NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

SCHOOL OF SCIENCE
DEPARTMENT OF INFORMATICS AND TELECOMMUNICATIONS

POSTGRADUATE STUDIES
“THEORETICAL COMPUTER SCIENCE”

MASTER THESIS

Complex Event Recognition: a comparison between
FlinkCEP and the Run-Time Event Calculus

Alexandros-Nikolaos P. Troupiotis-Kapeliaris

Supervisors: Panagiotis Stamatopoulos, Assistant Professor
Alexander Artikis, Assistant Professor

ATHENS

November 2019

EONIKO KAI KAMOAIZTPIAKO NMANEMIZTHMIO AOGHNQN

2XOAH OETIKQN ENIZTHMQN
TMHMA NAHPO®OPIKHZ KAI THAEMIKOINQNIQN

METANTYXIAKO NMPOIrPAMMA
“OEQPHTIKH NAHPO®OPIKH”

AINAQMATIKH EPTAZIA

Avayvwpion ZovleTwy NeyovOoTwyV: HIO CUYKPIOH TWV
FlinkCEP ka1 Run-Time Event Calculus

AAegavdpog-NikoAaog IN. TpoutmwTtng-KatreAidpng

EmiBAérovreg: Mavayiwrtng ZTaparotrouAog, Etrikoupog Kabnyntnig
AAEEavdpog ApTikng, ETtikoupog KaBnyntig

AOHNA

Noéuppiog 2019

MASTER THESIS

Complex Event Recognition: a comparison between FlinkCEP and the Run-Time Event
Calculus

Alexandros-Nikolaos P. Troupiotis-Kapeliaris
R.N.: M1610

SUPERVISORS: Panagiotis Stamatopoulos, Assistant Professor
Alexander Artikis, Assistant Professor

AINAQMATIKH EPTAZIA

Avayvwpion 20vBeTwyv Neyovotwy: pia ouykpion Twv FlinkCEP kal Run-Time Event
Calculus

AAegavdpog-NikoAaog IN. Tpoummwrng-KatreAidpng
A.M.: M1610

EMIBAEMONTEZ: MavayiwTtng Zrapardémoulog, Ettikoupog Kabnyntg
AAEGavdpog ApTikng, ETtikoupog KaBnyntig

ABSTRACT

The field of Complex Event Recognition (CER) on streams of data has shown remarkable
growth the last few years. CER systems use streaming data in order to detect composite
phenomena expressing relations between the input data. The amount of developed CER
systems has created the need to examine and compare their capabilities. In this study
we have chosen two systems, originating form the most dominant categories. From
automata-based approaches we have selected FlinkCEP and from Logic-based systems
we have selected RTEC. We present a theoretical comparison of the two systems’ expres-
siveness, along with an empirical evaluation of the efficiency, using real data.

SUBJECT AREA: Logic Programming, Theory of Computation

KEYWORDS: event, recognition, complex events, automata, event calculus, data streaming

NEPIAHWH

O KAGBOG TG Avayvwpliong ZUvBeTwV eyovoTwy TTAVW 0€ POES ATTO DEOOPEVA EXEI ETTIOEI-
¢el agloonueiwTn avaTTugn Ta TeAsuTaia Xpovia. Ta CuoTAPATA avayvwpiong oUvBETwY
YEYoVOTWV TTEPIEPYALOVTAI POEG OTTO OEDOPEVA E OKOTTO TOV EVTOTTIONO OUVOETWYV QAIVOUE-
VWV, TTOU eKQPAlouv ox£o€IG avapeoa oTa dedopéva e106dou. O apiBudg Twv CUCTNUATWY
TTOU £XOUV avaTTTuxBei Ta TeEAeuTaia xpovia €xel dnUIOUPYNOEl TNV AvAyKN YIa JEAETN KAl
oUYKpPIoN TwV OUVATOTATWY TOUG. 2€ QUTHV TNV PHEAETN ETTIAEyOUpE OUO CUCTHUATA ATTO TIG
MO ETIKPATOUOEG KaTnyopies. AlaAéyoupe 1o FIinkCEP atrdé 1o cuotiuata Baciouéva oe
autépata kal To RTEC até Ta cuoTAuata Tou XpnolPoTTolouv Aoyikr. Mapouacidloupe pia
BewpnTIK OUYKPION TNG EKPYPACTIKOTNTAG TWV OUO cuoTNUATWY, Yadi JE PIa TTEIPAPOTIKA
agloAdynaon TnG atrodoTIKOTATAG TOUG, XPNOIKMOTIOIWVTAG TTPAYHATIKA dedopéva.

OEMATIKH NEPIOXH: Aoyikég MNMpoypappatiopdg, Ocwpia YTToAoyiopou

AEZEIZ KAEIAIA: avayvwplion yeyovotwy, ouvBeTa yeyovoTa, autépaTa, Aoyiopog dpdong,
pon 0edouEVWV

ACKNOWLEDGEMENTS

At this point | should express my gratitude towards the people that played major roles
during this study. Firstly, | would like to thank my advisors at NCSR Demokritos, Dr.
Alexander Artikis and Dr. Georgios Paliouras for allowing me to be part of their group.
Their trust and constant guidance are truly appreciated. Furthermore, | would like to
thank Dr. Panagiotis Stamatopoulos, from University of Athens, for monitoring my work
throughout its course.

Also, the advice of Elias Alevizos, Evangelos Michelioudakis and Manos Pitsikalis is

appreciated to the fullest on both moral and technical dilemmas; their contributions to
this thesis are of significant importance. A special reference to Christos Vlassopoulos for
introducing me to the CER group and for supporting me, especially during the few first
months. My gratitude to numerous researchers working on Demokritos, including but not
limited to L.Tsekouras, M.Ntoulias, P.Mantenoglou, D.Kaklis, E.Tsilionis and N.Katzouris.

Last but not least, to my family for their continuous support in so many ways, and their
patience over my constantly emerging concerns

CONTENTS

List of Figures

List of Tables

1 INTRODUCTION
1.1 Motivation .
1.2 Contributions.

1.3 Outline of Thesis .

2 RELATED WORK

21 Complex Event Processing and Recognition Systems
2.1.1 Automata-based Complex Event Recognition systems

2.1.2 Logic-based Complex Event Recognition systems .

2.2 Comparisons.

3 BACKGROUND
3.1 The FlinkCEP System .
3.2 Event Calculus .

3.2.1 The RTEC System.

4 THEORETICAL COMPARISON

41 Unbounded Intervals

4.2 Simultaneous initiation and termination
4.3 Simultaneous Events

4.4 Relations between patterns.

4.5 Conclusions .

5 EMPIRICAL COMPARISON
5.1 Experimental Setup .
5.1.1 The Datasets .
5.1.2 Complex Events and their Implementations .

5.1.3 Comparison Criteria .

10

12

13
13
13
14

15
15
16
16
17

19
19
24
24

27
27
28
29
32
35

36
36
36
41
47

52 Comparison00 el

5.2.1 Maritime Dataset

5.2.2 Surveillance Dataset .

53 Lessonslearned o .

6 CONCLUSIONS AND FURTHER WORK

6.1 Conclusions« « « v v 0w e e e

6.2 Futurework 0 o e e e

ACRONYMS

REFERENCES

48
52
54

55
55
56

57

58

LIST OF FIGURES

Figure 1 RTEC is able to detect unbounded matches, in case the stream does
not include an ending point, while FlinkCEP cannot simulate this behavior. . 27

Figure2 While FlinkCEP would accept a match that is defined by simultaneous
initiations and terminations, RTEC automatically filters such matches. In
order to avoid these matches we should include an additional temporal
condition. L 28

Figure3 Thetwo streams include the same information but are treated differently
by FIinkCEP . A pattern that requires for the (a) and (c) events to occur
simultaneously requires a more complex approach for FlinkCEP 29

Figure4 Thetwo streams include the same information but are treated differently
by FlinkCEP . A pattern that requires for the (a) and (c) events to occur
simultaneously requires a more complex approach for FlinkCEP . The Flink CEP
implementation cannot detect the first match as no events are included into
the stream in order to be used as bookmarks. 31

Figure 5 The prerequisite pattern (defined by (s) and (t)) should not hold
during initiation of the pattern we are trying to detect. The first FlinkCEP
approach would be to include the termination of the prerequisite as part of
the pattern, missing the first match. The second, marks the first pattern’s
occurrence as optional allowing for the system to ignore it even if it appears. 34

Figure 6 The maritime patterns hierarchy, (after [39]). The patterns used for
our evaluation are highlighted appropriately. 41

Figure7 Two people meet/ Meeting Context, (after CAVIAR’s documentation

Figure8 Total recognition time comparison of the two systems (with and without
the use of windows in RTEC) for all maritime patterns for the full 6-month
Maritime dataset. RTEC is able to detect all patterns passing through the
dataset one. FlinkCEP requires separate CER for each pattern; we use the
sum of all recognitions. 49

Figure 9 Recognition Time comparison of the two systems for each pattern
for the full 6-month Maritime dataset using temporal windows in RTEC. . . 49

Figure 10 Recognition Time comparison of the two systems for each pattern
for the full 6-month Maritime dataset without the use of temporal windows
iNRTEC. e 50

Figure 11 Total execution time comparison of the two systems for each pattern
for the full 6-month Maritime dataset. 50

Figure 12 Recognition time comparison of the two systems for each pattern for
the ‘meeting’ pattern for the 1 xCAVIAR and 10xCAVIAR datasets. 53

Figure 13 Total execution time comparison of the two systems for each pattern
for the ‘meeting’ pattern for the 1x CAVIAR and 10xCAVIAR datasets. . . . 53

LIST OF TABLES

Table 1 RTEC predicates and operators used for rules of Complex Events
(after[6]). e 25

Table 2 Temporal, spatial and entity attributes of Brest dataset. 37

Table 3 Table of Simple Derived Events appearing as input for the Maritime
dataset, originating from Brest. All input events are instantaneous except
‘proximity’. The first three types of events are a result of a spatial preprocessing;
the next two originate directly from the AIS messages, while the rest are
produced by the trajectory synopsis generator. 38

Table 4 Entity and SDE attributes of CAVIAR dataset. 39

Table5 Table of Simple Derived Events appearing within the CAVIAR dataset,
along with number of Ground Truthevents. 40

Table6 Maritime Accuracy Comparison. Comparing the results of both systems,
supposing the RTEC results to be true, and using timepoints as a unit;
hence the True Positives occur on both systems, the False Negatives only
on the RTEC matches and vice versa for the False Positives. 48

Table7 Similarity Comparison for Surveillance pattern. We evaluate the results
of RTEC compared to FlinkCEP . In order to do so, we chose to use the
RTEC implementation as Ground Truth and evaluate the FlinkCEP results
correspondingly. We also are using the timepoints returned as units of our
comparisons.The stream is being parsed into Keyed streams, for our Flink CEP
patterntobe simpler. L 52

Table 8 Meeting Accuracy compared to the Ground Truth. We evaluate the
results of the RTEC ’s and the FlinkCEP ’s implementations compared
to the Ground Truth given. The GT corresponds to the ‘meeting’ value of
the Context tag. We also are using the timepoints returned as units of our
comparisons. The stream is being parsed into Keyed streams for our Flink CEP
patterntobe simple. L 52

Complex Event Recognition: a comparison between FlinkCEP and the Run-Time Event Calculus

1. INTRODUCTION

In today’s world the use of large data sources to extract useful information of a higher value
than the data itself is a default component to most industries. Numerous projects include
applications with sources that continuously feed the system with information. These appli-
cations range from handling messages arriving to a communications satellite, to detecting
market trends on financial matters or even monitoring the movement of military operations.
These data are included into streams and provided as separate packages of information
(events) as time moves forward. Streaming applications are focused on forgetting already
processed events.

Patterns between the included events can be detected on multiple occasions. These
patterns may be simple sequences of events, the occurrences of singular events with
certain characteristics or even more complex patterns. The detection of these patterns is
a process that intends to find Complex Events [22].

1.1 Motivation

We examine two engines originating from the most dominant categories, automata-based
and logic-based CER systems. A brief summary for each system is provided below, as
well as a more descriptive presentation of their features throughout the rest of this thesis.

FlinkCEP Developed by Apache, the FlinkCEP system ' is built on top of one of the most
widely used Streaming Platforms in the world, Flink, and thus it enjoys all its capabilities
and its efficiency regarding handling big loads of data [11]. The patterns that can be
expressed using FINKCEP’s dialect are based on an enhanced version of automata. They
are se-

quences of events equipped with the filtering options and conditions that might concern a
single or multiple of the match’s components. Developed using the JVM capabilities and
allowing the user to use both Java and Scala programming languages, FIinkCEP takes
advantage of numerous features not available on other systems.

RTEC As an indicative system based on logic, RTEC : Event Calculus for Run-Time
reasoning 2, is based on the principles of Event Calculus [7]. It has been used for multiple
fields, such as Maritime monitoring or camera surveillance applications. Capable of using
temporal windows (partitions of the stream based on time), RTEC approaches the recogni-
tion process as the detection of the maximal intervals, defined by conditions on events
occurring on the stream.

1.2 Contributions

The contributions of this study include:

"https://ci.apache.org/projects/flink/flink-docs-stable/dev/libs/cep.html
’https://github.com/aartikis/RTEC

A.N. Troupiotis-Kapeliaris 13

https://ci.apache.org/projects/flink/flink-docs-stable/dev/libs/cep.html
https://github.com/aartikis/RTEC

Complex Event Recognition: a comparison between FlinkCEP and the Run-Time Event Calculus

* A theoretical comparison of FIinkCEP and RTEC , focusing on their expressiveness.

