mentioned, a major factor that determines the nature of
our pattern is the contiguity between its components; i.e. the way each event of the current
match succeeds the previous, within the original stream. This type of relation is defined
between consecutive components of our pattern. More precisely, each event accepted
(except the initial one) must be consistent on the way it follows the previous one already
accepted on the partial match, as determined by the pattern’s definition. For example
on the previous example regarding velocity changes we were using Relaxed Contiguity
between the two events accepted, provided by the followedBy method, as we allowed
irrelevant events to intervene between them within the stream. The available contiguity
options provided by the system are the following:
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• Strict Contiguity: the events of the pattern must be consecutive within the original
stream (indicated by the use of next).

• Relaxed Contiguity: non-matching events are allowed to appear between
the accepting ones (indicated by the use of followedBy).

• Non-deterministic Contiguity: does not terminate the recognition process when
finding a matching event, but also investigates other occurrences as further on the
stream (indicated by the use of followedByAny). This, of course, causes the resulting
patterns to have a higher cost in terms of complexity.

We ought to keep in mind that these strategies are applied based solely on the order the
stream is provided to our CER engine and not the actual timestamps each event occurred
in. A interesting case that we will come across on our further study is the occurrence of
simultaneous events within our stream. By definition these events would be given in a
particular order within the stream. This order often would carry no real context, but would
dramatically alternate the patterns and their structure. Multiple solutions can be practiced
to overcome this particularity; several of which we are presenting in the following chapter.

Finally, after determining which attribute of the stream events would be the one that indi-
cates the temporal traits of the input, an additional type of condition is available for our
patterns: the within method. This method restricts our patterns so that the maximum
temporal distance between all events of our match is not be greater than a certain value
(measured in seconds). This was displayed on our previous velocity example, as the
change should take place within the range of 15 seconds.

Event quantifiers As all CER systems deal with streams that are constantly fed with
new information and events, it is realistic to assume that some the occurrence of same
typed event consecutively within a pattern would be of useful semantic interpretation.
FlinkCEP pattern components are optionally accompanied with an operator that indicates
the possible and allowed number of occurrences for each component. For example, going
back to our vehicle velocity stream, let us assume that we need to detect the occurrence
of 15 consecutive events that indicate a velocity of over 85 mph. This can be easily
designed by having 15 separate components to our pattern. The conditions of these all
these components would be identical, i.e. the velocity of each one to be greater than 85
mph; so including more than one of these components on the pattern’s definition would
be without any real meaning. Fortunately, we are able to characterize this component as
‘looping’ and provide the system with the number we require for it to appear:

val f a s tPa t t e r n = Pat te rn . begin ( ” s t a r t ” )
. where ( ev=>ev . ge tVe l oc i t y ( ) >85)
. t imes (15)

Imagine now that we need to detect all situations where this vehicle is exceed 85 mph,
and that it does so for more than 15 times but also less than 100 because that would
indicate a different phenomenon that our system is not assigned to detect. Furthermore,
lets assume that we need to detect a potential immobilization of a vehicle following the
above scenario. This Composite Event could be expressed using the optional feature as
follows, characterizing our pattern as non-deterministic:
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val f as tS topPa t te rn = Pat te rn . begin ( ” s t a r t ” )
. where ( ev=>ev . ge tVe l oc i t y ( ) >85)
. t imes (15)
. next ( ” abrupt ” )
. where ( ev=>ev . ge tVe l oc i t y ( ) ==0) . op t i ona l ( )

After Match Skip Strategies While most systems are including some sort of Consuming
Strategy [28], defining the condition under which the machine is done processing an event.
The somewhat equivalent strategies defined for this implementation are called the After
Match Skip Strategies. These strategies basically indicate to the system the point of the
stream where the recognition should resume after having detected a successful match.
These strategies are defined in relation to each patterns structure and components. Each
strategy applied would have a significant impact on the nature of the pattern and thus the
concept it ultimately expresses, because of the fact that somematches could be potentially
omitted when applying a more exclusive strategy.

The strategies provided by our system are the following:

• No Skip: does not omit a potential match.

• Skip to next: does not omit any event and resumes and the very next event after
our match, but not attempting to detect another successful match that begins with
the same event as the last one.

• Skip-Past-Last Event: discards all events that occur within the bounds of the stream
that the previous match determines (after its first component and before its last one)
and resumes at the very next event. This strategy is proven to be extremely useful
when having to deal with Patterns that have a single initiation and a single termination
point at the stream, as it can be used to omit any non maximal matches.

• Skip to first/last (CompName): the system would resume its CER process at the
first/last component of the match assigned the name CompName.

Negation in FlinkCEP A common issue when dealing with constant sources of
information the concept of negation has been proven to be challenging. While dealing with
negation upon the attributes of a single event is quite simple, deciding on similar conditions
that involve more than one event is a completely different matter. We will expand on
this issue on following chapters, as it has proven to be a major difference between a
logic-based and automaton-based systems.

The notion of negation FlinkCEP supports is restricted to the occurrence of events of a
particular type within our pattern, not including the bound events of our match. More
precisely, we are able to forbid the appearance of a type of event between two consecutive
components of our stream (supposing we don’t have a strict contiguity). For example,
imagine we have to monitor the movement of a vehicle as before, but in this case we
want to record where the vehicle is moving after having a velocity greater than 85 mph but
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without exceeding it again, until it stop moving. This could be implemented by having the
following pattern:

va l f as tDr i veS topPa t te rn = Pat te rn . begin ( ” s t a r t ” )
. where ( ev=>ev . ge tVe l oc i t y ( ) >85)
. notFollowedBy ( ” not ” )
. where ( ev=>ev . ge tVe loc i t y >85)
. next ( ” end ” )
. where ( ev=>ev . ge tVe l oc i t y ( ) ==0)

As we can see this feature ensures us that no event that follow the “not” format could
appear on ourmatch between the “start” and “end” components. Additionally, the FlinkCEP
system disallows us of using such a component (assign a notFollowedBy tag) as our final
component, because the streams expected as input are of infinite length.

Higher-Level Recognition When dealing with the recognition process of our Flink
implementations we should take in consideration the fact that the resulting matches of a
CEP operator are actually in the form of a stream. This last fact allows us to apply different
types of operators upon the results. Such an option available for our implementations
is applying a new CER upon this newly formed results stream. Let us assume that we
have the first pattern that detects abrupt accelerations on the vehicle’s speed. A different
concept that might be of interest is the detection of consecutive such accelerations that are
occurring within 3 hours between them. This scenario can be represented by the following
block of stream operators:

val changePattern = Pat te rn . begin [ Ve loc i t yEvents ] ( ” s t a r t ” )
\ \ type of stream event w i t h i n brackets
. fo l lowedBy ( ” chng ” )
. where ( ( ev , prev )=>
prev . getEventForPat tern ( ” s t a r t ” ) . l a s t . ge tVe l oc i t y ( )
−ev . ge tVe l oc i t y > 30)
. w i t h i n (15)

val CEPresultsStream =
CEP. pa t t e rn ( o r ig ina lS t ream , changePattern )

/ / i n order to perform the Recogni t ion process
val resu l tsSt ream : DataStream [ changeMatch ] =

CEPresultsStream . se l ec t ( . . . )
/ / ommiting f unc t i on t ha t t ransforms a match to a new
Scala Object for s im p l i c i t y

val metaChangePattern = Pat te rn . begin [ changeMatch ] ( ” s t a r t ” )
. fo l lowedBy ( ” end ” )
. w i t h i n ( Time . seconds (10800) )
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We can observe that this type of pattern can be characterized as a higher order pattern.
Applying consecutive CER processes seems to bemore simple than attempting to express
such concepts in a single pattern. Moreover, we claim that dealing with Complex Events
using a hierarchy of patterns allows us to implement events that would carry great cost
if implemented without it. The drawback of this method is the need to handle a different
stream, that could potentially be as long as our original. Our empirical studies has shown
that a significant amount of our execution process is due to the iteration upon the stream
rather than the operators themselves.

3.2 Event Calculus

While examining the fundamentals of the Event Calculus (EC), as introduced by Kowalski
and Sergot in 1986 [35], one immediately comes across the concept of fluents. This comes
natural as the main purpose of Event Calculus is the study of the effects of events on the
values of fluents. Fluents are entities that behave like variables over time. A fluent might
hold a range of values, one each time, but it is also possible there are moments where it
does not have any value.

The behavior of fluents and their values is defined by custom rules. These rules determine
which events and under which circumstances could cause an action to be taken upon the
value of a certain fluent. They define the initiation and the termination points of a fluent,
in other words the moments where a value is assigned or when the fluent is withheld a
value. Furthermore, predicates that can be used to decide upon the value of a fluent at a
given time are provided. A predicate as such is the holdsAt (F=V,T), indicating that fluent
F holds the value V at time T. The occurrence of an event is expressed using happensAt
with similar predicates defined on each different dialect available.

3.2.1 The RTEC System

The RTEC system is based on the same principals as the Event Calculus, hence the
results it provides are an attempt to detect maximal intervals where a fluent holds a single
value continuously.

Complex Event Modeling The RTEC implementation uses time constrains and interval
manipulation to handle the conditions of the patterns and to extract the successful matches.
Special predicates have been defined in order to create rules that define Complex Events.
These rules are described on Table 1.
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Table 1: RTEC predicates and operators used for rules of Complex Events (after [6]).

Predicate Meaning
happensAt (E, T ) Event E occurs at time T

holdsAt (F =V, T ) The value of fluent F is V at time T

holdsFor (F =V, I) I is the list of the maximal intervals
for which F =V holds continuously

initiatedAt (F =V, T ) At time T a period of time for which
F =V is initiated

terminatedAt (F =V, T ) At time T a period of time for which
F =V is terminated

relative_ I is the list of maximal intervals produced
complement_ by the relative complement of the list
all_ (I′,L, I) of maximal intervals I ′ with respect to

every list of maximal intervals of list L
union_all(L, I) I is the list of maximal intervals

produced by the union of the lists of
maximal intervals of list L

intersect_all(L, I) I is the list of maximal intervals
produced by the intersection of
the lists of maximal intervals of list L

Patterns can be expressed by fluents determined using rules provided by RTEC. The
conditions on these rules can refer to either the timepoint where they are triggered, or
either facts about other timepoints or entities. These rules are triggered by the occurrence
of a event, but are not limited to it, as they can also refer to other events, the negation
of an event or even the value of another fluent. As the two types of fluents supported by
Event Calculus and RTEC are Simple Fluents and Statically Determined Fluents (SDFs)
there are two corresponding types of rules for such patterns. The first, consist of one or
more initiation rules along with one or more termination rules for the pattern. These rules
refer to the point where a fluent gets initiated with a certain value and where this value
get terminated. The second type of rules are the ones regarding SDFs. As opposed to
how definitions of Simple Fluents are comprised by possibly multiple rules, a SDF gets
determined by a single rule that includes all events and conditions that need to hold for
the fluent to hold a certain value.

Below an example of a Simple Fluent defined in RTEC is provided. This fluent indicates
a period where a vehicle is moving with a high velocity, according to the aforementioned
rules. It is assigned the true value when the vehicle (Veh in our pattern) moves with a
greater speed than 75, and gets terminated (does not hold this value) when its speed
drops from 45. We are assuming that our input stream is consisted of messages that refer
to the vehicle’s speed over time.

i n i t i a t e d A t ( highSpeed (Veh )=true , T ) :−
happensAt ( speed (Veh , CurSpeed ) ,T ) ,
CurSpeed > 75.
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te rminatedAt ( highSpeed (Veh )=true , T ) :−
happensAt ( speed (Veh , CurSpeed ) ,T ) ,
CurSpeed < 45.

Recognition Amain component of StreamProcessing is the use of temporal boundaries,
known as windows, upon its operators. Moreover, the use of windows upon a process
of a CEP system partitions the stream of data into smaller streams in order for the the
operator in question to be applied on each one separately. This extenuates the load of
the system has to manage in each step of the process. The recognition process of RTEC
is capable of such features in order to expedite the recognition process and optimize the
system’s performance. The windows provided are sliding, meaning that they have a fixed,
predefined size, and progressing throughout the timestream. Depending on the needs of
the user, the windows can be overlapping, meaning that there would be common intervals
between consecutive windows, or not. It is important to note that, although the dataset is
broken into separate piece of data, the RTEC system is implemented so that the use of
windows does not alter the expressive power of our patterns and the recognition process;
meaning that the optional use of windows and their potential size does not affect the final
results of the recognition, besides the execution time performance.

The RTEC recognition process consists of the following steps for each window. At first,
the bounds of the window get determined. Afterwards, all events that belong to a previous
window, i.e. their timestamp is lower than the left bound of our current window, get deleted
(retracted) and those that come with the current get asserted. Moving forward, it computes
all valid holdsFor and holdsAt predicates for all patterns defined. Lastly, the maximal
intervals where fluents hold a certain value are calculated and returned.
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4. THEORETICAL COMPARISON

RTEC patterns are expressed by two types of fluents: these that are defined by initiation
and termination rules, called Simple Fluents, and Statically Determined Fluents (SDF),
determined by conditions that need to hold throughout the matching interval. Simple
Fluents may be Boolean or multi-valued; in this study we focus on the former. In this
chapter we examine whether FlinkCEP is able to generate equivalent patterns, as well
as listing the difficulties of this process. In each section, we describe an indicative RTEC
pattern, an attempt to simulate its behaviour using FlinkCEP and the challenges we come
across in each case.

4.1 Unbounded Intervals

Simple Fluent matches are defined by an initiation point on the stream; the fluent holds
a certain value until it gets terminated. In case no termination rule gets satisfied, RTEC
returns an interval that does not include a termination point.

Imagine we have a simple pattern that is defined by the occurrence of two events, one at
initiation and another at termination.

RTEC
i n i t i a t e d A t ( mypatt (X)=true , T ) :−

happensAt ( a (X) ,T ) .
te rminatedAt ( mypatt (X)=true , T ) :−

happensAt ( b (X) ,T ) .

FlinkCEP
val mypatt = Pat te rn . begin ( ” s t a r t ” ) . where ( ev=>ev . get ( ) == ’ a ’ )

. fo l lowedBy ( ” end ” ) . where ( ev=>ev . get ( ) == ’ b ’ )

Figure 1: RTEC is able to detect unbounded matches, in case the stream does not include an
ending point, while FlinkCEP cannot simulate this behavior.

In order to simulate this behavior using FlinkCEP we would have to mark the ending part of
the pattern as optional, for the system to be able to stop and return a match. Unfortunately,
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using this technique the FlinkCEP also includes an unbounded match even if the ending
point occurs, thus including incorrect results.

A different approach would be to create two distinct patterns: one that only detects the full
(that include a termination) matches and another that would return all potential unbounded
intervals. This solution requires an additional step that would discard all unbounded
intervals that also correspond to a full match.

4.2 Simultaneous initiation and termination

Often streams include events that initiate a pattern simultaneously with events that terminate
it. This may be caused by the nature of the stream or due to noise in the dataset. During
RTEC’s recognition process matches that are comprised of simultaneous initiation and
termination points are discarded as the system does not detect a single timepoint where
the fluent in question holds a value. Suppose we have the same RTEC pattern as in the
previous section.

RTEC

i n i t i a t e d A t ( mypatt (X)=true , T ) :−
happensAt ( a (X) ,T ) .

te rminatedAt ( mypatt (X)=true , T ) :−
happensAt ( b (X) ,T ) .

FlinkCEP

val mypatt = Pat te rn . begin ( ” s t a r t ” ) . where ( ev=>ev . get ( ) == ’ a ’ )
. fo l lowedBy ( ” end ” ) . where ( ( ev , prev )=> {

ev . get ( ) == ’ b ’ &&
prev . getEventsForPat tern ( ” s t a r t ” ) . head . getTimeStamp ( )

!= ev . getTimeStamp ( ) } )

Figure 2: While FlinkCEP would accept a match that is defined by simultaneous initiations and
terminations, RTEC automatically filters such matches. In order to avoid these matches we should

include an additional temporal condition.