* An empirical comparison in monitoring the movement of vessels at sea and detection
of human interactions based on surveillance footage.

1.3 Outline of Thesis

The rest of the report consists of the following chapters: first (Chapter 2) we present related
articles and papers that have investigated the capabilities and uses for several CER
systems. Afterwards, (on Chapter 3) we present the two systems in question, along with
few information regarding the recognition model they follow. Moreover, we theoretically
compare the capabilities of the two systems by enlisting possible scenarios where a differ-
ence on the behavior of both systems can be spotted (Chapter 4). Moving on, we are
describing the empirical evaluation we transacted; before providing the implementations
of the patterns for those experiments and giving our remarks upon the results (Chapter 5).
Finally, (Chapter 6) we summarized our conclusions, as well as mention several aspects
of the comparison that could be expanded in future studies.

A.N. Troupiotis-Kapeliaris 14

Complex Event Recognition: a comparison between FlinkCEP and the Run-Time Event Calculus

2. RELATED WORK

In this chapter we present previous work published that deals with streaming, describing
the field of CER. Also we present the features of major CER engines, along with mentioning
studies that compare such systems and their capabilities.

2.1 Complex Event Processing and Recognition Systems

As mentioned, the growth that the field of Data Science and Data Analysis has shown
over the last years has been remarkable. The fact that the load of data is of a great
scale in increasingly more applications creates a challenge. Handling it using traditional
databases with few and infrequent insertions, seems to be an inefficient approach. As
mentioned in [33], developing algorithms that handle data streams as their input, provides
us with elegant solutions to problems such as sampling and extracting frequent items,
similarity comparisons and summarizing.

Furthermore, techniques and architectures for performing Complex Event Processing
(CEP) has been proposed by [25], as different algorithms are described. It has been
suggested that these Complex Events can be expressed as queries on an Dynamic Query
Evaluation Database System; though evidence has shown that major motivation exists in
order to study and develop algorithms that concern queries that could be computationally
lower when evaluated using CEP systems [47]. A more theoretical approach of CEP
can be found in [29]; describing a formal CEP language and its operators, providing also
examples of Complex Events and individual stream scenarios, without though providing
an evaluation on real data, focusing on a more theoretical approach.

Several different implementations to the problem of CER have been developed. As
mentioned by [28] a classification method for those types of approaches separates CER
systems into three categories:

» The first, and most popular category, is comprised of systems based on automata.
The patterns designed by the user are translated into an automaton. These resulting
compiled automata follow rules of finite-state automata (FSA), but are also equipped
with features regarding the attributes of input events as well as registers that allow
storing information (usually previous events) during the recognition process. Furthermore,
in this approach the concept of time is treated simply as an extra attribute of the input
events. Several operators in our patterns, like optionally skipping events, may result
in non-deterministic automata; hence the set of all potential matches could become
exponential in the number of events being processed.

» The second is the category of engines that are built upon tree-based models, regard-
ing both Complex Event modeling and recognition. Patterns designed by systems
that fall into this category are modeled as trees of operators, such as sequence
of events, with the input event usually appearing on leaf nodes. Moreover, tree
based techniques are of paramount importance in several recognition algorithms,
and combined with other techniques (like automata-based recognition) lead to hybrid
approaches. Fewer systems have been developed using this approach, with the
most prominent one probably being Zstream [37].

A.N. Troupiotis-Kapeliaris 15

Complex Event Recognition: a comparison between FlinkCEP and the Run-Time Event Calculus

» The third category refers to logic-based engines. As with tree based models, these
approaches can be applied on the modeling of our patterns and/or the detection
methods. These systems tend to be more expressive and their modeling follows
rigorous mathematical models. The recognition may be implemented using a logic
programming language or be simulated by other types of approaches, such as
automata or temporal constraint networks [8].

A question that arises at this point is how do systems from each category differ between
them. Below we expand on several systems based on automata and logic before moving
on several comparisons of CER systems that have been conducted.

211 Automata-based Complex Event Recognition systems

While taking all the attributes desired for a Complex Event language into consideration,
the resemblance to automata theory and grammar comes as conspicuous to the reader.
Features like the expression of the pattern as a sequence of input events or the need
of iteration throughout the elements of the accepted pattern-match on the recognition
process, come as the most significant example [28]. As a result, recognition based on
automata appears to be probably the most dominant approach, as systems like SASE,
Caguya or FlinkCEP tend to be substantially popular among commercial and academic
applications.

Being one of the earliest examples of CER engines, SASE [30], played a major role on
the rise of popularity of CER systems around the world. SASE’s language uses sequence
based logic in order for the user to define Complex Events for recognition over a stream,
translating them into (possibly non-deterministic) automata and performs a recognition
process over the input stream. One of the most cited systems, SASE owes its popularity
to the simplicity of its language and most precisely the similarity of its patterns to SQL
queries.

Several systems that have similar design principles with SASE are available for users
to experiment. Similar to SASE’s pattern modeling techniques are followed by Cayuga
[10] and Esper [1] [27]. Attributes like the selection policies or contiguity options may
differ from one system to another. For example, the SASE+ implementation expands on
the principles of SASE, allowing the use of Kleene closure as an operator onto a pattern
[19], expanding the expressiveness of its language as a result. Moving on more recent
implementations, two of the most prominent systems are FIinkCEP [41]- on which we
expand further on the rest of this study- and Siddhi [45]. These systems differ in the way
they approach modeling, with the former using a sequence of events each one assigned
one or more conditions on its attributes and the latter following a method closer to SASE,
as conditions are stated at the end of the pattern, regardless of the event they refer to.

21.2 Logic-based Complex Event Recognition systems

Logic has been used a the basis for systems that detect patterns on streams of real data
in different occasions [5] [44] [9] [26]. The process of designing Complex Events based
on logic can be divided on two separate types: Chronicle recognition and Event Calculus.

A.N. Troupiotis-Kapeliaris 16

Complex Event Recognition: a comparison between FlinkCEP and the Run-Time Event Calculus

Chronicle Recognition Chronicle Recognition Systems interpret time relations between
SDEs as Complex Events [21]. During recognition, these systems use windows of increas-
ing size to find a successful match with the new events included on each step, based on the
chronicle modeled initially [20]. The CER process tends to be computationally complex,
as all possible partial matches are being identified by the system. Applications of chronicle
recognition include monitoring gas turbines, traffic or even telecommunication networks
[32]. Moreover, based on the components of the chronicle matched at any moment, it can
generate possible

developments, making some sort of prediction on events that have yet to occur. Examples
of CER engines following this approach include TESLA [16] and Amit [2], with the former
offering operator for negation and the latter allowing input events to have a duration and
not be strictly instantaneous.

Event Calculus As proposed by [14] and [13], Event Calculus can be represented as
a methodology for creating and handling automated workflows; the process of CER can
easily be regarded as such a workflow. While automata focus on sequences of happenings
within the stream, Event Calculus deals with determining the consequences of actions
(SDEs) [38]. As any representation of logic, Event Calculus faces the question of the frame
problem [36], on the need of providing enough axioms to determine a viable description of
the environment for a machine. The essence of this problem is the simple representations
of the effects of some actions omitting at the same time the need for further description on
their non-existent effects [31] [43]. The solution provided in Event Calculus is concept of
inertia, which plays a major role in its understanding. Inertia dictates that a fluent (property
that holds values over time) has got a value in a precise pointin time, if at a previous point it
was assigned this value, triggered by the occurrence of an event, and if no other event has
resulted in the change of this value in the meantime [35]. Moreover, the use of negation is
also a prominent concept within logic based calculus and thus naturally appears on event
calculus.

The RTEC system [6] can be considered an Event Calculus efficient dialect, implementing
its fundamental properties. Focusing on fluents, the RTEC engine uses windows and
interval manipulation in order to return fluent-value pairs, according to the rules it was
provided, in order to detect the maximal intervals where they holds a certain value.

2.2 Comparisons

Regardless of the fact that CER systems are often based on established fields such as
automata theory [15] [34] and logic, a strict definition on the semantics of their operators
is rarely provided. Therefore, comparing these types of CER engines requires a more
elaborate examination of each system’s capabilities. Our study focuses on comparing
state-of-the-art systems that belong to the two most dominant categories (automata-based
and logic-based) CER.

There has been a few studies that include the comparison of several CER systems.
A major work devoted in presenting the different aspects of CER, as well as providing
a description of several Information Flow Processing (IFP) engines (as they are called
in the paper) was presetned in [17]. Similarly, surveys such as [18] and [28] present
different Stream Processing Engines, comparing the features of such engines, with the
latter focusing also on the paralellism capabilities of each system. A different study that

A.N. Troupiotis-Kapeliaris 17

Complex Event Recognition: a comparison between FlinkCEP and the Run-Time Event Calculus

focused mainly on probabilistic engines is [4]. While these papers present a range of
systems, our study focuses on two specific implementations, and provides elaborate
examples and a thorough examination of different scenarios including potential patterns
and streams that may appear during a recognition process.

As the previous approaches to comparing CER systems do not include scenarios

of execution of the recognition process, a paper that has more common ground and scope
to our own is [23]. This study describes how Event Calculus can be used to calculate and
detect intervals where fluents hold a certain value, but also expanding on [12] provides a
modeling technique for reasoning based on timed automata, in other words finite automata
enhanced with time constrains upon the transitions between states. Moreover, a empirical
comparison has been conducted using such a machine, resulting on positive results on
such and interpretation of automata. While this work focuses on timed automata, we
are examining a more wide category for pattern modeling, provided by the FlinkCEP
implementation, that allows these transitions to include all attributes of involved events
or even more complex conditions.

Finally, in [3] we find a study that compares two individual systems in both terms of
expressiveness and by using an empirical evaluation; with the systems described and
examined being RTEC and the SQL-based Esper. After presenting major concepts of
both systems, such as inertia and pattern hierarchy, the conclusions of this study denote
that implementing and representing patterns from one language to the other, though not
a minor task, is possible. Similarly, we attempt to compare two systems by examining
whether Complex Events expressed on one system can be translated into the dialect of
the other, as well as evaluating their performance over streams of real data.

A.N. Troupiotis-Kapeliaris 18

Complex Event Recognition: a comparison between FlinkCEP and the Run-Time Event Calculus

3. BACKGROUND

In this chapter, we provide a deeper look on the two systems we use in our comparison.
First, we present the basics for CER based on automata; listing the capabilities of Flink CEP
and giving some simple examples to display its use. Afterwards, we present the basics
regarding Event Calculus and describe how the RTEC system approaches both modeling
Complex Events and the recognition process.

3.1 The FlinkCEP System

A state-of-the-art engine, FlinkCEP is provided by the Apache Software Foundation.
Because it is built on top of Flink, Apache’s own streaming environment, it enjoys all
its streaming attributes and can be combined with other streaming implementations, like
Kafka’s environment. As it is with Flink , the FlinkCEP library is available for both Java
and Scala applications *.

Flink Streams Flink streams consist of events defined by the user. These events may
include several attributes or values assigned to them, as they are implemented and behave
as Scala Objects. The stream should be comprised by the same type of Objects; all
attributes and methods/functions are available at any point during its process. Furthermore,
the Flink environment provides an operator that reorders our current stream based on the
values of one of the event attributes. Usually, because CER includes tasks over temporal
attributes, we are assigning the time value of each event onto an Object attribute. This way
we are able to reorder the stream accordingly if necessary and impose temporal condition
within our patterns.

Flink is also able to split our stream into different sub-streams based on the attributes of the
input events, as they arrive at the system. Using this feature, the parallelism capabilities of
our machine can be used to the fullest, as each thread would undertake to handle certain
partitions of the original stream. Here, we should note that the Flink system provides us
with the choice of having several operators (components of our streaming application) to
be applied with a different parallelism factor than the rest of the system. More precisely,
this feature can be used when reading data from a consumer, so that we would avoid an
unsorted input stream. Expanding on that last option, we should mention that it can also
be used as an effective method for our patterns to be simpler, omitting conditions that
ensure all events of the match concern the same entity.

FlinkCEP Patterns All patterns created using FlinkCEP ’s dialect can be characterized
as sequences of events, that may be found within the stream. The way a pattern is
structure plays an important role on its semantics. More precisely, the order in which
the events are included in our pattern is of decisive importance. Each single event (or
more precisely component of our pattern) is characterized and thus can be accessed
and retrieved if necessary by a unique name it is assigned during the patterns definition.
A simple pattern example, assuming we have a stream describing the progress of the

'In our study and experiments we use the Scala syntax and environment for FlinkCEP .

A.N. Troupiotis-Kapeliaris 19

Complex Event Recognition: a comparison between FlinkCEP and the Run-Time Event Calculus

velocity of a vehicle, that detects a remarkable change of velocity of this vehicle can be
expressed as follows:

val changePattern = Pattern.begin(”start”)
.followedBy (”chng”)
.where ((ev, prev)=>
prev.getEventsForPattern(”start”).last.getVelocity ()
— ev.getVelocity () > 30)
.within (Time.seconds(15))

In this example we getintroduced on multiple capabilities of the Flink CEP system, including
the condition operator, the relaxed contiguity option as well as more complex features. We
would be expanding on these system features on the remaining part of this chapter.

Conditions When facing a new event of the stream, the CEP operator should be able to
decide whether it should accept it and include it as part of our (partial) match or discard it
and move on. The rules that determine the outcome of this decision are included within the
conditions that accompany the event on the pattern’s definition. These conditions can be
divided into two categories: those who include solely the attributes of the event in question
and those that involve attributes of multiple events on our match, and use the properties of
previously accepted events to produce an answer. The latter set of conditions is defined
as lterative Conditions, while the former is called Simple Conditions. These conditions
are formed by the use of boolean operators between attributes of the including events
or even involving the values of external to the CER process variables. Although there
is a certain freedom regarding whats included in the conditions, the use of variables in
order to keep certain values between the parts of our matches is highly discouraged.
The reason behind this last remark, relies on the fact that the values kept would change
according to the method the system generates candidate matches. As one might easily
deduce, restricting conditions on the attributes of a single event would limit the system
significantly in terms of expressiveness. Thankfully, the FlinkCEP system includes an
option to retrieve parts (meaning events) of our current partial match, in order to form more
complex and meaningful Complex Events, the getEventsForPattern function. Deciding on
which component to retrieve based on the component name provided by the user, this
function is indicated to have varying computational cost, and thus is recommended to limit
its use on all implementations. This feature can be used upon already accepted events of
the stream, and thus conditions that include future events are not permitted.

Contiguity Options As already mentioned, a major factor that determines the nature of
our pattern is the contiguity between its components; i.e. the way each event of the current
match succeeds the previous, within the original stream. This type of relation is defined
between consecutive components of our pattern. More precisely, each event accepted
(except the initial one) must be consistent on the way it follows the previous one already
accepted on the partial match, as determined by the pattern’s definition. For example
on the previous example regarding velocity changes we were using Relaxed Contiguity
between the two events accepted, provided by the followedBy method, as we allowed
irrelevant events to intervene between them within the stream. The available contiguity
options provided by the system are the following:

A.N. Troupiotis-Kapeliaris 20

Complex Event Recognition: a comparison between FlinkCEP and the Run-Time Event Calculus

 Strict Contiguity: the events of the pattern must be consecutive within the original
stream (indicated by the use of next).

* Relaxed Contiguity: non-matching events are allowed to appear between
the accepting ones (indicated by the use of followedBy).

* Non-deterministic Contiguity: does not terminate the recognition process when
finding a matching event, but also investigates other occurrences as further on the
stream (indicated by the use of followedByAny). This, of course, causes the resulting
patterns to have a higher cost in terms of complexity.

We ought to keep in mind that these strategies are applied based solely on the order the
stream is provided to our CER engine and not the actual timestamps each event occurred
in. A interesting case that we will come across on our further study is the occurrence of
simultaneous events within our stream. By definition these events would be given in a
particular order within the stream. This order often would carry no real context, but would
dramatically alternate the patterns and their structure. Multiple solutions can be practiced
to overcome this particularity; several of which we are presenting in the following chapter.

Finally, after determining which attribute of the stream events would be the one that indi-
cates the temporal traits of the input, an additional type of condition is available for our
patterns: the within method. This method restricts our patterns so that the maximum
temporal distance between all events of our match is not be greater than a certain value
(measured in seconds). This was displayed on our previous velocity example, as the
change should take place within the range of 15 seconds.

Event quantifiers As all CER systems deal with streams that are constantly fed with
new information and events, it is realistic to assume that some the occurrence of same
typed event consecutively within a pattern would be of useful semantic interpretation.
Flink CEP pattern components are optionally accompanied with an operator that indicates
the possible and allowed number of occurrences for each component. For example, going
back to our vehicle velocity stream, let us assume that we need to detect the occurrence
of 15 consecutive events that indicate a velocity of over 85 mph. This can be easily
designed by having 15 separate components to our pattern. The conditions of these all
these components would be identical, i.e. the velocity of each one to be greater than 85
mph; so including more than one of these components on the pattern’s definition would
be without any real meaning. Fortunately, we are able to characterize this component as
‘looping’ and provide the system with the number we require for it to appear:

val fastPattern = Pattern.begin(”start”)
.where (ev=>ev.getVelocity () >85)
.times (15)

Imagine now that we need to detect all situations where this vehicle is exceed 85 mph,
and that it does so for more than 15 times but also less than 100 because that would
indicate a different phenomenon that our system is not assigned to detect. Furthermore,
lets assume that we need to detect a potential immobilization of a vehicle following the
above scenario. This Composite Event could be expressed using the optional feature as
follows, characterizing our pattern as non-deterministic:

A.N. Troupiotis-Kapeliaris 21

Complex Event Recognition: a comparison between FlinkCEP and the Run-Time Event Calculus

val fastStopPattern = Pattern.begin(”start”)
.where (ev=>ev.getVelocity () >85)

.times (15)

.next(”abrupt”)

.where (ev=>ev. getVelocity ()==0).optional ()

After Match Skip Strategies While most systems are including some sort of Consuming
Strategy [28], defining the condition under which the machine is done processing an event.
The somewhat equivalent strategies defined for this implementation are called the After
Match Skip Strategies. These strategies basically indicate to the system the point of the
stream where the recognition should resume after having detected a successful match.
These strategies are defined in relation to each patterns structure and components. Each
strategy applied would have a significant impact on the nature of the pattern and thus the
concept it ultimately expresses, because of the fact that some matches could be potentially
omitted when applying a more exclusive strategy.

The strategies provided by our system are the following:

* No Skip: does not omit a potential match.

» Skip to next: does not omit any event and resumes and the very next event after
our match, but not attempting to detect another successful match that begins with
the same event as the last one.

» Skip-Past-Last Event: discards all events that occur within the bounds of the stream
that the previous match determines (after its first component and before its last one)
and resumes at the very next event. This strategy is proven to be extremely useful
when having to deal with Patterns that have a single initiation and a single termination
point at the stream, as it can be used to omit any non maximal matches.

 Skip to first/last (CompName): the system would resume its CER process at the
first/last component of the match assigned the name CompName.

Negation in FlinkCEP A common issue when dealing with constant sources of
information the concept of negation has been proven to be challenging. While dealing with
negation upon the attributes of a single event is quite simple, deciding on similar conditions
that involve more than one event is a completely different matter. We will expand on
this issue on following chapters, as it has proven to be a major difference between a
logic-based and automaton-based systems.

The notion of negation FIinkCEP supports is restricted to the occurrence of events of a
particular type within our pattern, not including the bound events of our match. More
precisely, we are able to forbid the appearance of a type of event between two consecutive
components of our stream (supposing we don’t have a strict contiguity). For example,
imagine we have to monitor the movement of a vehicle as before, but in this case we
want to record where the vehicle is moving after having a velocity greater than 85 mph but

A.N. Troupiotis-Kapeliaris 22

Complex Event Recognition: a comparison between FlinkCEP and the Run-Time Event Calculus

without exceeding it again, until it stop moving. This could be implemented by having the
following pattern:

val fastDriveStopPattern = Pattern.begin(”start”)
.where (ev=>ev. getVelocity () >85)
.notFollowedBy (" not”)

.where (ev=>ev.getVelocity >85)

.next(”end”)

.where (ev=>ev.getVelocity ()==0)

As we can see this feature ensures us that no event that follow the “not” format could
appear on our match between the “start” and “end” components. Additionally, the Flink CEP
system disallows us of using such a component (assign a notFollowedBy tag) as our final
component, because the streams expected as input are of infinite length.

Higher-Level Recognition When dealing with the recognition process of our Flink
implementations we should take in consideration the fact that the resulting matches of a
CEP operator are actually in the form of a stream. This last fact allows us to apply different
types of operators upon the results. Such an option available for our implementations
is applying a new CER upon this newly formed results stream. Let us assume that we
have the first pattern that detects abrupt accelerations on the vehicle’s speed. A different
concept that might be of interest is the detection of consecutive such accelerations that are
occurring within 3 hours between them. This scenario can be represented by the following
block of stream operators:

val changePattern = Pattern.begin[VelocityEvents](”start”)
\\ type of stream event within brackets

.followedBy ("chng”)

.where ((ev, prev)=>
prev.getEventForPattern(”start”).last.getVelocity ()
—ev.getVelocity > 30)

.within (15)

val CEPresultsStream =
CEP. pattern (originalStream , changePattern)

//in order to perform the Recognition process

val resultsStream: DataStream|[changeMatch] =
CEPresultsStream . select (...)
//ommiting function that transforms a match to a new
Scala Object for simplicity

val metaChangePattern = Pattern.begin[changeMatch](”start”)

.followedBy ("end”)
.within (Time.seconds(10800))

A.N. Troupiotis-Kapeliaris 23

Complex Event Recognition: a comparison between FlinkCEP and the Run-Time Event Calculus

We can observe that this type of pattern can be characterized as a higher order pattern.
Applying consecutive CER processes seems to be more simple than attempting to express
such concepts in a single pattern. Moreover, we claim that dealing with Complex Events
using a hierarchy of patterns allows us to implement events that would carry great cost
if implemented without it. The drawback of this method is the need to handle a different
stream, that could potentially be as long as our original. Our empirical studies has shown
that a significant amount of our execution process is due to the iteration upon the stream
rather than the operators themselves.

3.2 Event Calculus

While examining the fundamentals of the Event Calculus (EC), as introduced by Kowalski
and Sergotin 1986 [35], one immediately comes across the concept of fluents. This comes
natural as the main purpose of Event Calculus is the study of the effects of events on the
values of fluents. Fluents are entities that behave like variables over time. A fluent might
hold a range of values, one each time, but it is also possible there are moments where it
does not have any value.

The behavior of fluents and their values is defined by custom rules. These rules determine
which events and under which circumstances could cause an action to be taken upon the
value of a certain fluent. They define the initiation and the termination points of a fluent,
in other words the moments where a value is assigned or when the fluent is withheld a
value. Furthermore, predicates that can be used to decide upon the value of a fluent at a
given time are provided. A predicate as such is the holdsAt (F=V,T), indicating that fluent
F holds the value V at time T. The occurrence of an event is expressed using happensAt
with similar predicates defined on each different dialect available.

3.21 The RTEC System

The RTEC system is based on the same principals as the Event Calculus, hence the
results it provides are an attempt to detect maximal intervals where a fluent holds a single
value continuously.

Complex Event Modeling The RTEC implementation uses time constrains and interval
manipulation to handle the conditions of the patterns and to extract the successful matches.
Special predicates have been defined in order to create rules that define Complex Events.
These rules are described on Table 1.

A.N. Troupiotis-Kapeliaris 24

Complex Event Recognition: a comparison between FlinkCEP and the Run-Time Event Calculus

Table 1: RTEC predicates and operators used for rules of Complex Events (after [6]).

Predicate Meaning
happensAt (E,T) Event £ occurs at time T’
holdsAt (F'=V,T) The value of fluent F'is V at time T’
holdsFor (F'=V, 1) I is the list of the maximal intervals

for which =V holds continuously
initiatedAt (F'=V,T) At time T a period of time for which
F =V is initiated
terminatedAt (F'=V,T) Attime T a period of time for which
F =V is terminated

relative_ I is the list of maximal intervals produced

complement_ by the relative complement of the list

all_ (I, L, of maximal intervals I’ with respect to
every list of maximal intervals of list L

union_all(L, /) l'is the list of maximal intervals

produced by the union of the lists of
maximal intervals of list L

intersect_all(L, /) l'is the list of maximal intervals
produced by the intersection of
the lists of maximal intervals of list L

Patterns can be expressed by fluents determined using rules provided by RTEC. The
conditions on these rules can refer to either the timepoint where they are triggered, or
either facts about other timepoints or entities. These rules are triggered by the occurrence
of a event, but are not limited to it, as they can also refer to other events, the negation
of an event or even the value of another fluent. As the two types of fluents supported by
Event Calculus and RTEC are Simple Fluents and Statically Determined Fluents (SDFs)
there are two corresponding types of rules for such patterns. The first, consist of one or
more initiation rules along with one or more termination rules for the pattern. These rules
refer to the point where a fluent gets initiated with a certain value and where this value
get terminated. The second type of rules are the ones regarding SDFs. As opposed to
how definitions of Simple Fluents are comprised by possibly multiple rules, a SDF gets
determined by a single rule that includes all events and conditions that need to hold for
the fluent to hold a certain value.

Below an example of a Simple Fluent defined in RTEC is provided. This fluent indicates
a period where a vehicle is moving with a high velocity, according to the aforementioned
rules. It is assigned the true value when the vehicle (Veh in our pattern) moves with a
greater speed than 75, and gets terminated (does not hold this value) when its speed
drops from 45. We are assuming that our input stream is consisted of messages that refer
to the vehicle’s speed over time.

initiatedAt (highSpeed (Veh)=true, T):—
happensAt(speed(Veh, CurSpeed),T),
CurSpeed > 75.

A.N. Troupiotis-Kapeliaris 25

Complex Event Recognition: a comparison between FlinkCEP and the Run-Time Event Calculus

terminatedAt (highSpeed(Veh)=true, T):—
happensAt(speed(Veh, CurSpeed),T),
CurSpeed < 45.

Recognition A main component of Stream Processing is the use of temporal boundaries,
known as windows, upon its operators. Moreover, the use of windows upon a process
of a CEP system partitions the stream of data into smaller streams in order for the the
operator in question to be applied on each one separately. This extenuates the load of
the system has to manage in each step of the process. The recognition process of RTEC
is capable of such features in order to expedite the recognition process and optimize the
system’s performance. The windows provided are sliding, meaning that they have a fixed,
predefined size, and progressing throughout the timestream. Depending on the needs of
the user, the windows can be overlapping, meaning that there would be common intervals
between consecutive windows, or not. It is important to note that, although the dataset is
broken into separate piece of data, the RTEC system is implemented so that the use of
windows does not alter the expressive power of our patterns and the recognition process;
meaning that the optional use of windows and their potential size does not affect the final
results of the recognition, besides the execution time performance.