In order to handle such scenarios using FlinkCEP , we can discard all matches that include
a single timestamp during post-processing, or we may include an additional condition to
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our pattern. This condition would demand the timestamps for the parts of our match to be
different, through the getEventsForPattern function. It is noted on FlinkCEP’s documentation
that the use of this function should be limited as its computational cost varies. Furthermore,
in case the termination event appears first within the input stream (followed by the simultaneous
initiation event), the aforementioned FlinkCEP approach would not discard the match
and create a match with the next termination point appearing. In conclusion, handling
instantaneous matches is a challenging tasks that requires additional computations while
using FlinkCEP .

4.3 Simultaneous Events

On several occasions, patterns include events that occur at the same timepoint. These
patterns appear usually when dealing with relational Complex Events between multiple
entities. The RTEC system deals with simultaneous events regardless of the order they
appear within the stream, as it focuses on the occurrence of the events and not their
sequencing. On the other hand, the order in which these events appear plays a major
role during the design of the patterns as well as the recognition process of FlinkCEP .
For example, in Figure 3, both streams contain the same information but are not treated
as equivalent by the FlinkCEP system. This occurs because the first two (simultaneous)
events of both streams do not appear with the same order. This remark comes naturally
as FlinkCEP evaluation process is based on automata.

Figure 3: The two streams include the same information but are treated differently by FlinkCEP . A
pattern that requires for the (a) and (c) events to occur simultaneously requires a more complex

approach for FlinkCEP .

The importance of the order between simultaneous events can be demonstrated by the
following scenario: imagine a pattern that requiresmultiple events to happen at its initiation.
Forming a simple sequence of these events while creating the FlinkCEP equivalent Complex
Event would not be a sufficient approach, as it is implied that the order between themwould
be as declared within this pattern in all cases.

Supposewe have the following RTECpattern, that also includes negation on the occurrence
of events.

RTEC

i n i t i a t e d A t ( mypatt (X)=true , T ) :−
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happensAt ( a (X) ,T ) ,
\+ happensAt (m(X) ,T ) .

te rminatedAt ( mypatt (X)=true , T ) :−
happensAt ( b (X) ,T ) ,
\+ happensAt ( n (X) ,T ) .

Handling simultaneous events on FlinkCEP can be achieved by the use of bookmark
events, in order to manage all events that occur on a certain timestamp. We present
a pattern that uses this method.

FlinkCEP

va l mypatt = Pat te rn . begin ( ” book1 ” )
. notFollowedBy ( ” not1 ” ) . where ( x=>x . get ( ) == ”m” )
. fo l lowedBy ( ” s t a r t ” ) . where ( ( key , ev ) =>{

x . get ( ) == ” a ” &&
ev . getEventsForPat tern ( ” book1 ” ) . l a s t . getTimeStamp ( )
< key . getTimeStamp ( )

} )
. next ( ” middles ” ) . oneOrMore . op t i ona l
. next ( ” end ” ) . where ( ( key , ev ) =>{

key . get ( ) == ” b ” && ev . getEventsForPat tern ( ” middles ” )
. count ( x=> x . get ( ) == ’m ’

&& x . getTimeStamp ( ) ==key . getTimeStamp ( ) ) ==0

&& ev . getEventsForPat tern ( ” middles ” )
. count ( x=> x . get ( ) == ’ n ’ && x . getTimeStamp ( ) ==

ev . getEventsForPat tern ( ” s t a r t ” ) . l a s t . getTimeStamp ( ) ) ==0

&& ev . getEventsForPat tern ( ” s t a r t ” ) . l a s t . getTimeStamp ( )
< key . getTimeStamp ( )

} )
. notFollowedBy ( ” not2 ” ) . where ( x=>x . get ( ) == ” n ” )
. fo l lowedBy ( ” book2 ” ) . where ( ( key , ev )=>

ev . getEventsForPat tern ( ” end ” ) . l a s t . getTimeStamp ( )
< key . getTimeStamp ( ) )
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Figure 4: The two streams include the same information but are treated differently by FlinkCEP . A
pattern that requires for the (a) and (c) events to occur simultaneously requires a more complex
approach for FlinkCEP . The FlinkCEP implementation cannot detect the first match as no events

are included into the stream in order to be used as bookmarks.

This approach for the FlinkCEP pattern suffers from being too complex compared to its
RTEC equivalent; also using the getEventsForPattern method extensively throughout the
recognition. Furthermore, the dependence on other events that are practically irrelevant
to our match, may cause significant delays during real-time recognition when dealing with
sparse streams.

MegaEvents An alternative approach is the use of ‘MegaEvents’. These new types of
events are comprised of events that occur simultaneously within the original stream. By
definition these ‘MegaEvents’, include all information of the events they are composed
of, they are defined unequivocally by these events and include their common timestamp.
An implementation of this concept would be to create a ‘TupleEvent’ data structure: pairs
of all possibles simultaneous event combinations. These events would be created in a
preprocessing stage and result in a new stream upon which the CER process would be
applied. For example, the first two events on both stream of Figure 3 will be translated as a
tuple event: TupleEvent([a, c], 1). On the other hand, the inclusion of this concept creates
some issues during recognition, as it can result in a stream with length much greater than
the original; affecting the execution time performance of the FlinkCEP system. Moreover,
the inclusion of multiple events as single components of our match may require additional
conditions in order to determine which of them are useful during recognition.

Ordering simultaneous events In order to avoid the issues arising when dealing with
simultaneous events, we contemplate on solutions that presuppose an order between
them. This order should be known before the developing of the pattern and often is worth
the preprocessing step. Unfortunately, imposing such orders on our streams may not be
possible because of conflicts between rules of our patterns. We will be using the following
example, to demonstrate the issues that may occur when we impose ordering rule based
on pattern attributes.
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When including conditions that require the absence of an event, the order of simultaneous
events plays a major role during the designing of our pattern. A possible order of simul-
taneous events that would benefit this process is the following: all events that appear
without a negation operator attached to them (within the rules of our pattern) are being
ordered first, followed by the rest. When dealing with the following pattern we come to an
impasse, as event (a) appears on both types of conditions. In this case, when a pair of
a-b occurs simultaneously, we wouldn’t be able to determine a proper ordering.

RTEC

i n i t i a t e d A t ( mypatt (X)=true , T ) :−
happensAt ( a (X) ,T ) ,
\+ happensAt ( b (X) ,T ) .

te rminatedAt ( mypatt (X)=true , T ) :−
happensAt ( b (X) ,T ) ,
\+ happensAt ( a (X) ,T ) .

In conclusion, in order to deal with simultaneous events one may create patterns that
use bookmarks, risking delays during recognition upon sparse streams. Furthermore,
another solution includes transforming the input stream of events onto a different that
includes entities more complex and comprehensive; requiring a preprocessing step and
possibly additional computations during evaluation. Lastly, the imposition of an order
for the simultaneous events may serve us in several occasions, as long as this order
is pattern-independent.

4.4 Relations between patterns

Certain patterns depend on the values other fluents hold during their initiation or termi-
nation; creating a hierarchy between them. This property can be expressed by the use of
the holdsAt option in RTEC . Trying to translate this attribute on the FlinkCEP system, has
proven to be no simple task. In order to detect these patterns, RTEC first computes the
intervals where the prerequisite patterns hold a value, and then moves on the pattern that
depends on them. Simulating the RTEC ’s method would require for FlinkCEP to iterate
over the stream multiple times, as well as merge streams that include both input events
and complex events matches, as in all cases the conditions of our patterns involve both
types of input.

An alternative to simulating RTEC ’s behavior would be to integrate the components of
all involved RTEC patterns into a single FlinkCEP equivalent. Besides the fact that these
FlinkCEP translations tend to be too complicated, the following example shows that there
exist scenarios where this approach is not feasible. Imagine we have a pattern that only
gets initiated when an (a) events occurs and when a different pattern does not hold. Two
FlinkCEP patterns are provided.

RTEC

i n i t i a t e d A t ( preq (X)=true , T ) :−
happensAt ( s (X) ,T ) .

te rminatedAt ( preq (X)=true , T ) :−
happensAt ( t (X) ,T ) .

. . . .

A.N. Troupiotis-Kapeliaris 32



Complex Event Recognition: a comparison between FlinkCEP and the Run-Time Event Calculus

. . . .
i n i t i a t e d A t ( mypatt (X)=true , T ) :−

happensAt ( a (X) ,T ) ,
\+ holdsAt ( preq (X)=true , T ) .

te rminatedAt ( mypatt (X)=true , T ) :−
happensAt ( b (X) ,T ) .

FlinkCEP [1]

val mypatt1 = Pat te rn . begin [ MyEvent ] ( ” preq ” )
. where ( x=>x . getAnnot ( ) == ” t ” )
. notFollowedBy ( ” not ” ) . where ( ( key , ev )=> {
key . getAnnot ( ) == ” s ” &&
key . getTimeStamp ( ) >

ev . getEventsForPat tern ( ” preq ” ) . l a s t . getTimeStamp ( )
} )
. fo l lowedBy ( ” s t a r t ” ) . where ( ( key , ev )=> {
key . getAnnot ( ) == ” a ” &&
key . getTimeStamp ( ) >

ev . getEventsForPat tern ( ” preq ” ) . l a s t . getTimeStamp ( )
} )
. fo l lowedBy ( ” end ” ) . where ( ( key , ev )=> {
key . getAnnot ( ) == ” b ” &&
key . getTimeStamp ( ) >

ev . getEventsForPat tern ( ” s t a r t ” ) . l a s t . getTimeStamp ( )
} )

FlinkCEP [2]

val alex = Pat te rn . begin [ MyEvent ] ( ” preq ” )
. where ( x=>x . getAnnot ( ) == ” s ” ) . op t i ona l
. next ( ” s t a r t ” ) . where ( ( ev , prev )=> {
ev . getAnnot ( ) == ” a ” &&
prev . getEventsForPat tern ( ” preq ” ) . isEmpty
} )
. fo l lowedBy ( ” end ” ) . where ( ( key , ev )=>
key . getAnnot ( ) == ” b ” &&
key . getTimeStamp ( ) >

ev . getEventsForPat tern ( ” s t a r t ” ) . l a s t . getTimeStamp ( )
} )
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Figure 5: The prerequisite pattern (defined by (s) and (t)) should not hold during initiation of the
pattern we are trying to detect. The first FlinkCEP approach would be to include the termination of

the prerequisite as part of the pattern, missing the first match. The second, marks the first
pattern’s occurrence as optional allowing for the system to ignore it even if it appears.

The reason this pattern cannot be translated properly, is the fact that FlinkCEP allows
access solely to events that are part of our current match during recognition. In logic
programming the Negation as failure rule is used, meaning that the negation operator
succeeds on the absence of the event in question. Simulating this using FlinkCEP is
practically impossible as we would need to store the whole stream until the point of the
query.
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4.5 Conclusions

In this section we summarize of all differences between the two CER engines. These
differences refer to the expressiveness of both systems and should be indicative on which
one a user should prefer, depending on the nature of patterns that need to be implemented.

• Query capabilities The main difference observed concerns the capabilities of each
system to consult on other events and facts during the recognition process. More
precisely, the RTEC system is able to perform several queries regarding past events
of the stream and examine their attributes at any point within the pattern. On the
contrary, FlinkCEP is only able to access events that are part of its current (partial)
match of the pattern during recognition. This fact leads to much more complex
patterns when using the latter system. Moreover, the space complexity of FlinkCEP
patterns that access past events may end up high when dealing with dense streams.
Additionally, handling simultaneous events within our patterns creates the need of
altering the input stream for FlinkCEP , by using techniques such as imposing an
order onto these simultaneous events.

• Unbounded results A further difference observed, deals with the fact that the RTEC
system is capable of acceptingmatches that do not include a termination point on our
stream, and thus result in unbounded intervals. Such matches can not be efficiently
simulated using FlinkCEP , as any such attempt would include matches that falsely
ignore events of the input stream.

• NegationMoreover, the inclusion of negation within conditions of our Complex Event,
creates several incompatibilities between the two systems. RTEC ’s interpretation
of the negation upon the an event or a fluent can not be translated to FlinkCEP ’s
dialect. The reason behind this originates from the inability to access previous data
without storing a significant portion of the stream during the recognition process,
which is a computationally unacceptable solution.

• Higher-order recognition and pattern hierarchies A remarkable aspect of the
RTEC system is its ability to provide the template for patterns that involve events
of the original stream along with conditions on the values of other Complex Events.
The FlinkCEP system, on the other hand, separates the recognition of other patterns
from the original stream and hence our current pattern. Moreover, even if Complex
Events that refer solely other patterns can be designed easily, combining their results
with the original stream is a quite difficult and time consuming task.
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5. EMPIRICAL COMPARISON

In this chapter, after the examination of possible scenarios where the two systems may
differ, we evaluate their importance by performing several experiments upon real life
streaming applications. We present the datasets used, the concepts implemented as
Complex Events and evaluate the results of these implementations. In total we would be
focusing on two datasets where the RTEC system has already been used. These are: the
Brest dataset [40] that concerns the monitoring of vessels and the CAVIAR dataset, that
provides different scenarios of interactions between individuals using
Surveillance Recordings.

5.1 Experimental Setup

In this section we describe the process of our experiments and subsequent comparisons.
First, we present the datasets, the types of events within and their temporal attributes.
Afterwards, we depict some of the RTEC Complex Events considered for the comparison
along with their FlinkCEP equivalents. Lastly, we provide the aspects on which the results
were evaluated.

5.1.1 The Datasets

RTEC has been used in numerous projects, including fleet management and maritime
monitoring [39]. In this section we present the two datasets we are basing our empirical
evaluation on, providing with a few details of the semantics of the SDEs included and the
features of each stream.

Maritime Dataset Throughout different types of applications, tracking and monitoring
maritime information and vessel movement appears as an important aspect. Most systems
that need that type of information use the Automatic Identification System (AIS); a technology
for tracking the movement of vessels and locating vessels at sea.

Handling messages transmitted from vessels, a main use and purpose of a recognition
system is the avoidance of collisions and ensuring safety across sea traffic. Systems
that handle these messages, also use databases including Static data about vessels and
Spatial Information. These data include the types of vessels based in its Maritime Mobile
Service Identity (MMSI), the speed limits of each vessel type, information about the area
the vessels enters or leaves based on coordinates and others.

The AIS messages include information about the vessel that transmits them, like its MMSI,
the moment (measured in POSIX / UNIX Epoch time) the message was recorded, along
with other data regarding the vessel’s velocity, its coordinates etc. The Brest dataset
includes information regarding the movement of vessels appearing within the Celtic sea,
the Channel and Bay of Biscay in France. It covers in total the time span of six months,
beginning at October 1st, 2015 and ending with March 31st, 2016.

In order to have these messages translated and parsed into a form accessible from the
RTEC system, a preprocess stage has being applied onto the stream. This process
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resulted into some of the messages splitting and producing more than one events on
our stream. For example, a velocity message for a vessel may be produced along with
another event regarding the vessels movement within an area. At the end of the process,
we are provided a stream of different types of events that can be understood by the RTEC
system, but also parsed into a Flink stream.

Each one of these events carries different kind of information; for example as the velocity
event gives us the speed of the Vessel (measured in knots) and the coord event gives us its
coordinates. The change_speed events are provided when a vessel changes its velocity
and the slow_motion one when a vessel begins a low speed movement, accordingly. Also,
when a ship stops (and when it starts moving again) the respective stop event is provided;
as well as when a vessel changes its heading. Finally, as the Brest map is partitioned into
areas, each area is marked and given a name and gets assigned a type. The type of each
area may be one of the following: anchorage, fishing, natura, nearCoast, nearCoast5k,
nearPorts, indicating the nature of the area. These areas may be overlapping, as some
areas lie within others. When a vessel enters or leaves a certain area, the respective
(entersArea, leavesArea) event occurs. These events include the area ID, from which
we can deduce the area type. The proximity event gives us spatial information about the
relevant positions of vessels that happen to be near, is the only one that includes more
than one vessel, and so carries both of their MMSI keys.

Below we present some information regarding the size of our data stream (full 6 months),
along with the occurrences for all SDEs types:

Table 2: Temporal, spatial and entity attributes of Brest dataset.