The RTEC recognition process consists of the following steps for each window. At first,
the bounds of the window get determined. Afterwards, all events that belong to a previous
window, i.e. their timestamp is lower than the left bound of our current window, get deleted
(retracted) and those that come with the current get asserted. Moving forward, it computes
all valid holdsFor and holdsAt predicates for all patterns defined. Lastly, the maximal
intervals where fluents hold a certain value are calculated and returned.

A.N. Troupiotis-Kapeliaris 26

Complex Event Recognition: a comparison between FlinkCEP and the Run-Time Event Calculus

4. THEORETICAL COMPARISON

RTEC patterns are expressed by two types of fluents: these that are defined by initiation
and termination rules, called Simple Fluents, and Statically Determined Fluents (SDF),
determined by conditions that need to hold throughout the matching interval. Simple
Fluents may be Boolean or multi-valued; in this study we focus on the former. In this
chapter we examine whether FlinkCEP is able to generate equivalent patterns, as well
as listing the difficulties of this process. In each section, we describe an indicative RTEC
pattern, an attempt to simulate its behaviour using FlinkCEP and the challenges we come
across in each case.

4.1 Unbounded Intervals

Simple Fluent matches are defined by an initiation point on the stream; the fluent holds
a certain value until it gets terminated. In case no termination rule gets satisfied, RTEC
returns an interval that does not include a termination point.

Imagine we have a simple pattern that is defined by the occurrence of two events, one at
initiation and another at termination.

RTEC
initiatedAt (mypatt(X)=true ,T):—
happensAt(a(X),T).
terminatedAt (mypatt(X)=true ,T):—
happensAt(b(X),T).
Flink CEP
val mypatt = Pattern.begin(”start”).where(ev=>ev.get()=='a’)
.followedBy (”end”) .where(ev=>ev.get()=='b")
aevent - (O mmrmmmmmmmmrm s O
b:event T “““““““““ @ “““““““““““““““““““““ “““““““
RTEC -~ : S E—
0 e
>
Time

Figure 1: RTEC is able to detect unbounded matches, in case the stream does not include an
ending point, while FlinkCEP cannot simulate this behavior.

In order to simulate this behavior using Flink CEP we would have to mark the ending part of
the pattern as optional, for the system to be able to stop and return a match. Unfortunately,

A.N. Troupiotis-Kapeliaris 27

Complex Event Recognition: a comparison between FlinkCEP and the Run-Time Event Calculus

using this technique the FlinkCEP also includes an unbounded match even if the ending
point occurs, thus including incorrect results.

A different approach would be to create two distinct patterns: one that only detects the full
(thatinclude a termination) matches and another that would return all potential unbounded
intervals. This solution requires an additional step that would discard all unbounded
intervals that also correspond to a full match.

4.2 Simultaneous initiation and termination

Often streams include events that initiate a pattern simultaneously with events that terminate
it. This may be caused by the nature of the stream or due to noise in the dataset. During
RTEC’s recognition process matches that are comprised of simultaneous initiation and
termination points are discarded as the system does not detect a single timepoint where
the fluent in question holds a value. Suppose we have the same RTEC pattern as in the
previous section.

RTEC
initiatedAt (mypatt(X)=true ,T):—
happensAt(a(X),T).
terminatedAt (mypatt (X)=true ,T):—
happensAt(b(X) ,T).
Flink CEP

val mypatt = Pattern.begin(”start”).where(ev=>ev.get()=='a’)
.followedBy (”end”) .where ((ev, prev)=>{
ev.get()=='b’ &&
prev.getEventsForPattern(”start”).head.getTimeStamp ()
I= ev.getTimeStamp () })

aevent O """""""""""""""""""""""" O """"""""""""
b:event E “““““““““ @ “““““““““““ @ ““““““““““““
= S T S

FlinkCEP(simple)

- o e i i i i

FllnkCEF’(cond} g = = = = = = = = = = =

Figure 2: While FlinkCEP would accept a match that is defined by simultaneous initiations and
terminations, RTEC automatically filters such matches. In order to avoid these matches we should
include an additional temporal condition.

In order to handle such scenarios using FlinkCEP , we can discard all matches that include
a single timestamp during post-processing, or we may include an additional condition to

A.N. Troupiotis-Kapeliaris 28

Complex Event Recognition: a comparison between FlinkCEP and the Run-Time Event Calculus

our pattern. This condition would demand the timestamps for the parts of our match to be
different, through the getEventsForPattern function. Itis noted on Flink CEP’s documentation
that the use of this function should be limited as its computational cost varies. Furthermore,

in case the termination event appears first within the input stream (followed by the simultaneous
initiation event), the aforementioned FlinkCEP approach would not discard the match
and create a match with the next termination point appearing. In conclusion, handling
instantaneous matches is a challenging tasks that requires additional computations while
using FlinkCEP .

4.3 Simultaneous Events

On several occasions, patterns include events that occur at the same timepoint. These
patterns appear usually when dealing with relational Complex Events between multiple
entities. The RTEC system deals with simultaneous events regardless of the order they
appear within the stream, as it focuses on the occurrence of the events and not their
sequencing. On the other hand, the order in which these events appear plays a major
role during the design of the patterns as well as the recognition process of FlinkCEP .
For example, in Figure 3, both streams contain the same information but are not treated
as equivalent by the FlinkCEP system. This occurs because the first two (simultaneous)
events of both streams do not appear with the same order. This remark comes naturally
as FlinkCEP evaluation process is based on automata.

Stream A ./;1\. -/c\- ./ \. ./b\‘ >
N4 N N N

Stream B ./;\. ./;\. ./;1\. /;\ >
N4 N N N

t=1 t=2 t=3

Figure 3: The two streams include the same information but are treated differently by FlinkCEP . A
pattern that requires for the (a) and (c) events to occur simultaneously requires a more complex
approach for FlinkCEP .

The importance of the order between simultaneous events can be demonstrated by the
following scenario: imagine a pattern that requires multiple events to happen atits initiation.
Forming a simple sequence of these events while creating the Flink CEP equivalent Complex
Event would not be a sufficient approach, as it is implied that the order between them would
be as declared within this pattern in all cases.

Suppose we have the following RTEC pattern, that also includes negation on the occurrence
of events.

RTEC
initiatedAt (mypatt(X)=true ,T):—

A.N. Troupiotis-Kapeliaris 29

Complex Event Recognition: a comparison between FlinkCEP and the Run-Time Event Calculus

happensAt(a(X),T),

\+ happensAt(m(X) ,T).
terminatedAt (mypatt (X)=true ,T):—

happensAt(b(X) ,T),

\+ happensAt(n(X),T).

Handling simultaneous events on FlinkCEP can be achieved by the use of bookmark
events, in order to manage all events that occur on a certain timestamp. We present
a pattern that uses this method.

Flink CEP

val mypatt = Pattern.begin(”book1”)
.notFollowedBy (”not1”).where(x=>x.get()=="m")
.followedBy (”start”).where ((key,ev)=>{
x.get()=="a" &&
ev.getEventsForPattern(”book1”).last.getTimeStamp ()
< key.getTimeStamp ()
1)
.next(”middles”).oneOrMore. optional
.next(”end”) .where ((key,ev)=>{
key.get()=="b” && ev.getEventsForPattern(”"middles”)
.count(x=> x.get()=="m’
&& x.getTimeStamp ()==key.getTimeStamp ())==0

&& ev.getEventsForPattern(”middles”)
.count(x=> x.get()=="n’" && x.getTimeStamp ()==
ev.getEventsForPattern(”start”).last.getTimeStamp ())==0

&& ev.getEventsForPattern(”start”).last.getTimeStamp ()
< key.getTimeStamp ()
1)
.notFollowedBy(”not2”).where(x=>x.get()=="n")
.followedBy (”book2”) .where ((key, ev)=>
ev.getEventsForPattern(”end”).last.getTimeStamp ()
< key.getTimeStamp())

A.N. Troupiotis-Kapeliaris 30

Complex Event Recognition: a comparison between FlinkCEP and the Run-Time Event Calculus

azevent O -----------------) (O rmmmmmmmmmssssensnssn s
b:event ,

m:event * ------------ - o () SRR SE—— @
U S S @ e

RTEC - e | —
o) = - OO -

Figure 4: The two streams include the same information but are treated differently by FlinkCEP . A
pattern that requires for the (a) and (c) events to occur simultaneously requires a more complex
approach for FlinkCEP . The FlinkCEP implementation cannot detect the first match as no events
are included into the stream in order to be used as bookmarks.

This approach for the FlinkCEP pattern suffers from being too complex compared to its
RTEC equivalent; also using the getEventsForPattern method extensively throughout the
recognition. Furthermore, the dependence on other events that are practically irrelevant
to our match, may cause significant delays during real-time recognition when dealing with
sparse streams.

MegaEvents An alternative approach is the use of ‘MegaEvents’. These new types of
events are comprised of events that occur simultaneously within the original stream. By
definition these ‘MegaEvents’, include all information of the events they are composed
of, they are defined unequivocally by these events and include their common timestamp.
An implementation of this concept would be to create a ‘TupleEvent’ data structure: pairs
of all possibles simultaneous event combinations. These events would be created in a
preprocessing stage and result in a new stream upon which the CER process would be
applied. For example, the first two events on both stream of Figure 3 will be translated as a
tuple event: Tuple Event(|a, c,1). On the other hand, the inclusion of this concept creates
some issues during recognition, as it can result in a stream with length much greater than
the original; affecting the execution time performance of the Flink CEP system. Moreover,
the inclusion of multiple events as single components of our match may require additional
conditions in order to determine which of them are useful during recognition.

Ordering simultaneous events In order to avoid the issues arising when dealing with
simultaneous events, we contemplate on solutions that presuppose an order between
them. This order should be known before the developing of the pattern and often is worth
the preprocessing step. Unfortunately, imposing such orders on our streams may not be
possible because of conflicts between rules of our patterns. We will be using the following
example, to demonstrate the issues that may occur when we impose ordering rule based
on pattern attributes.

A.N. Troupiotis-Kapeliaris 31

Complex Event Recognition: a comparison between FlinkCEP and the Run-Time Event Calculus

When including conditions that require the absence of an event, the order of simultaneous
events plays a major role during the designing of our pattern. A possible order of simul-
taneous events that would benéefit this process is the following: all events that appear
without a negation operator attached to them (within the rules of our pattern) are being
ordered first, followed by the rest. When dealing with the following pattern we come to an
impasse, as event (a) appears on both types of conditions. In this case, when a pair of
a-b occurs simultaneously, we wouldn’t be able to determine a proper ordering.

RTEC

initiatedAt (mypatt(X)=true ,T):—
happensAt(a(X),T),
\+ happensAt(b(X),T).
terminatedAt (mypatt (X)=true ,T):—
happensAt(b(X) ,T),
\+ happensAt(a(X),T).

In conclusion, in order to deal with simultaneous events one may create patterns that
use bookmarks, risking delays during recognition upon sparse streams. Furthermore,
another solution includes transforming the input stream of events onto a different that
includes entities more complex and comprehensive; requiring a preprocessing step and
possibly additional computations during evaluation. Lastly, the imposition of an order
for the simultaneous events may serve us in several occasions, as long as this order
is pattern-independent.

4.4 Relations between patterns

Certain patterns depend on the values other fluents hold during their initiation or termi-
nation; creating a hierarchy between them. This property can be expressed by the use of
the holdsAt option in RTEC . Trying to translate this attribute on the FlinkCEP system, has
proven to be no simple task. In order to detect these patterns, RTEC first computes the
intervals where the prerequisite patterns hold a value, and then moves on the pattern that
depends on them. Simulating the RTEC ’s method would require for FlinkCEP to iterate
over the stream multiple times, as well as merge streams that include both input events
and complex events matches, as in all cases the conditions of our patterns involve both
types of input.

An alternative to simulating RTEC ’s behavior would be to integrate the components of
all involved RTEC patterns into a single FlinkCEP equivalent. Besides the fact that these
Flink CEP translations tend to be too complicated, the following example shows that there
exist scenarios where this approach is not feasible. Imagine we have a pattern that only
gets initiated when an (a) events occurs and when a different pattern does not hold. Two
FlinkCEP patterns are provided.

RTEC
initiatedAt (preq(X)=true ,T):—
happensAt(s(X),T).
terminatedAt (preq(X)=true ,T):—
happensAt(t(X),T).

A.N. Troupiotis-Kapeliaris 32

Complex Event Recognition: a comparison between FlinkCEP and the Run-Time Event Calculus

val

val

initiatedAt (mypatt(X)=true ,T):—
happensAt(a(X),T),
\+ holdsAt(preq(X)=true ,T).
terminatedAt (mypatt (X)=true ,T):—
happensAt(b(X),T).

FlinkCEP [1]

mypatt1 = Pattern.begin[MyEvent](”preq”)
.where (x=>x.getAnnot ()=="1")
.notFollowedBy (" not”).where ((key,ev)=>{
key.getAnnot()=="s" &&
key.getTimeStamp () >
ev.getEventsForPattern(”preq”).last.getTimeStamp ()
1)
.followedBy (" start”).where ((key,ev)=>{
key.getAnnot()=="a" &&
key.getTimeStamp () >
ev.getEventsForPattern(”preq”).last.getTimeStamp ()
1)
.followedBy (”end”) .where ((key,ev)=>{
key.getAnnot()=="b" &&
key.getTimeStamp () >
ev.getEventsForPattern(”start”).last.getTimeStamp ()

1)

FlinkCEP [2]

alex = Pattern.begin[MyEvent](”preq”)

.where (x=>x.getAnnot()=="s”).optional

.next(”start”).where((ev, prev)=>{

ev.getAnnot()=="a" &&

prev.getEventsForPattern(”preq”).isEmpty

1)

.followedBy (”end”) .where ((key,ev)=>

key.getAnnot()=="b" &&

key.getTimeStamp () >
ev.getEventsForPattern(”start”).last.getTimeStamp ()

1)

A.N. Troupiotis-Kapeliaris 33

Complex Event Recognition: a comparison between FlinkCEP and the Run-Time Event Calculus

....... start of
stream

F 1
b:event - !, """""" @""'""""""""""""": """""""""" J. """""" @
| f I \ i
sevent --:-------e-- F.......----..: @ __________ S e I
! | ! | i
tevent : 1. :I @: il:
....... : | . | |
! | i | i
5 1 | 1 E
RTEC -~ A R
FlinkCEP(1)-—------—--- E— L S—— S : -
FlinkCEP(2) P : : -
Tin:e

Figure 5: The prerequisite pattern (defined by (s) and (t)) should not hold during initiation of the
pattern we are trying to detect. The first FlinkCEP approach would be to include the termination of
the prerequisite as part of the pattern, missing the first match. The second, marks the first
pattern’s occurrence as optional allowing for the system to ignore it even if it appears.

The reason this pattern cannot be translated properly, is the fact that FlinkCEP allows
access solely to events that are part of our current match during recognition. In logic
programming the Negation as failure rule is used, meaning that the negation operator
succeeds on the absence of the event in question. Simulating this using FlinkCEP is
practically impossible as we would need to store the whole stream until the point of the

query.

A.N. Troupiotis-Kapeliaris 34

Complex Event Recognition: a comparison between FlinkCEP and the Run-Time Event Calculus

4.5 Conclusions

In this section we summarize of all differences between the two CER engines. These
differences refer to the expressiveness of both systems and should be indicative on which
one a user should prefer, depending on the nature of patterns that need to be implemented.

* Query capabilities The main difference observed concerns the capabilities of each
system to consult on other events and facts during the recognition process. More
precisely, the RTEC system is able to perform several queries regarding past events
of the stream and examine their attributes at any point within the pattern. On the
contrary, FlinkCEP is only able to access events that are part of its current (partial)
match of the pattern during recognition. This fact leads to much more complex
patterns when using the latter system. Moreover, the space complexity of Flink CEP
patterns that access past events may end up high when dealing with dense streams.
Additionally, handling simultaneous events within our patterns creates the need of
altering the input stream for FIinkCEP , by using techniques such as imposing an
order onto these simultaneous events.

* Unbounded results A further difference observed, deals with the fact that the RTEC
system is capable of accepting matches that do not include a termination point on our
stream, and thus result in unbounded intervals. Such matches can not be efficiently
simulated using FlinkCEP , as any such attempt would include matches that falsely
ignore events of the input stream.

* Negation Moreover, the inclusion of negation within conditions of our Complex Event,
creates several incompatibilities between the two systems. RTEC ’s interpretation
of the negation upon the an event or a fluent can not be translated to FIinkCEP ’s
dialect. The reason behind this originates from the inability to access previous data
without storing a significant portion of the stream during the recognition process,
which is a computationally unacceptable solution.

» Higher-order recognition and pattern hierarchies A remarkable aspect of the
RTEC system is its ability to provide the template for patterns that involve events
of the original stream along with conditions on the values of other Complex Events.
The FlinkCEP system, on the other hand, separates the recognition of other patterns
from the original stream and hence our current pattern. Moreover, even if Complex
Events that refer solely other patterns can be designed easily, combining their results
with the original stream is a quite difficult and time consuming task.

A.N. Troupiotis-Kapeliaris 35

Complex Event Recognition: a comparison between FlinkCEP and the Run-Time Event Calculus

5. EMPIRICAL COMPARISON

In this chapter, after the examination of possible scenarios where the two systems may
differ, we evaluate their importance by performing several experiments upon real life
streaming applications. We present the datasets used, the concepts implemented as
Complex Events and evaluate the results of these implementations. In total we would be
focusing on two datasets where the RTEC system has already been used. These are: the
Brest dataset [40] that concerns the monitoring of vessels and the CAVIAR dataset, that
provides different scenarios of interactions between individuals using

Surveillance Recordings.

5.1 Experimental Setup

In this section we describe the process of our experiments and subsequent comparisons.
First, we present the datasets, the types of events within and their temporal attributes.
Afterwards, we depict some of the RTEC Complex Events considered for the comparison
along with their Flink CEP equivalents. Lastly, we provide the aspects on which the results
were evaluated.

5.1.1 The Datasets

RTEC has been used in numerous projects, including fleet management and maritime
monitoring [39]. In this section we present the two datasets we are basing our empirical
evaluation on, providing with a few details of the semantics of the SDEs included and the
features of each stream.

Maritime Dataset Throughout different types of applications, tracking and monitoring
maritime information and vessel movement appears as an important aspect. Most systems
that need that type of information use the Automatic Identification System (AIS); a technology
for tracking the movement of vessels and locating vessels at sea.

Handling messages transmitted from vessels, a main use and purpose of a recognition
system is the avoidance of collisions and ensuring safety across sea traffic. Systems
that handle these messages, also use databases including Static data about vessels and
Spatial Information. These data include the types of vessels based in its Maritime Mobile
Service ldentity (MMSI), the speed limits of each vessel type, information about the area
the vessels enters or leaves based on coordinates and others.

The AIS messages include information about the vessel that transmits them, like its MMSI,
the moment (measured in POSIX / UNIX Epoch time) the message was recorded, along
with other data regarding the vessel’s velocity, its coordinates etc. The Brest dataset
includes information regarding the movement of vessels appearing within the Celtic sea,
the Channel and Bay of Biscay in France. It covers in total the time span of six months,
beginning at October 1st, 2015 and ending with March 31st, 2016.

In order to have these messages translated and parsed into a form accessible from the
RTEC system, a preprocess stage has being applied onto the stream. This process

A.N. Troupiotis-Kapeliaris 36

Complex Event Recognition: a comparison between FlinkCEP and the Run-Time Event Calculus

resulted into some of the messages splitting and producing more than one events on
our stream. For example, a velocity message for a vessel may be produced along with
another event regarding the vessels movement within an area. At the end of the process,
we are provided a stream of different types of events that can be understood by the RTEC
system, but also parsed into a Flink stream.

Each one of these events carries different kind of information; for example as the velocity
event gives us the speed of the Vessel (measured in knots) and the coord event gives us its
coordinates. The change speed events are provided when a vessel changes its velocity
and the slow_motion one when a vessel begins a low speed movement, accordingly. Also,
when a ship stops (and when it starts moving again) the respective stop event is provided;
as well as when a vessel changes its heading. Finally, as the Brest map is partitioned into
areas, each area is marked and given a name and gets assigned a type. The type of each
area may be one of the following: anchorage, fishing, natura, nearCoast, nearCoast5k,
nearPorts, indicating the nature of the area. These areas may be overlapping, as some
areas lie within others. When a vessel enters or leaves a certain area, the respective
(entersArea, leavesArea) event occurs. These events include the area ID, from which
we can deduce the area type. The proximity event gives us spatial information about the
relevant positions of vessels that happen to be near, is the only one that includes more
than one vessel, and so carries both of their MMSI keys.

Below we present some information regarding the size of our data stream (full 6 months),
along with the occurrences for all SDEs types:

Table 2: Temporal, spatial and entity attributes of Brest dataset.

Time Confines (in Epoch format)
Starting point 1443650401
Ending (last) point 1459461588
Human Time equivalent (on G.M.T.)
Starting point Wednesday, September 30, 2015 10:00:01 PM
Ending (last) point Thursday, March 31, 2016 9:59:50 PM
Data Time Range 15811189 seconds
Types of areas in total 6
Areas in total 1805
Types of vessels in total 37
Vessels in total 5055

A.N. Troupiotis-Kapeliaris 37

Complex Event Recognition: a comparison between FlinkCEP and the Run-Time Event Calculus

Table 3: Table of Simple Derived Events appearing as input for the Maritime dataset, originating
from Brest. All input events are instantaneous except ‘proximity’. The first three types of events
are a result of a spatial preprocessing; the next two originate directly from the AIS messages, while
the rest are produced by the trajectory synopsis generator.

SDE Type Occurrences
(#)
® entersArea 169419
T leavesArea 142575
o proximity 62138
velocity 16263766
coord 16262944

change_in_heading 3588015
change in_speed_start777192

[72)

'q:'; change_in_speed_end 773121

& gap_start 88752

= gap_end 55273

8 slow_motion_start 161076

'5 slow_motion_end 158290
stop_start 379550
stop_end 371452

Critical Events in total | 6352721
Total number of | 39253563
SDEs
AIS messages in | 18M (approx.)
total

A.N. Troupiotis-Kapeliaris 38

Complex Event Recognition: a comparison between FlinkCEP and the Run-Time Event Calculus

Surveillance Dataset The CAVIAR Project (CAVIAR: Context Aware Vision using
Image-based Active Recognition)! provides a dataset comprised of the representation
of interactions between several entities. These scenarios include the meeting of two
individuals, a fight between two people, a person leaving an object and others. Each
scenario is in a video format, and is also represented as a stream of its frames, including
information about the involved entities, as well as having information about the context of
each person’s/group of persons actions, i.e. the ground truth for a possible recognition
process, as noted in [24] and the dataset’s documentation 2. Additional information about
the events included within the dataset can be found on the following tables.

Table 4: Entity and SDE attributes of CAVIAR dataset.

Input Stream

Entities(persons) in total 10
Types of SDEs in total 4
movement

coord

orientation
appearance
Types of movement SDEs in total 6
Types of appearance SDEs in total 4

Types of SDEs

Ground Truth
Situation tags in total 7
walking
immobile
drop down
Types of Situations none
fighting
browsing
meeting
Context tags in total 9
joining
interacting
leaving victim
fighting
Types of Contexts inactive
split up
moving
none
browsing

"http://groups.inf.ed.ac.uk/vision/CAVIAR/CAVIARDATA1/.
2http://groups.inf.ed.ac.uk/vision/CAVIAR/CAVIARDATA1/gt_file_format.txt.

A.N. Troupiotis-Kapeliaris 39

http://groups.inf.ed.ac.uk/vision/CAVIAR/CAVIARDATA1/
http://groups.inf.ed.ac.uk/vision/CAVIAR/CAVIARDATA1/gt_file_format.txt

Complex Event Recognition: a comparison between FlinkCEP and the Run-Time Event Calculus

Table 5: Table of Simple Derived Events appearing within the CAVIAR dataset, along with number

A.N. Troupiotis-Kapeliaris

of Ground Truth events.

Input Stream

SDE Type CAVIAR | 10xCAVIAR
movement
active 5358 53580
inactive 9829 98290
walking 29041 290410
running 807 8070
abrupt 590 5900
none 1 10
coord 45626 456260
orientation 45626 456260
appearacne
appearance 45333 453330
disappearance 1 10
appear 150 1500
disappear 142 1420
Total number of SDEs | 182504 1825040
Video frames in total 25154 251540
Tuples in total 29439 294390
Ground Truth
Situation Tag
Single Entities CAVIAR | 10xCAVIAR
Moving 15143 151430
Inactive 2867 28670
Browsing 679 6790
None 1 10
Group Entities CAVIAR | 10xCAVIAR
Split 226 2260
Fight 630 6300
Join 558 5580
Interact 301 3010
Left_victim 42 420
Move 1313 13130
Context Tag
Single Entities CAVIAR | 10xCAVIAR
Browsing 1934 19340
Immobile 5598 55980
Walking 9742 97420
Drop_down 1415 14150
None 1 10
Group Entities CAVIAR | 10xCAVIAR
Fight 1086 10860
Meet 1671 16710
None *(Moving) 313 3130

40

Complex Event Recognition: a comparison between FlinkCEP and the Run-Time Event Calculus

5.1.2 Complex Events and their Implementations

Complex Events for the Maritime Dataset Having numerous available Complex Events
defined for previous and current maritime projects [42], below lies a hierarchy between all
these patterns. The Complex Events have been implemented and designed as RTEC
fluents and thus our goal was to translate them into their FlinkCEP equivalent.

w| anchoredOrMoored

y pilotBoarding
low Speed
m S tuggingSpeed tugging

s
trawlSpeed changingSpeed

'

loitering

[trawlingMovement

Figure 6: The maritime patterns hierarchy, (after [39]). The patterns used for our evaluation are
highlighted appropriately.

All Complex Events examined in this dataset involve only a single vessel. In order to
avoid conditions that require events to refer to the same vessel function on our FlinkCEP
we decided to partition the stream based on the MMSI tag (the id of each vessel) of all
events, for our FlinkCEP implementations. Below we present a few indicative examples
for translating these RTEC patterns. First we present a fairly simple pattern (withinArea);
then we also provide the implementations for the more complex tuggingSpeed pattern. All
patterns used from this dataset refer to a single vessel.

* Within Area:
RTEC

initiatedAt (withinArea (Vessel, AreaType)=true, T) :—
happensAt(entersArea(Vessel, Area), T),
areaType (Area, AreaType).

terminatedAt (withinArea (Vessel, AreaType)=true, T) :—

happensAt(leavesArea(Vessel, Area), T),
areaType (Area, AreaType).

A.N. Troupiotis-Kapeliaris 41

Complex Event Recognition: a comparison between FlinkCEP and the Run-Time Event Calculus

terminatedAt (withinArea (Vessel, _AreaType)=true, T) :—
happensAt(gap_start(Vessel), T).