Time Confines (in Epoch format)
Starting point 1443650401
Ending (last) point 1459461588

Human Time equivalent (οn G.M.T.)
Starting point Wednesday, September 30, 2015 10:00:01 PM
Ending (last) point Thursday, March 31, 2016 9:59:50 PM

Data Time Range 15811189 seconds
Types of areas in total 6
Areas in total 1805
Types of vessels in total 37
Vessels in total 5055
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Table 3: Table of Simple Derived Events appearing as input for the Maritime dataset, originating
from Brest. All input events are instantaneous except ‘proximity’. The first three types of events

are a result of a spatial preprocessing; the next two originate directly from the AIS messages, while
the rest are produced by the trajectory synopsis generator.

SDE Type Occurrences
(#)

Sp
at
ia
l entersArea 169419

leavesArea 142575
proximity 62138
velocity 16263766
coord 16262944

C
rit
ic
al
Ev

en
ts

change_in_heading 3588015
change_in_speed_start777192
change_in_speed_end 773121
gap_start 88752
gap_end 55273
slow_motion_start 161076
slow_motion_end 158290
stop_start 379550
stop_end 371452
Critical Events in total 6352721
Total number of
SDEs

39253563

AIS messages in
total

18M (approx.)
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Surveillance Dataset The CAVIAR Project (CAVIAR: Context Aware Vision using
Image-based Active Recognition)1 provides a dataset comprised of the representation
of interactions between several entities. These scenarios include the meeting of two
individuals, a fight between two people, a person leaving an object and others. Each
scenario is in a video format, and is also represented as a stream of its frames, including
information about the involved entities, as well as having information about the context of
each person’s/group of persons actions, i.e. the ground truth for a possible recognition
process, as noted in [24] and the dataset’s documentation 2. Additional information about
the events included within the dataset can be found on the following tables.

Table 4: Entity and SDE attributes of CAVIAR dataset.

Input Stream
Entities(persons) in total 10
Types of SDEs in total 4

Types of SDEs

movement
coord

orientation
appearance

Types of movement SDEs in total 6
Types of appearance SDEs in total 4

Ground Truth
Situation tags in total 7

Types of Situations

walking
immobile
drop down

none
fighting
browsing
meeting

Context tags in total 9

Types of Contexts

joining
interacting

leaving victim
fighting
inactive
split up
moving
none

browsing

1http://groups.inf.ed.ac.uk/vision/CAVIAR/CAVIARDATA1/.
2http://groups.inf.ed.ac.uk/vision/CAVIAR/CAVIARDATA1/gt_file_format.txt.
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Table 5: Table of Simple Derived Events appearing within the CAVIAR dataset, along with number
of Ground Truth events.

Input Stream
SDE Type CAVIAR 10×CAVIAR
movement
active 5358 53580
inactive 9829 98290
walking 29041 290410
running 807 8070
abrupt 590 5900
none 1 10

coord 45626 456260
orientation 45626 456260
appearacne
appearance 45333 453330
disappearance 1 10
appear 150 1500
disappear 142 1420

Total number of SDEs 182504 1825040
Video frames in total 25154 251540
Tuples in total 29439 294390

Ground Truth
Situation Tag
Single Entities CAVIAR 10×CAVIAR
Moving 15143 151430
Inactive 2867 28670
Browsing 679 6790
None 1 10

Group Entities CAVIAR 10×CAVIAR
Split 226 2260
Fight 630 6300
Join 558 5580
Interact 301 3010
Left_victim 42 420
Move 1313 13130

Context Tag
Single Entities CAVIAR 10×CAVIAR
Browsing 1934 19340
Immobile 5598 55980
Walking 9742 97420
Drop_down 1415 14150
None 1 10

Group Entities CAVIAR 10×CAVIAR
Fight 1086 10860
Meet 1671 16710
None *(Moving) 313 3130
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5.1.2 Complex Events and their Implementations

Complex Events for theMaritimeDataset Having numerous available Complex Events
defined for previous and current maritime projects [42], below lies a hierarchy between all
these patterns. The Complex Events have been implemented and designed as RTEC
fluents and thus our goal was to translate them into their FlinkCEP equivalent.

Figure 6: The maritime patterns hierarchy, (after [39]). The patterns used for our evaluation are
highlighted appropriately.

All Complex Events examined in this dataset involve only a single vessel. In order to
avoid conditions that require events to refer to the same vessel function on our FlinkCEP
we decided to partition the stream based on the MMSI tag (the id of each vessel) of all
events, for our FlinkCEP implementations. Below we present a few indicative examples
for translating these RTEC patterns. First we present a fairly simple pattern (withinArea);
then we also provide the implementations for the more complex tuggingSpeed pattern. All
patterns used from this dataset refer to a single vessel.

• Within Area:
RTEC

i n i t i a t e d A t ( w i th inArea ( Vessel , AreaType )=true , T ) :−
happensAt ( entersArea ( Vessel , Area ) , T ) ,
areaType ( Area , AreaType ) .

te rminatedAt ( w i th inArea ( Vessel , AreaType )=true , T ) :−
happensAt ( leavesArea ( Vessel , Area ) , T ) ,
areaType ( Area , AreaType ) .
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te rminatedAt ( w i th inArea ( Vessel , _AreaType )=true , T ) :−
happensAt ( gap_s ta r t ( Vessel ) , T ) .

FlinkCEP

val withinAreaKeyed =
Pat te rn . begin [ MyEvent ] ( ” s t a r t ” , sk ipPastLast )

. where ( ev=>ev . getAnnot ( ) == ” entersArea ” )

. fo l lowedBy ( ” end ” ) . where ( ( key , ev )=> {
val matchStar t =
ev . getEventsForPat tern ( ” s t a r t ” ) . head
( key . getAnnot ( ) == ” gap_s ta r t ” ) | |
( ( key . getAnnot ( ) == ” leavesArea ” ) &&
( key . getAreaType ( ) ==matchStar t . getAreaType ( ) ) )

} )

• Tugging Speed (single Vessel):
RTEC

i n i t i a t e d A t ( gap ( Vessel ) =nearPorts , T ) :−
happensAt ( gap_s ta r t ( Vessel ) , T ) ,
holdsAt ( w i th inArea ( Vessel , nearPorts )=true , T ) .

i n i t i a t e d A t ( gap ( Vessel ) =farFromPorts , T ) :−
happensAt ( gap_s ta r t ( Vessel ) , T ) ,
\+ holdsAt ( w i th inArea ( Vessel , nearPorts )=true , T ) .

te rminatedAt ( gap ( Vessel ) =_PortStatus , T ) :−
happensAt ( gap_end ( Vessel ) , T ) .

i n i t i a t e d A t ( tuggingSpeed ( Vessel ) = true , T ) :−
happensAt ( v e l o c i t y ( Vessel , Speed , _ , _ ) , T ) ,
th resho lds ( tuggingMin , TuggingMin ) ,
th resho lds ( tuggingMax , TuggingMax ) ,
inRange (Speed , TuggingMin , TuggingMax ) .

te rminatedAt ( tuggingSpeed ( Vessel ) = true , T ) :−
happensAt ( v e l o c i t y ( Vessel , Speed , _ , _ ) , T ) ,
th resho lds ( tuggingMin , TuggingMin ) ,
th resho lds ( tuggingMax , TuggingMax ) ,
\+ inRange (Speed , TuggingMin , TuggingMax ) .

te rminatedAt ( tuggingSpeed ( Vessel ) = true , T ) :−
happensAt ( s t a r t ( gap ( Vessel ) =_Status ) , T ) .

FlinkCEP

val tuggingMin = 1.2
val tuggingMax = 15.0
val tuggingSpeedBKeyed=
Pat te rn . begin [ MyEvent ] ( ” s t a r t ” , sk ipPastLast )
. where ( ev=> {
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val speed = ev . getSpeed ( )
( speed !=speed In i t ) && ( speed<tuggingMax ) &&
( speed>tuggingMin )

} )
. fo l lowedBy ( ” end ” ) . where ( ev=> {

val speed = ev . getSpeed ( )
( ev . getAnnot ( ) == ” gap_s ta r t ” ) | | ( ( speed !=speed In i t ) &&
( ( speed>tuggingMax ) | | ( speed<tuggingMin ) ) )

} )

Complex Events for the Surveillance Dataset While the patterns that involve only one
person/entity can be addressed in a direct way, the patterns that express a relational
activity between multiple entities need a different approach. More specifically, these
patterns need to detect the occurrence of some SDEs about multiple persons, and
happening simultaneously in most cases. This last fact implies that events of the stream
would come in an order but the timestamps of continuous SDEs would often be the same;
as a result when detecting these kind of patterns there is a need to eliminate the sense
of order between simultaneous events. In order to achieve this we include the concept
of MegaEvents in our FlinkCEP implementation. While several types of MegaEvents
can be implemented, we propose TupleEvents, which are basically tuples of all possible
combinations of SDEs that occur simultaneously. The nature of these TupleEvents is
defined by a factor, that determines the number of SDEs included on each tuple created.
In experiments we chose a factor of two (2). For example, supposing we have the following
stream (timestamps indicated in parentheses) is provided:

Event[A](1), Event[A](2), Event[B](2), Event[C](2), Event[A](3), Event[B](3)

having a TupleFactor of ‘2’ events per MegaEvent, we would create the following
MegaEvents(ME) stream:

MegaEvent[AB](2), MegaEvent[AC](2), MegaEvent[BC](2), MegaEvent[AB](3)

Along with the implementation of the RTEC system, several pattern implementations
concerning the CAVIAR project have been developed3. We focused on the Simple Fluent
based pattern of meeting between two people. The corresponding FlinkCEP implementations
of these concepts were developed for the purpose of our comparison; they are listed
below.

A concatenated version of all videos have been used for creating an input stream of frames
and events. The resulting stream is consisted of approximately 45,000 entity events. On
the other hand, the Tuples stream used by FlinkCEP contains about 29.000 of such events.
For the purpose of a more thorough comparison of both systems capabilities we also
created a second dataset, emanating from the originally provided one. This new dataset
is simply a repetition of the former in sequence. We decided on using the initial stream
ten(10) times and thus creating a dataset of 450,000 events, with the corresponding
TuplesStream being close to 295.000 SDEs. We are referring to these two streams as
CAVIAR for the simple sequence of the videos provided and as 10×CAVIAR for our own
extended version.

3https://github.com/aartikis/RTEC.
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Two people meet:

Figure 7: Two people meet / Meeting Context, (after CAVIAR’s documentation 4).

RTEC

/ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
* CLOSE *
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * /

holdsFor ( close ( Id1 , Id2 ,24 )=true , I ) :−
holdsFor ( d is tance ( Id1 , Id2 ,24 )=true , I ) .

holdsFor ( close ( Id1 , Id2 ,25 )=true , I ) :−
holdsFor ( close ( Id1 , Id2 ,24 )=true , I1 ) ,
holdsFor ( d is tance ( Id1 , Id2 ,25 )=true , I2 ) ,
un i on_a l l ( [ I1 , I2 ] , I ) .

holdsFor ( close ( Id1 , Id2 ,30 )=true , I ) :−
holdsFor ( close ( Id1 , Id2 ,25 )=true , I1 ) ,
holdsFor ( d is tance ( Id1 , Id2 ,30 )=true , I2 ) ,
un i on_a l l ( [ I1 , I2 ] , I ) .

holdsFor ( close ( Id1 , Id2 ,34 )=true , I ) :−
holdsFor ( close ( Id1 , Id2 ,30 )=true , I1 ) ,
holdsFor ( d is tance ( Id1 , Id2 ,34 )=true , I2 ) ,
un i on_a l l ( [ I1 , I2 ] , I ) .

holdsFor ( close ( Id1 , Id2 , Threshold )= fa l se , I ) :−
holdsFor ( close ( Id1 , Id2 , Threshold )=true , I1 ) ,
complement_al l ( [ I1 ] , I ) .

/ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
* MEETING *
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * /

4http://groups.inf.ed.ac.uk/vision/CAVIAR/CAVIARDATA1/labelingstates.pdf
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% −−−−− i n i t i a t e meeting

i n i t i a t e d A t ( meeting (P1 ,P2)=true , T ) :−
happensAt ( s t a r t ( g ree t ing1 (P1 ,P2)= true ) , T ) ,
\+ happensAt ( disappear (P1) , T ) ,
\+ happensAt ( disappear (P2) , T ) .

% greet ing1

holdsFor ( g ree t ing1 (P1 ,P2)=true , I ) :−
holdsFor ( ac t i veOr Inac t i vePerson (P1)=true , IA1 ) ,
% op t i ona l op t im i za t i on check
\+ IA1 = [ ] ,
holdsFor ( ac t i veOr Inac t i vePerson (P2)=true , IA2 ) ,
% op t i ona l op t im i za t i on check
\+ IA2 = [ ] ,
holdsFor ( close (P1 ,P2,25 )=true , IC ) ,
% op t i ona l op t im i sa t i on check
\+ IC = [ ] ,
i n t e r s e c t _ a l l ( [ IA1 , IA2 , IC ] , I ) ,
\+ I = [ ] ,
! .

% the ru l e below i s the r e s u l t o f the above op t im i sa t i on checks
holdsFor ( g ree t ing1 (_P1 , _P2 )=true , [ ] ) .

% ac t i veOr Inac t i vePe rs ion

holdsFor ( ac t i veOr Inac t i vePerson (P)=true , I ) :−
holdsFor ( ac t i ve (P)=true , IA ) ,
holdsFor ( i n a c t i v e (P)=true , In ) ,
holdsFor ( walk ing (P)=true , IW) ,
un i on_a l l ( [ IA , In , Iw ] , I ) .

% −−−−− te rmina te meeting

% run
i n i t i a t e d A t ( meeting (P1 , _P2 )= fa lse , T ) :−
happensAt ( s t a r t ( running (P1)= true ) , T ) .

i n i t i a t e d A t ( meeting (_P1 ,P2)= fa lse , T ) :−
happensAt ( s t a r t ( running (P2)= true ) , T ) .

% move ab rup t l y
i n i t i a t e d A t ( meeting (P1 , _P2 )= fa lse , T ) :−
happensAt ( s t a r t ( abrupt (P1)= true ) , T ) .

i n i t i a t e d A t ( meeting (_P1 ,P2)= fa lse , T ) :−
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happensAt ( s t a r t ( abrupt (P2)= true ) , T ) .

i n i t i a t e d A t ( meeting (P1 , _P2 )= fa lse , T ) :−
happensAt ( disappear (P1) , T ) .

i n i t i a t e d A t ( meeting (_P1 ,P2)= fa lse , T ) :−
happensAt ( disappear (P2) , T ) .

% move away from each other
i n i t i a t e d A t ( meeting (P1 ,P2)= fa lse , T ) :−
happensAt ( s t a r t ( close (P1 ,P2,34 )= f a l s e ) , T ) .

FlinkCEP

val meetingKeyed =
Pat te rn . begin [ TupleMegaEvent ] ( ” s t a r t ” , sk ipPastLast )
. where ( ev=>ev . getDis tance ( ) <=25 &&
ev . notExistsApp ( ” disappear ” ) &&
ev . sdes . count ( x=>x . getAnnot ( ) == ” ac t i ve ” | |
x . getAnnot== ” i n a c t i v e ” | | x . getAnnot ( ) == ” walk ing ” )==2 )
. fo l lowedBy ( ” end ” ) . where ( ev=> ev . getDis tance ( ) >34 | |
ev . happens ( ” abrupt ” ) | | ev . happens ( ” running ” ) | |
ev . ex is tsApp ( ” disappear ” ) )

While comparing the patterns for several concepts, we noticed that in all cases the FlinkCEP
equivalent is significantly shorter than the one for RTEC . A main reason for that fact is the
complexity of creating sequence-based patterns when using RTEC . For example, while
detecting for a meeting we need to firstly find an instance of greeting between the two
entities. in FlinkCEP this last concept is defined by having an additional component on
the beginning of the pattern. Creating a similar pattern using RTEC , requires the inclusion
of a completely separate pattern as a prerequisite. Hence, it is expected for the RTEC to
require additional computational steps for such cases, as the prerequisite steps should be
executed individually.