Flink CEP

val withinAreaKeyed =
Pattern.begin[MyEvent](”start”, skipPastLast)
.where (ev=>ev.getAnnot ()=="entersArea”)
.followedBy (”end”) .where ((key, ev)=>{
val matchStart =
ev.getEventsForPattern(”start”) .head
(key.getAnnot()=="gap_start”) ||
((key.getAnnot()=="leavesArea”) &&
(key.getAreaType ()==matchStart.getAreaType()))

)

» Tugging Speed (single Vessel):

RTEC

initiatedAt (gap(Vessel)=nearPorts, T) :—
happensAt(gap_start(Vessel), T),
holdsAt(withinArea (Vessel, nearPorts)=true, T).

initiatedAt (gap(Vessel)=farFromPorts, T) :—
happensAt(gap_start(Vessel), T),
\+holdsAt(withinArea (Vessel, nearPorts)=true, T).

terminatedAt(gap(Vessel)=_PortStatus, T) :—
happensAt(gap_end(Vessel), T).

initiatedAt (tuggingSpeed (Vessel)=true , T) :—
happensAt(velocity (Vessel, Speed, ,), T),
thresholds (tuggingMin, TuggingMin),
thresholds (tuggingMax, TuggingMax),
inRange (Speed, TuggingMin, TuggingMax).

terminatedAt(tuggingSpeed(Vessel)=true , T) :—
happensAt(velocity (Vessel, Speed, ,), T),
thresholds (tuggingMin, TuggingMin),
thresholds (tuggingMax, TuggingMax),
\+inRange (Speed, TuggingMin, TuggingMax).

terminatedAt(tuggingSpeed(Vessel)=true , T) :—
happensAt(start(gap(Vessel)=_Status), T).

Flink CEP

val tuggingMin = 1.2
val tuggingMax = 15.0

val tuggingSpeedBKeyed=
Pattern.begin[MyEvent](”start”, skipPastLast)
.where (ev=>{

A.N. Troupiotis-Kapeliaris 42

Complex Event Recognition: a comparison between FlinkCEP and the Run-Time Event Calculus

val speed = ev.getSpeed()
(speed!=speedlnit) && (speed<tuggingMax) &&
(speed>tuggingMin)

1)

.followedBy (”end”) .where (ev=>{
val speed = ev.getSpeed()
(ev.getAnnot()=="gap_start”) || ((speed!=speedlnit) &&
((speed>tuggingMax) || (speed<tuggingMin)))

1)

Complex Events for the Surveillance Dataset While the patterns that involve only one
person/entity can be addressed in a direct way, the patterns that express a relational
activity between multiple entities need a different approach. More specifically, these
patterns need to detect the occurrence of some SDEs about multiple persons, and
happening simultaneously in most cases. This last fact implies that events of the stream
would come in an order but the timestamps of continuous SDEs would often be the same;
as a result when detecting these kind of patterns there is a need to eliminate the sense
of order between simultaneous events. In order to achieve this we include the concept
of MegaEvents in our FlinkCEP implementation. While several types of MegaEvents
can be implemented, we propose TupleEvents, which are basically tuples of all possible
combinations of SDEs that occur simultaneously. The nature of these TupleEvents is
defined by a factor, that determines the number of SDEs included on each tuple created.
In experiments we chose a factor of two (2). For example, supposing we have the following
stream (timestamps indicated in parentheses) is provided:

Event[A](1), Event[A](2), Event[B](2), Event[C](2), Event[A](3), Event[B](3)

having a TupleFactor of ‘2’ events per MegaEvent, we would create the following
MegaEvents(ME) stream:

MegaEvent[AB](2), MegaEvent[AC](2), MegaEvent[BC](2), MegaEvent[AB](3)

Along with the implementation of the RTEC system, several pattern implementations
concerning the CAVIAR project have been developed®. We focused on the Simple Fluent
based pattern of meeting between two people. The corresponding Flink CEP implementations
of these concepts were developed for the purpose of our comparison; they are listed
below.

A concatenated version of all videos have been used for creating an input stream of frames
and events. The resulting stream is consisted of approximately 45,000 entity events. On
the other hand, the Tuples stream used by Flink CEP contains about 29.000 of such events.
For the purpose of a more thorough comparison of both systems capabilities we also
created a second dataset, emanating from the originally provided one. This new dataset
is simply a repetition of the former in sequence. We decided on using the initial stream
ten(10) times and thus creating a dataset of 450,000 events, with the corresponding
TuplesStream being close to 295.000 SDEs. We are referring to these two streams as
CAVIAR for the simple sequence of the videos provided and as 10x CAVIAR for our own
extended version.

Shttps://github.com/aartikis/RTEC.

A.N. Troupiotis-Kapeliaris 43

https://github.com/aartikis/RTEC

Complex Event Recognition: a comparison between FlinkCEP and the Run-Time Event Calculus

Two people meet:

MOVE (individual): Walker/Walking
MOVE (group): Walkers/Movement
JOIN: Meeters /Movement

INTERACT: Meeters /{Active,Inactive}
SPLIT: Meeters /Movement

Figure 7: Two people meet / Meeting Context, (after CAVIAR’s documentation *).

/* R S I S

* CLOSE *

RTEC

R I R R R R R R R R R R O O */

holdsFor(close (1d1,1d2,24)=true, |) :—
holdsFor(distance (1d1,1d2,24)=true, 1).

holdsFor(close(ld1,1d2,25)=true, 1) :—
holdsFor(close(1d1,1d2,24)=true, 1),
holdsFor(distance (1d1,1d2,25)=true, 12),
union_all ([11,12], 1).

holdsFor(close(ld1,1d2,30)=true, 1) :—
holdsFor(close(1d1,1d2,25)=true, 1),
holdsFor(distance (1d1,1d2,30)=true, 12),
union_all ([11,12], 1).

holdsFor(close(ld1,1d2,34)=true, 1) :—
holdsFor(close(1d1,1d2,30)=true, 1),
holdsFor(distance (1d1,1d2,34)=true, 12),
union_all ([11,12], 1).

holdsFor(close(ld1,1d2, Threshold)=false ,
holdsFor(close(ld1,Id2, Threshold)=true,
complement_all ([I1], I).

1) :—
1),

/* K I R R R I R I I

* MEETING *

I S I I I O R R O O */

4http://groups.inf.ed.ac.uk/vision/CAVIAR/CAVIARDATA1/labelingstates.pdf

A.N. Troupiotis-Kapeliaris

44

http://groups.inf.ed.ac.uk/vision/CAVIAR/CAVIARDATA1/labelingstates.pdf

Complex Event Recognition: a comparison between FlinkCEP and the Run-Time Event Calculus
% ——— initiate meeting

initiatedAt (meeting (P1,P2)=true, T) :—
happensAt(start(greeting1 (P1,P2)=true), T),
\+ happensAt(disappear(P1), T),

\+ happensAt(disappear(P2), T).

% greeting1

holdsFor(greeting1 (P1,P2)=true, |) :—
holdsFor(activeOrlnactivePerson (P1)=true, [A1),
% optional optimization check

\+ 1A1=][],

holdsFor(activeOrlnactivePerson (P2)=true, [A2),
% optional optimization check

\+ [A2=]],

holdsFor(close (P1,P2,25)=true, IC),

% optional optimisation check

\+ 1C =[],
intersect_all ([IA1, 1A2, IC], 1),
\+ =[],

% the rule below is the result of the above optimisation checks
holdsFor(greeting1 (_P1,_P2)=true, []).

% activeOrlnactivePersion

holdsFor (activeOrlnactivePerson (P)=true, |) :—
holdsFor(active (P)=true, I1A),
holdsFor(inactive (P)=true, In),
holdsFor(walking (P)=true, IW),

union_all ([IA,In,Ilw], I).

% ———— terminate meeting

% run

initiatedAt (meeting(P1, _P2)=false, T) :—
happensAt(start(running (P1)=true), T).

initiatedAt (meeting(_P1,P2)=false, T) :—
happensAt(start(running (P2)=true), T).

% move abruptly
initiatedAt (meeting(P1,_P2)=false, T) :—
happensAt(start(abrupt(P1)=true), T).

initiatedAt (meeting(_P1,P2)=false, T) :—

A.N. Troupiotis-Kapeliaris

Complex Event Recognition: a comparison between FlinkCEP and the Run-Time Event Calculus
happensAt(start(abrupt(P2)=true), T).

initiatedAt (meeting (P1, _P2)=false, T) :—
happensAt(disappear(P1), T).

initiatedAt (meeting(_P1,P2)=false, T) :—
happensAt(disappear(P2), T).

% move away from each other
initiatedAt (meeting (P1,P2)=false, T) :—
happensAt(start(close(P1,P2,34)=false), T).

Flink CEP

val meetingKeyed =
Pattern.begin[TupleMegaEvent](”start”, skipPastLast)
.where (ev=>ev.getDistance ()<=25 &&

ev.notExistsApp (”disappear”) &&
ev.sdes.count(x=>x.getAnnot()=="active” ||

x.getAnnot=="inactive” || x.getAnnot()=="walking”)==2)
.followedBy (”end”) .where(ev=> ev.getDistance ()>34 ||
ev.happens(”abrupt”) || ev.happens(”running”) ||

ev.existsApp(”disappear”))

While comparing the patterns for several concepts, we noticed thatin all cases the Flink CEP
equivalent is significantly shorter than the one for RTEC . A main reason for that fact is the
complexity of creating sequence-based patterns when using RTEC . For example, while
detecting for a meeting we need to firstly find an instance of greeting between the two
entities. in FlinkCEP this last concept is defined by having an additional component on
the beginning of the pattern. Creating a similar pattern using RTEC , requires the inclusion
of a completely separate pattern as a prerequisite. Hence, it is expected for the RTEC to
require additional computational steps for such cases, as the prerequisite steps should be
executed individually.

Furthermore, these types of patterns are harder to visualize using RTEC , as they do not
follow the same intuition the system is designed on, as opposed to FlinkCEP . For example,
the requirement of the two persons involved in our meeting pattern to be active needs to be
expressed using a separate holdsFor predicate and handle the resulting intervals returned
appropriately. On FlinkCEP however, we could simply add an extra condition stating that
need for the event in question.

A.N. Troupiotis-Kapeliaris 46

Complex Event Recognition: a comparison between FlinkCEP and the Run-Time Event Calculus

5.1.3 Comparison Criteria

In our comparisons we are concerned with two different aspects of the results given and
the process they entail. The first focuses the matches themselves, the similarity of the
intervals returned by the two systems and the reasons behind possible differences. The
second is the performance of each implementation, by means of execution and time
specifically focusing on the recognition process for each system.

Quality of the results The first aspect we are interested in, are the results themselves
regarding the similarity between the two system’s matches. In order to effectively compare
the expressiveness of the two systems we analyze the matches returned while working on
the same scenarios. The unit that is used in our comparison are the timepoints included
in matches returned examining the uncommon segments appearing the two result sets.
We study which are unique to the RTEC system and which to FlinkCEP , and evaluate our
results. In order to perform this evaluation we decided to use common metrics such as
Recall, Precision and F;-score. As the intend of this study is to examine the differences
between the two patterns and not the evaluation of these patterns as a representation of
concepts originating from the data, we chose to consider the results returned by RTEC as
Ground Truth on our evaluation methods.

Execution Time Performance We are interested in a comparison of the performance
for both systems in terms of execution time. While we examine the full execution time for
our patterns, we also focus on the CER process of our implementations. For the purpose
of calculating solely the Recognition Time for the FlinkCEP implementation, and taking
into consideration that a separate calculation method of the CEP operator is not provided,
we calculated the delay for each event because of this process. We achieved this task
by storing the current time value before and after the CEP for each event, finding their
difference (measured in milliseconds) and adding those differences. Regarding the RTEC
system, measuring the recognition time is more straightforward as we are able to find the
time lapsed during the execution of the predicates responsible for the CER process. As we
discussed, RTEC also allows the use of windows. We conducted separate runs for both
datasets using and not using this feature to provide a comprehensive study of RTEC's
capabilities. Furthermore, we provide a comparison between the total execution times
for the two systems (for both scenarios regarding RTEC ’s windows). All experiments
regarding the Maritime dataset were conducted using a machine with a Intel(R) Xeon(R)
CPU E5-2630 v2 @ 2.60GHz and 264GB of memory. For the CAVIAR dataset, we ran
our experiments on a machine that includes a Intel(R) Core(TM) i7-7700 CPU @ 3.60GHz
and 16GB of memory.

A.N. Troupiotis-Kapeliaris 47

Complex Event Recognition: a comparison between FlinkCEP and the Run-Time Event Calculus

5.2 Comparison

At this point we present the results and their evaluation for each dataset. We split the
comparison on the Execution Time Performance and Comparison of Resulting Matches
subsections for each dataset, starting with the Maritime and followed by the Surveillance
data.

5.2.1 Maritime Dataset

Quality of the results After examining the results of our comparison, we can deduce
that in most case the two approaches of the maritime concepts tend to have identical
matches. It seems that in most cases the FlinkCEP system can simulate the recognition
process of almost every single-valued simple-fluent based Complex Event proposed for
the RTEC system.

Table 6: Maritime Accuracy Comparison. Comparing the results of both systems, supposing the
RTEC results to be true, and using timepoints as a unit; hence the True Positives occur on both
systems, the False Negatives only on the RTEC matches and vice versa for the False Positives.