Furthermore, these types of patterns are harder to visualize using RTEC , as they do not
follow the same intuition the system is designed on, as opposed to FlinkCEP . For example,
the requirement of the two persons involved in our meeting pattern to be active needs to be
expressed using a separate holdsFor predicate and handle the resulting intervals returned
appropriately. On FlinkCEP however, we could simply add an extra condition stating that
need for the event in question.
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5.1.3 Comparison Criteria

In our comparisons we are concerned with two different aspects of the results given and
the process they entail. The first focuses the matches themselves, the similarity of the
intervals returned by the two systems and the reasons behind possible differences. The
second is the performance of each implementation, by means of execution and time
specifically focusing on the recognition process for each system.

Quality of the results The first aspect we are interested in, are the results themselves
regarding the similarity between the two system’s matches. In order to effectively compare
the expressiveness of the two systems we analyze the matches returned while working on
the same scenarios. The unit that is used in our comparison are the timepoints included
in matches returned examining the uncommon segments appearing the two result sets.
We study which are unique to the RTEC system and which to FlinkCEP , and evaluate our
results. In order to perform this evaluation we decided to use common metrics such as
Recall, Precision and F1-score. As the intend of this study is to examine the differences
between the two patterns and not the evaluation of these patterns as a representation of
concepts originating from the data, we chose to consider the results returned by RTEC as
Ground Truth on our evaluation methods.

Execution Time Performance We are interested in a comparison of the performance
for both systems in terms of execution time. While we examine the full execution time for
our patterns, we also focus on the CER process of our implementations. For the purpose
of calculating solely the Recognition Time for the FlinkCEP implementation, and taking
into consideration that a separate calculation method of the CEP operator is not provided,
we calculated the delay for each event because of this process. We achieved this task
by storing the current time value before and after the CEP for each event, finding their
difference (measured in milliseconds) and adding those differences. Regarding the RTEC
system, measuring the recognition time is more straightforward as we are able to find the
time lapsed during the execution of the predicates responsible for the CER process. As we
discussed, RTEC also allows the use of windows. We conducted separate runs for both
datasets using and not using this feature to provide a comprehensive study of RTEC’s
capabilities. Furthermore, we provide a comparison between the total execution times
for the two systems (for both scenarios regarding RTEC ’s windows). All experiments
regarding the Maritime dataset were conducted using a machine with a Intel(R) Xeon(R)
CPU E5-2630 v2 @ 2.60GHz and 264GB of memory. For the CAVIAR dataset, we ran
our experiments on a machine that includes a Intel(R) Core(TM) i7-7700 CPU@ 3.60GHz
and 16GB of memory.
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5.2 Comparison

At this point we present the results and their evaluation for each dataset. We split the
comparison on the Execution Time Performance and Comparison of Resulting Matches
subsections for each dataset, starting with the Maritime and followed by the Surveillance
data.

5.2.1 Maritime Dataset

Quality of the results After examining the results of our comparison, we can deduce
that in most case the two approaches of the maritime concepts tend to have identical
matches. It seems that in most cases the FlinkCEP system can simulate the recognition
process of almost every single-valued simple-fluent based Complex Event proposed for
the RTEC system.

Table 6: Maritime Accuracy Comparison. Comparing the results of both systems, supposing the
RTEC results to be true, and using timepoints as a unit; hence the True Positives occur on both
systems, the False Negatives only on the RTEC matches and vice versa for the False Positives.

Composite Event Vessels(#) TP FN FP Precision Recall F1-Score

withinArea 3185 906241607 167559 1336348 0.999 0.999 0.999

trawlSpeed 260 15590400 87968 2234 0.999 0.994 0.997
trawlingMovement 267 31435979 0 4165 0.999 1.000 0.999

lowSpeed 1192 22299633 158290 0 1.000 0.993 0.996
tuggingSpeed 3241 239435220 491159 4130 0.999 0.998 0.999
sarSpeed 19 2426605 42879 0 1.000 0.983 0.991
changingSpeed 1981 39025964 777035 0 1.000 0.980 0.990

In all pattern cases, the results seem to be close to identical. The timepoints that appear
to occur solely on the FlinkCEP resulting set, are caused by the different approaches
of the systems for determining the termination timepoint of a pattern. More precisely,
suppose that an event occurs on time T1; this event might trigger the termination of a
fluent. In this case, RTEC considers the termination point having a timestamp of T1=T1+1.
Furthermore, when dealing with fluents depended on others, this artificial delay can be
expanded according to the hierarchy levels defined. On the other hand, in our FlinkCEP
implementation we do not take this factor into consideration and expand the resulting
match to the maximum on each case, to approximate the RTEC behavior; leading to these
differences on the results.

Execution time performance For our time comparison we decided not to use a para-
llelism factor for the FlinkCEP recognition, to more closely simulate RTEC ’s execution.
Furthermore, our experiments used the Kafka streaming platform 5 in order to provide
the stream onto Flink; we divided our input stream in batches of 1M (106) events. For
the RTEC system we had two separates runs. On the first one we used non-overlapping

5https://kafka.apache.org/.
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windows with size equal to a day (86,400 seconds). The second run did not include the
window feature provided by RTEC , but instead had a run for the full dataset on a single
query.
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Figure 8: Total recognition time comparison of the two systems (with and without the use of
windows in RTEC ) for all maritime patterns for the full 6-month Maritime dataset. RTEC is able to
detect all patterns passing through the dataset one. FlinkCEP requires separate CER for each

pattern; we use the sum of all recognitions.
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Figure 9: Recognition Time comparison of the two systems for each pattern for the full 6-month
Maritime dataset using temporal windows in RTEC.
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Figure 10: Recognition Time comparison of the two systems for each pattern for the full 6-month
Maritime dataset without the use of temporal windows in RTEC.
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Figure 11: Total execution time comparison of the two systems for each pattern for the full 6-month
Maritime dataset.
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The above figures indicates that FlinkCEP greatly outperforms RTEC in terms of execution
time, for all patterns. As seen by Figure 9 and Figure 10 RTEC requires more time to
execute the CER process than FlinkCEP , regardless the use of windows. Also, we deduce
that having temporal windows on our execution does not benefit the performance of RTEC
for both the recognition (Figure 8) or the total execution time (Figure 11). Furthermore, we
notice that the recognition times for the FlinkCEP implementation do not deviate from a
common mean value, regardless the complexity of the pattern in question, see Figure
9. This leads us to conclude that the performance of the FlinkCEP system is mainly
affected by the size of the input stream, rather than the operators within the patterns.
Lastly, as seen by Figure 11 the total execution time of the RTEC systems is much greater
than the FlinkCEP equivalent, even when the use of windows is not included. This last
remark shows that the FlinkCEP system handles large amounts of data efficiently and
considerably surpassing RTEC .

As by these results alone we are able to deduce that FlinkCEP is more time-efficient, we
decided not to include the execution of Flink with a greater parallelism factor than (1).
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5.2.2 Surveillance Dataset

Quality of the results The results, in total, show us that we are able to overcome some
of the issues simultaneous events create when using FlinkCEP , by employing the propo-
sedMegaEvent structure, and surpass RTEC ’s efficiency on certain occasions (compared
to the ground truth given). The following tables present a similarity evaluation between
the two sets of results, along with a comparison to the Ground Truth for each system.
The Ground Truth aspect is provided within the CAVIAR dataset, by the use of special
annotation.

Table 7: Similarity Comparison for Surveillance pattern. We evaluate the results of RTEC
compared to FlinkCEP . In order to do so, we chose to use the RTEC implementation as Ground
Truth and evaluate the FlinkCEP results correspondingly. We also are using the timepoints
returned as units of our comparisons.The stream is being parsed into Keyed streams, for our

FlinkCEP pattern to be simpler.

Pattern Datastream TP FN FP Precision Recall F1-Score

meeting CAVIAR 1897 144 0 1.000 0.929 0.963
10×CAVIAR 20167 243 0 1.000 0.988 0.994

Table 8: Meeting Accuracy compared to the Ground Truth. We evaluate the results of the RTEC ’s
and the FlinkCEP ’s implementations compared to the Ground Truth given. The GT corresponds to
the ‘meeting’ value of the Context tag. We also are using the timepoints returned as units of our
comparisons. The stream is being parsed into Keyed streams for our FlinkCEP pattern to be

simple.

Datastream CER System TP FN FP Precision Recall F1-Score

CAVIAR RTEC 1388 283 653 0.680 0.831 0.749
FlinkCEP 1388 283 509 0.732 0.831 0.778

10×CAVIAR RTEC 13880 2830 6530 0.680 0.831 0.749
FlinkCEP 13880 2830 6287 0.688 0.831 0.753

The overall differences rely on the fact that the RTEC system includes matches that do
not correspond to a full match, as only the initiation rule has been fulfilled by our data
stream. As examined in the previous chapter, these types of matches cannot effectively
be defined using the FlinkCEP system. In total they comprise the full differences observed
onto our results. The fact that in most cases we detect the same intervals as RTEC does
proves that the use ofMegaEvents can be an effective approach to handling simultaneous
events.

Execution Time Comparison Below we present the recognition time for FlinkCEP and
RTEC implementations for the CAVIAR dataset. We followed the same methods used for
the Maritime dataset, using Kafka for FlinkCEP and non-overlapping sliding windows, with
size of (1000) video frames this time. We also conducted a separate RTEC run that does
not include windows. On our FlinkCEP execution we used keyed streams of Tuple-Events,
based on the ids included on each tuple. In order to create such Tuple-Events the input
stream underwent a preproccesing step, prior to the Flink process.
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Figure 12: Recognition time comparison of the two systems for each pattern for the ‘meeting’
pattern for the 1×CAVIAR and 10×CAVIAR datasets.
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Figure 13: Total execution time comparison of the two systems for each pattern for the ‘meeting’
pattern for the 1×CAVIAR and 10×CAVIAR datasets.

Figure 12 indicates that when dealing with datasets of a smaller size RTEC outperforms
FlinkCEP regarding the recognition times. Furthermore, Figure 13 shows that the when
the stream gets larger, in terms of number of events included, FlinkCEP works more
efficiently than RTEC does. As a conclusion we can deduce that RTEC ismore appropriate
when dealing with small data batches, but suffers in comparison to FlinkCEP when having
to handle more than 100k events as input.
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5.3 Lessons Learned

After reviewing the results provided by our experiments we come to several conclusions.
Some of these conclusions confirm the remarks of the theoretical comparison of the prev-
ious chapter.

• PatternHierarchiesWeare able to effectively simulate hierarchies between patterns
when there is no negation included within their conditions. this can be achieved by
incorporating all events of the patterns involved into a single FlinkCEP Complex
Event.

• Unbounded intervals FlinkCEP proves to be unable to handle a pattern that includes
uncompleted matches on their results, because of reaching the end of the steam.
The use of such matches would require a different pattern, and thus a different CER
process.

• MegaEvents We have proven that we are capable of producing MegaEvent types
for FlinkCEP , in order to handle simultaneous events and multi-entity patterns. This
approach requires an extra preprocessing step and may lead to exponentially large
streams, but is effective when the number of events per timepoint is limited.

• Recognition Time The results regarding the recognition times of both systems,
show that in most cases the FlinkCEP system appears to outperform RTEC .
Furthermore, the comparison of the execution times proves that the FlinkCEP system
handles the load of data much more efficiently, mostly thanks to the Flink system,
resulting on the gap between their performances. Conversely experiments has
shown that RTEC works more efficiently when dealing with small amount of data,
in terms of input events.
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6. CONCLUSIONS AND FURTHER WORK

In this chapter we provide a summary of our study, describe our conclusions and list
potential aspects for our comparison that should be extended in future work.

6.1 Conclusions

As we stressed throughout this study, there seems to be several differences on what each
FlinkCEP and RTEC are capable of representing efficiently. These differences lay on the
disparate approaches they use in order to create and track the same concepts onto a
stream of data. The main cause for these differences is the capabilities of each system
regarding queries during the recognition process. The fact that RTEC is able to access
events without considering them par of the current match allows the design of simple yet
expressive patterns, in contrast to the FlinkCEP equivalents. Furthermore, the behavior
towards simultaneous events by each system plays a major role on how our patterns are
designed, as the order of simultaneous events doesn’t affect the RTEC implementations
whilst the FlinkCEP system emphasizes on its significance.

Another major contrast between the two systems occur when dealing with matches whose
endpoint does not appear on the stream. The reason behind this, is the fact that a complete
FlinkCEP pattern would include an ending event as part of its declaration; in contrast the
RTECmatches might also include ones that only the initiation rule has been triggered, and
thus having intervals with no closed end. Moreover, attempting to simulate such behavior
with FlinkCEP seems to be more than tricky.

As expected when dealing with any Logic Programming-based system, the existence of
the negation creates significant issues. While, the negation on RTEC is achieved by the
notion of negation as failure, a simple omission of an event or a fact on our FlinkCEP
translated patterns does not qualify as a scenario for providing the same results. The main
reason that causes that effect emanates from the query capabilities of the two systems,
as noted above.

Also, while RTEC relies on the use of windows to achieve a high performance rate, FlinkCEP
does not include a window mechanism, even if Flink does provides an implementation
regarding other operators. The RTEC system uses sliding (overlapping or not) windows
to improve its performance. On the other hand, the only time-related option provided by
FlinkCEP (the within function) does not simulate the scope of windows and works as a
simple condition regarding the first and last components of the pattern’s match.

Our experimental results emphasize the importance of the pattern-hierarchy available on
RTEC . After looking at the behavior of both patterns with and without the use of hierarchies
on their elements and between prerequisites, its necessity is undeniable. And while one
might attempt to simulate RTEC ’s approach in prioritizing and recognizing the prerequisite
patterns first and afterwards acting on the resulting stream, we must consider that usually
patterns involve information of the original stream as well as the new data created by
another recognition process.

Finally, the execution time comparison, focusing on the recognition process, shows that
FlinkCEP performs more efficiently than RTEC . The reason these resulting times are so
different seems to be caused by the use of Flink and its impressive performance compared
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to Logic Programming systems.

6.2 Future work

Several aspects of our our work can be extended in order to expand our study in the future.
The main directions that such future work may follow are:

• Statically Determined Fluents Expand our work by including Statically Determined
Fluents of RTEC and presenting implementations using FlinkCEP for such patterns.
Even though several of our experiments (not presented in this study) have proven
that some SDFs can be approached effectively, we need to examine all possible
scenarios. A different approach would be by strictly proving the equivalence of every
SDF to a Simple Fluent and thus focusing on this comparison.

• Multi-valued Fluents In this study we focused on fluents that can only carry two
types of values; we called these fluents Boolean. A significant expansion would be
examining whether Fluents that can carry a wider range of different values can be
translated as FlinkCEP patterns. These types of fluents are determined by separate
rules for each of their values, combined with the property that it can only carry a
single value at any given moment (or not carry any value), thus differentiating such
a study from ours.

• RTEC -2 Furthermore, a version of RTEC that handles recursive definitions of
Complex Events and long-term relations is under development [46]. This update
of the RTEC engine would enable the detection of even more complex patterns,
creating the need of a separate study, focused on them.

• Parallelism The examination of how parallelism affects the efficiency of our systems
can be examined in a further work. In this study, we only provided results without
including executions in parallel, but the enabling of parallelism for the RTEC engine
should be studied, and more importantly the utilization of such capabilities for an
engine based on Flink would provide a thorough comparison of state-of-the-art CER
tools.

• Windows for FlinkCEP As mentioned, the RTEC system benefits greatly from
the use of temporal sliding windows. Even if the Flink does provide a windowing
mechanism, combining its use with FlinkCEP is a completely different matter. The
examination on howwindows can be integrated into the recognition process, together
with the use of parallelism, would affect the performance of the FlinkCEP
implementation and as a result the comparison.
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ACRONYMS

CE Complex Event
CEP Complex Event Processing
CER Complex Event Recognition
FSA Finite State Automata
RTEC Run-time Event Calculus
SDE Simple Derived Events
SDF Statically Determined Fluent
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