Composite Event Vessels(#) TP FN FP Precision Recall F;-Score
withinArea 3185 906241607 167559 1336348 0.999 0.999 0.999
trawlSpeed 260 15590400 87968 2234 0.999 0.994 0.997
trawlingMovement 267 31435979 0 4165 0.999 1.000 0.999
lowSpeed 1192 22299633 158290 0 1.000 0.993 0.996
tuggingSpeed 3241 239435220 491159 4130 0.999 0.998 0.999
sarSpeed 19 2426605 42879 0 1.000 0.983 0.991
changingSpeed 1981 39025964 777035 0 1.000 0.980 0.990

In all pattern cases, the results seem to be close to identical. The timepoints that appear
to occur solely on the FlinkCEP resulting set, are caused by the different approaches
of the systems for determining the termination timepoint of a pattern. More precisely,
suppose that an event occurs on time T1; this event might trigger the termination of a
fluent. In this case, RTEC considers the termination point having a timestamp of T1=T1+1.
Furthermore, when dealing with fluents depended on others, this artificial delay can be
expanded according to the hierarchy levels defined. On the other hand, in our Flink CEP
implementation we do not take this factor into consideration and expand the resulting
match to the maximum on each case, to approximate the RTEC behavior; leading to these
differences on the results.

Execution time performance For our time comparison we decided not to use a para-
llelism factor for the FlinkCEP recognition, to more closely simulate RTEC ’s execution.
Furthermore, our experiments used the Kafka streaming platform ° in order to provide
the stream onto Flink; we divided our input stream in batches of 1M (10°) events. For
the RTEC system we had two separates runs. On the first one we used non-overlapping

Shttps://kafka.apache.org/.

A.N. Troupiotis-Kapeliaris 48

https://kafka.apache.org/

Complex Event Recognition: a comparison between FlinkCEP and the Run-Time Event Calculus

windows with size equal to a day (86,400 seconds). The second run did not include the
window feature provided by RTEC , but instead had a run for the full dataset on a single

query.

In rFunk
I8 RTEC (win
I I RTEC (no win) |

15 -

10 —

Recognition Time for all patterns (mins)

Figure 8: Total recognition time comparison of the two systems (with and without the use of
windows in RTEC) for all maritime patterns for the full 6-month Maritime dataset. RTEC is able to
detect all patterns passing through the dataset one. FlinkCEP requires separate CER for each
pattern; we use the sum of all recognitions.

| |
15 -]

In Flink
lerTEC

Recognition Time (mins)
—_
o o S
h I I
|
| .
|
|
|
| .
|
| .
|
| .
]
| .
|
| | |

Maritime Pattern

Figure 9: Recognition Time comparison of the two systems for each pattern for the full 6-month
Maritime dataset using temporal windows in RTEC.

A.N. Troupiotis-Kapeliaris 49

Complex Event Recognition: a comparison between FlinkCEP and the Run-Time Event Calculus

5111 Flink .
firTEC

E AT h
&)
(0]

g .| i
H
a
9
=
&

o) 2~ N
Q
Q
~

1 | _—

?jfejy Q)@b Q)& @@b @e’b @eb Q/@b

& oF & L o o° o0
vs & 4 & & ‘b’" &
& @ KN <& S g
& xS » &
.oéo “060 @o
& o
K;"(D‘AA)

Maritime Pattern

Figure 10: Recognition Time comparison of the two systems for each pattern for the full 6-month
Maritime dataset without the use of temporal windows in RTEC.

I Fink
1 RTEC (win)

IIRTEC (no win)
2 - -
17 I | I | |
o|m | n [| m n n nll
I I I I I I I

)

& Ny ~¢>60 > Odo

& o¥
&

Total Execution Time (hours)

Maritime Pattern

Figure 11: Total execution time comparison of the two systems for each pattern for the full 6-month
Maritime dataset.

A.N. Troupiotis-Kapeliaris 50

Complex Event Recognition: a comparison between FlinkCEP and the Run-Time Event Calculus

The above figures indicates that Flink CEP greatly outperforms RTEC in terms of execution
time, for all patterns. As seen by Figure 9 and Figure 10 RTEC requires more time to
execute the CER process than FlinkCEP , regardless the use of windows. Also, we deduce
that having temporal windows on our execution does not benefit the performance of RTEC
for both the recognition (Figure 8) or the total execution time (Figure 11). Furthermore, we
notice that the recognition times for the FlinkCEP implementation do not deviate from a
common mean value, regardless the complexity of the pattern in question, see Figure
9. This leads us to conclude that the performance of the FlinkCEP system is mainly
affected by the size of the input stream, rather than the operators within the patterns.
Lastly, as seen by Figure 11 the total execution time of the RTEC systems is much greater
than the FlinkCEP equivalent, even when the use of windows is not included. This last
remark shows that the FlinkCEP system handles large amounts of data efficiently and
considerably surpassing RTEC .

As by these results alone we are able to deduce that FlinkCEP is more time-efficient, we
decided not to include the execution of Flink with a greater parallelism factor than (1).

A.N. Troupiotis-Kapeliaris 51

Complex Event Recognition: a comparison between FlinkCEP and the Run-Time Event Calculus

5.2.2 Surveillance Dataset

Quality of the results The results, in total, show us that we are able to overcome some
of the issues simultaneous events create when using FlinkCEP , by employing the propo-
sed MegaEvent structure, and surpass RTEC ’s efficiency on certain occasions (compared
to the ground truth given). The following tables present a similarity evaluation between
the two sets of results, along with a comparison to the Ground Truth for each system.
The Ground Truth aspect is provided within the CAVIAR dataset, by the use of special
annotation.

Table 7: Similarity Comparison for Surveillance pattern. We evaluate the results of RTEC
compared to FlinkCEP . In order to do so, we chose to use the RTEC implementation as Ground
Truth and evaluate the FlinkCEP results correspondingly. We also are using the timepoints
returned as units of our comparisons.The stream is being parsed into Keyed streams, for our
FlinkCEP pattern to be simpler.

Pattern Datastream \ TP FN FP \ Precision Recall F,-Score
meetin CAVIAR 1897 144 O 1.000 0.929 0.963
9 10x CAVIAR 20167 243 O 1.000 0.988 0.994

Table 8: Meeting Accuracy compared to the Ground Truth. We evaluate the results of the RTEC ’s
and the FlinkCEP ’s implementations compared to the Ground Truth given. The GT corresponds to
the ‘meeting’ value of the Context tag. We also are using the timepoints returned as units of our
comparisons. The stream is being parsed into Keyed streams for our FlinkCEP pattern to be

simple.
Datastream CER System | TP FN FP | Precision Recall F;-Score
CAVIAR RTEC 1388 283 653 0.680 0.831 0.749
Flink CEP 1388 283 509 0.732 0.831 0.778
RTEC 13880 2830 6530 0.680 0.831 0.749
L0XCAVIAR - cincEP 13880 2830 6287 | 0688 0831 0753

The overall differences rely on the fact that the RTEC system includes matches that do
not correspond to a full match, as only the initiation rule has been fulfilled by our data
stream. As examined in the previous chapter, these types of matches cannot effectively
be defined using the FIink CEP system. In total they comprise the full differences observed
onto our results. The fact that in most cases we detect the same intervals as RTEC does
proves that the use of MegaEvents can be an effective approach to handling simultaneous
events.

Execution Time Comparison Below we present the recognition time for FlinkCEP and
RTEC implementations for the CAVIAR dataset. We followed the same methods used for
the Maritime dataset, using Kafka for Flink CEP and non-overlapping sliding windows, with
size of (1000) video frames this time. We also conducted a separate RTEC run that does
not include windows. On our FlinkCEP execution we used keyed streams of Tuple-Events,
based on the ids included on each tuple. In order to create such Tuple-Events the input
stream underwent a preproccesing step, prior to the Flink process.

A.N. Troupiotis-Kapeliaris 52

Complex Event Recognition: a comparison between FlinkCEP and the Run-Time Event Calculus

In Funk
Il RTEC (win
I I RTEC (no win)

N
[

Recognition Time (sec)
—
|

Surveillance Datastream

Figure 12: Recognition time comparison of the two systems for each pattern for the ‘meeting
pattern for the 1xCAVIAR and 10xCAVIAR datasets.

I Flnk
Il RTEC (win
FERTEC (o win)

—
o)
|

[
o
I

Total Execution Time (sec)
o
T

Surveillance Datastream

Figure 13: Total execution time comparison of the two systems for each pattern for the ‘meeting’
pattern for the 1 xCAVIAR and 10x CAVIAR datasets.

Figure 12 indicates that when dealing with datasets of a smaller size RTEC outperforms
FlinkCEP regarding the recognition times. Furthermore, Figure 13 shows that the when
the stream gets larger, in terms of number of events included, FlinkCEP works more
efficiently than RTEC does. As a conclusion we can deduce that RTEC is more appropriate
when dealing with small data batches, but suffers in comparison to FlinkCEP when having
to handle more than 100k events as input.

A.N. Troupiotis-Kapeliaris 53

Complex Event Recognition: a comparison between FlinkCEP and the Run-Time Event Calculus

5.3 Lessons Learned

After reviewing the results provided by our experiments we come to several conclusions.
Some of these conclusions confirm the remarks of the theoretical comparison of the prev-
ious chapter.

» Pattern Hierarchies We are able to effectively simulate hierarchies between patterns
when there is no negation included within their conditions. this can be achieved by
incorporating all events of the patterns involved into a single FIinkCEP Complex
Event.

* Unbounded intervals FlinkCEP proves to be unable to handle a pattern thatincludes
uncompleted matches on their results, because of reaching the end of the steam.
The use of such matches would require a different pattern, and thus a different CER
process.

+ MegaEvents We have proven that we are capable of producing MegaEvent types
for FlinkCEP , in order to handle simultaneous events and multi-entity patterns. This
approach requires an extra preprocessing step and may lead to exponentially large
streams, but is effective when the number of events per timepoint is limited.

* Recognition Time The results regarding the recognition times of both systems,
show that in most cases the FIinkCEP system appears to outperform RTEC .
Furthermore, the comparison of the execution times proves that the Flink CEP system
handles the load of data much more efficiently, mostly thanks to the Flink system,
resulting on the gap between their performances. Conversely experiments has
shown that RTEC works more efficiently when dealing with small amount of data,
in terms of input events.

A.N. Troupiotis-Kapeliaris 54

Complex Event Recognition: a comparison between FlinkCEP and the Run-Time Event Calculus

6. CONCLUSIONS AND FURTHER WORK

In this chapter we provide a summary of our study, describe our conclusions and list
potential aspects for our comparison that should be extended in future work.

6.1 Conclusions

As we stressed throughout this study, there seems to be several differences on what each
FlinkCEP and RTEC are capable of representing efficiently. These differences lay on the
disparate approaches they use in order to create and track the same concepts onto a
stream of data. The main cause for these differences is the capabilities of each system
regarding queries during the recognition process. The fact that RTEC is able to access
events without considering them par of the current match allows the design of simple yet
expressive patterns, in contrast to the FlinkCEP equivalents. Furthermore, the behavior
towards simultaneous events by each system plays a major role on how our patterns are
designed, as the order of simultaneous events doesn’t affect the RTEC implementations
whilst the FlinkCEP system emphasizes on its significance.

Another major contrast between the two systems occur when dealing with matches whose
endpoint does not appear on the stream. The reason behind this, is the fact that a complete
FlinkCEP pattern would include an ending event as part of its declaration; in contrast the
RTEC matches might also include ones that only the initiation rule has been triggered, and
thus having intervals with no closed end. Moreover, attempting to simulate such behavior
with FlinkCEP seems to be more than tricky.

As expected when dealing with any Logic Programming-based system, the existence of
the negation creates significant issues. While, the negation on RTEC is achieved by the
notion of negation as failure, a simple omission of an event or a fact on our FlinkCEP
translated patterns does not qualify as a scenario for providing the same results. The main
reason that causes that effect emanates from the query capabilities of the two systems,
as noted above.

Also, while RTEC relies on the use of windows to achieve a high performance rate, Flink CEP
does not include a window mechanism, even if Flink does provides an implementation
regarding other operators. The RTEC system uses sliding (overlapping or not) windows
to improve its performance. On the other hand, the only time-related option provided by
FlinkCEP (the within function) does not simulate the scope of windows and works as a
simple condition regarding the first and last components of the pattern’s match.

Our experimental results emphasize the importance of the pattern-hierarchy available on
RTEC . After looking at the behavior of both patterns with and without the use of hierarchies
on their elements and between prerequisites, its necessity is undeniable. And while one
might attempt to simulate RTEC ’s approach in prioritizing and recognizing the prerequisite
patterns first and afterwards acting on the resulting stream, we must consider that usually
patterns involve information of the original stream as well as the new data created by
another recognition process.

Finally, the execution time comparison, focusing on the recognition process, shows that
Flink CEP performs more efficiently than RTEC . The reason these resulting times are so
different seems to be caused by the use of Flink and its impressive performance compared

A.N. Troupiotis-Kapeliaris 55

Complex Event Recognition: a comparison between FlinkCEP and the Run-Time Event Calculus

to Logic Programming systems.

6.2 Future work

Several aspects of our our work can be extended in order to expand our study in the future.
The main directions that such future work may follow are:

+ Statically Determined Fluents Expand our work by including Statically Determined
Fluents of RTEC and presenting implementations using Flink CEP for such patterns.
Even though several of our experiments (not presented in this study) have proven
that some SDFs can be approached effectively, we need to examine all possible
scenarios. A different approach would be by strictly proving the equivalence of every
SDF to a Simple Fluent and thus focusing on this comparison.

* Multi-valued Fluents In this study we focused on fluents that can only carry two
types of values; we called these fluents Boolean. A significant expansion would be
examining whether Fluents that can carry a wider range of different values can be
translated as Flink CEP patterns. These types of fluents are determined by separate
rules for each of their values, combined with the property that it can only carry a
single value at any given moment (or not carry any value), thus differentiating such
a study from ours.

* RTEC -2 Furthermore, a version of RTEC that handles recursive definitions of
Complex Events and long-term relations is under development [46]. This update
of the RTEC engine would enable the detection of even more complex patterns,
creating the need of a separate study, focused on them.

 Parallelism The examination of how parallelism affects the efficiency of our systems
can be examined in a further work. In this study, we only provided results without
including executions in parallel, but the enabling of parallelism for the RTEC engine
should be studied, and more importantly the utilization of such capabilities for an
engine based on Flink would provide a thorough comparison of state-of-the-art CER
tools.

* Windows for FlinkCEP As mentioned, the RTEC system benefits greatly from
the use of temporal sliding windows. Even if the Flink does provide a windowing
mechanism, combining its use with FlinkCEP is a completely different matter. The
examination on how windows can be integrated into the recognition process, together
with the use of parallelism, would affect the performance of the Flink CEP
implementation and as a result the comparison.

A.N. Troupiotis-Kapeliaris 56

Complex Event Recognition: a comparison between FlinkCEP and the Run-Time Event Calculus

ACRONYMS

CE Complex Event

CEP | Complex Event Processing

CER | Complex Event Recognition

FSA Finite State Automata

RTEC | Run-time Event Calculus

SDE | Simple Derived Events

SDF | Statically Determined Fluent

A.N. Troupiotis-Kapeliaris

Complex Event Recognition: a comparison between FlinkCEP and the Run-Time Event Calculus

REFERENCES

[1] Esper - espertech. http://wuw.espertech.com/esper. Online; accessed: 23-October-2019.

[2] Asaf Adi and Opher Etzion. Amit - the situation manager. VLDB J., 13(2):177-203, 2004.

[3] Elias Alevizos and Alexander Artikis. Being logical or going with the flow? A comparison of complex
event processing systems. In Artificial Intelligence: Methods and Applications - 8th Hellenic Conference
on Al, SETN 2014, loannina, Greece, May 15-17, 2014. Proceedings, pages 460—474, 2014.

[4] Elias Alevizos, Anastasios Skarlatidis, Alexander Artikis, and Georgios Paliouras. Probabilistic complex
event recognition: A survey. ACM Comput. Surv., 50(5):71:1-71:31, 2017.

[5] Alexander Artikis, Marek J. Sergot, and Georgios Paliouras. A logic programming approach to activity
recognition. In Proceedings of the 2nd ACM international workshop on Events in multimedia, EIMM
2010, Firenze, Italy, October 25 - 29, 2010, pages 3-8, 2010.

[6] Alexander Artikis, Marek J. Sergot, and Georgios Paliouras. Run-time composite event recognition.
pages 69-80, 2012.

[7]1 Alexander Artikis, Marek J. Sergot, and Georgios Paliouras. An event calculus for event recognition.
IEEE Trans. Knowl. Data Eng., 27(4):895-908, 2015.

[8] Alexander Artikis, Anastasios Skarlatidis, Frangois Portet, and Georgios Paliouras. Logic-based event
recognition. Knowledge Eng. Review, 27(4):469-506, 2012.

[9] William Brendel, Alan Fern, and Sinisa Todorovic. Probabilistic event logic for interval-based event
recognition. In The 24th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2011,
Colorado Springs, CO, USA, 20-25 June 2011, pages 3329-3336, 2011.

[10] Lars Brenna, Alan J. Demers, Johannes Gehrke, Mingsheng Hong, Joel Ossher, Biswanath Panda,
Mirek Riedewald, Mohit Thatte, and Walker M. White. Cayuga: a high-performance event processing
engine. In Proceedings of the ACM SIGMOD International Conference on Management of Data, Beijing,
China, June 12-14, 2007, pages 1100-1102, 2007.

[11] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl, Seif Haridi, and Kostas Tzoumas.
Apache flink™: Stream and batch processing in a single engine. |IEEE Data Eng. Bull., 38(4):28-38,
2015.

[12] Luca Chittaro and Angelo Montanari. Efficient temporal reasoning in the cached event calculus.
Computational Intelligence, 12:359-382, 1996.

[13] Nihan Kesim Cicekli and llyas Cicekli. Formalizing the specification and execution of workflows using
the event calculus. Inf. Sci., 176(15):2227-2267, 2006.

[14] Nihan Kesim Cicekli and Yakup Yildirim. Formalizing workflows using the event calculus. In Database
and Expert Systems Applications, 11th International Conference, DEXA 2000, London, UK, September
4-8, 2000, Proceedings, pages 222-231, 2000.

[15] Maxime Crochemore and Christophe Hancart. Automata for Matching Patterns, pages 399-462. 1997.

[16] Gianpaolo Cugola and Alessandro Margara. TESLA: a formally defined event specification language.
In Proceedings of the Fourth ACM International Conference on Distributed Event-Based Systems, DEBS
2010, Cambridge, United Kingdom, July 12-15, 2010, pages 50-61, 2010.

[17] Gianpaolo Cugola and Alessandro Margara. Processing flows of information: From data stream to
complex event processing. ACM Comput. Surv., 44(3):15:1-15:62, 2012.

[18] Miyuru Dayarathna and Srinath Perera. Recent advancements in event processing. ACM Comput.
Surv., 51(2):33:1-33:36, 2018.

[19] Yanlei Diao, Neil Immerman, and Daniel Gyllstrom. Sase+: An agile language for kleene closure over
event streams. Technical report, 01 2007.

[20] Christophe Dousson. Extending and unifying chronicle representation with event counters. In
Proceedings of the 15th Eureopean Conference on Aftificial Intelligence, ECAI’2002, Lyon, France,
July 2002, pages 257-261, 2002.

[21] Christophe Dousson and Pierre Le Maigat. Chronicle recognition improvement using temporal focusing
and hierarchization. In IJCAI 2007, Proceedings of the 20th International Joint Conference on Artificial
Intelligence, Hyderabad, India, January 6-12, 2007, pages 324-329, 2007.

[22] Opher Etzion and Peter Niblett. Event Processing in Action. Manning Publications Company, 2010.

[23] Nicola Falcionelli, Paolo Sernani, Dagmawi Neway Mekuria, and Aldo Franco Dragoni. An event
calculus formalization of timed automata. In Proceedings of the 1st International Workshop on Real-Time
compliant Multi-Agent Systems co-located with the Federated Artificial Intelligence Meeting, Stockholm,
Sweden, July 15th, 2018., pages 60-76, 2018.

[24] Robert Fisher. The pets04 surveillance ground-truth data sets. 01 2004.

A.N. Troupiotis-Kapeliaris 58

http://www.espertech.com/esper

Complex Event Recognition: a comparison between FlinkCEP and the Run-Time Event Calculus

[25] loannis Flouris, Nikos Giatrakos, Antonios Deligiannakis, Minos N. Garofalakis, Michael Kamp, and
Michael Mock. Issues in complex event processing: Status and prospects in the big data era. Journal
of Systems and Software, 127:217-236, 2017.

[26] Matthew Fuchs. The event calculus as a programming model for game ai. Technical report, 2009.

[27] Lajos Fulop, Gabriella Fiildp, Rébert Téth, Janos Racz, Tamas Panczél, Arpad Gergely, and Arpad
Beszédes. Survey on complex event processing and predictive analytics. 08 2010.

[28] Nikos Giatrakos, Elias Alevizos, Alexander Artikis, Antonios Deligiannakis, and Minos Garofalakis.
Complex event recognition in the big data era: a survey. The VLDB Journal, pages 1-40, 2019.

[29] Alejandro Grez, Cristian Riveros, and Martin Ugarte. A formal framework for complex event processing.
In 22nd International Conference on Database Theory, ICDT 2019, March 26-28, 2019, Lisbon, Portugal,
pages 5:1-5:18, 2019.

[30] Daniel Gyllstrom, Eugene Wu, Hee-Jin Chae, Yanlei Diao, Patrick Stahlberg, and Gordon Anderson.
SASE: complex event processing over streams. CoRR, abs/cs/0612128, 2006.

[31] Patrick J. Hayes. The frame problem and related problems in artificial intelligence. Technical report,
Stanford, CA, USA, 1971.

[32] Fredrik Heintz. Recognition in the witas uav project a preliminary report. In Swedish Al Society
Workshop (SAIS2001), 2001.

[33] Elena lkonomovska and Mariano Zelke. Algorithmic techniques for processing data streams. In Data
Exchange, Integration, and Streams, pages 237-274, 2013.

[34] llya Kolchinsky and Assaf Schuster. Real-time multi-pattern detection over event streams. In
Proceedings of the 2019 International Conference on Management of Data, SIGMOD Conference 2019,
Amsterdam, The Netherlands, June 30 - July 5, 2019., pages 589-606, 2019.

[35] Robert A. Kowalski and Marek J. Sergot. A logic-based calculus of events. New Generation Comput.,
4(1):67-95, 1986.

[36] John McCarthy and Patrick Hayes. Some philosophical problems from the standpoint of artificial
intelligence. In B. Meltzer and Donald Michie, editors, Machine Intelligence 4, pages 463-502.
Edinburgh University Press, 1969.

[37] Yuan Mei and Samuel Madden. Zstream: a cost-based query processor for adaptively detecting
composite events. In Proceedings of the ACM SIGMOD International Conference on Management
of Data, SIGMOD 2009, Providence, Rhode Island, USA, June 29 - July 2, 2009, pages 193—206, 2009.

[38] Adrian Paschke and Alexander Kozlenkov. Rule-based event processing and reaction rules. In
Rule Interchange and Applications, International Symposium, RuleML 2009, Las Vegas, Nevada, USA,
November 5-7, 2009. Proceedings, pages 53—66, 2009.

[39] Manolis Pitsikalis, Alexander Artikis, Richard Dreo, Cyril Ray, Elena Camossi, and Anne-Laure
Jousselme. Composite event recognition for maritime monitoring. In Proceedings of the 13th ACM
International Conference on Distributed and Event-based Systems, DEBS 2019, Darmstadt, Germany,
June 24-28, 2019., pages 163—-174, 2019.

[40] Cyril RAY, Richard DREO, Elena CAMOSSI, and Anne-Laure JOUSSELME. Heterogeneous Integrated
Dataset for Maritime Intelligence, Surveillance, and Reconnaissance, February 2018.

[41] Nicolo Rivetti, Yann Busnel, and Avigdor Gal. Flinkman: Anomaly detection in manufacturing
equipment with apache flink: Grand challenge. In Proceedings of the 11th ACM International Conference
on Distributed and Event-based Systems, DEBS 2017, Barcelona, Spain, June 19-23, 2017, pages
274-279, 2017.

[42] Georgios M. Santipantakis, Akrivi Vlachou, Christos Doulkeridis, Alexander Artikis, loannis
Kontopoulos, and George A. Vouros. A stream reasoning system for maritime monitoring. In 25th
International Symposium on Temporal Representation and Reasoning, TIME 2018, Warsaw, Poland,
October 15-17, 2018, pages 20:1-20:17, 2018.

[43] Murray Shanahan. Solving the frame problem - a mathematical investigation of the common sense
law of inertia. MIT Press, 1997.

[44] Young Chol Song, Henry A. Kautz, James F. Allen, Mary D. Swift, Yuncheng Li, Jiebo Luo, and
Ce Zhang. A markov logic framework for recognizing complex events from multimodal data. In 2013
International Conference on Multimodal Interaction, ICMI ’13, Sydney, NSW, Australia, December 9-13,
2013, pages 141-148, 2013.

[45] Sriskandarajah Suhothayan, Kasun Gajasinghe, Isuru Loku Narangoda, Subash Chaturanga, Srinath
Perera, and Vishaka Nanayakkara. Siddhi: a second look at complex event processing architectures. In
Proceedings of the 2011 ACM SC Workshop on Gateway Computing Environments, GCE 2011, Seattle,
WA, USA, November 18, 2011, pages 43-50, 2011.

[46] Efthimis Tsilionis, Alexander Artikis, and Georgios Paliouras. Incremental event calculus for run-time
reasoning. In Proceedings of the 13th ACM International Conference on Distributed and Event-based
Systems, DEBS 2019, Darmstadt, Germany, June 24-28, 2019., pages 79-90, 2019.

A.N. Troupiotis-Kapeliaris 59

Complex Event Recognition: a comparison between FlinkCEP and the Run-Time Event Calculus

[47] Martin Ugarte and Stijn Vansummeren. On the difference between complex event processing and
dynamic query evaluation. In Proceedings of the 12th Alberto Mendelzon International Workshop on
Foundations of Data Management, Cali, Colombia, May 21-25, 2018., 2018.

A.N. Troupiotis-Kapeliaris 60

	CONTENTS
	List of Figures
	List of Tables
	INTRODUCTION
	Motivation
	Contributions
	Outline of Thesis

	RELATED WORK
	Complex Event Processing and Recognition Systems
	Automata-based Complex Event Recognition systems
	Logic-based Complex Event Recognition systems

	Comparisons

	BACKGROUND
	The FlinkCEP System
	Event Calculus
	The RTEC System

	THEORETICAL COMPARISON
	Unbounded Intervals
	Simultaneous initiation and termination
	Simultaneous Events
	Relations between patterns
	Conclusions

	EMPIRICAL COMPARISON
	Experimental Setup
	The Datasets
	Complex Events and their Implementations
	Comparison Criteria

	Comparison
	Maritime Dataset
	Surveillance Dataset

	Lessons Learned

	CONCLUSIONS AND FURTHER WORK
	Conclusions
	Future work

	ACRONYMS
	REFERENCES

