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ABSTRACT

The goal of the present thesis is to develop a method for a robotic outdoor platform. The

robot should discover by itself, based on its sensors and its previous knowledge, how to

approach an obstacle that stands in front of it, whether it is capable of driving over the

obstacle or should avoid it. Obstacle avoidance ensures the safety and integrity of both

the robotic platform and the people and objects present in the same space. That is one of

the reasons why current approaches mainly concentrate on maneuver to avoid obstacles

rather than yield autonomous systems with the ability to self improve. There is not much

work done on curiosity-driven exploration, in which there is no explicit goal, but the abstract

need for the robot to learn a new environment.

In the current thesis we introduce a system that not only autonomously classifies its en-

vironment to areas that can or cannot be driven over, but also has the capacity for self-

improvement. To do so, we use a pre-trained neural network for whole scene semantic

segmentation. We implement a program that accepts as input images extracted from the

neural network mentioned above and predicts whether the illustrated scenes can be tra-

versed or not. The program trains itself and then evaluates its effectiveness. Our results

are quite satisfactory and the error rate can be explained by the fact that the environment is

not evenly distributed in obstacles and paths, while at the same time it is not always clear

which one is dominant. Furthermore, we show that our model can be easily optimized

with just a few modifications.

SUBJECT AREA: Traversability estimation

KEYWORDS: traversability, data collection, navigation, exploration, neural networks



ΠΕΡΙΛΗΨΗ

Σκοπός της παρούσας διπλωματικής είναι η ανάπτυξη μεθόδου ώστε μια ρομποτική πλατ-

φόρμα εξωτερικού χώρου να ανακαλύπτει μόνη της, με βάση τους αισθητήρες της και τη

γνώσηπου έχει αποκτήσει, πώς πρέπει να προσεγγίζει το εκάστοτε εμπόδιο που βρίσκεται

μπροστά της, αν μπορεί να το υπερπηδήσει ή αν χρειάζεται να το παρακάμψει. Η αποφυγή

εμποδίων εξασφαλίζει την ασφάλεια και ακεραιότητα τόσο της ρομποτικής πλατφόρμας

όσο και των ανθρώπων και αντικειμένων που υπάρχουν στον ίδιο χώρο. Αυτός είναι ένας

από τους λόγους που οι περισσότερες προσεγγίσεις τέτοιων θεμάτων επικεντρώνονται

κυρίως στους ελιγμούς για την αποφυγή εμποδίων αντί για την παραγωγή αυτόνομων

συστημάτων με ικανότητα αυτοβελτίωσης. Δεν υπάρχει μεγάλη βιβλιογραφία για ρομπότ

που έχουν την περιέργεια να εξερευνήσουν το περιβάλλον τους, για περιπτώσεις δηλαδή

που δεν υπάρχει συγκεκριμένος στόχος, αλλά μόνο η αφηρημένη ανάγκη του ρομπότ να

εξερευνήσει ένα καινούριο περιβάλλον.

Στην παρούσα διατριβή παρουσιάζουμε ένα σύστημα που όχι μόνο κατατάσσει αυτόνομα

το περιβάλλον του σε προσπελάσιμες και μη προσπελάσιμες περιοχές, αλλά επίσης έχει

την ικανότητα να αυτοβελτιώνεται. Για να το επιτύχουμε, χρησιμοποιούμε ένα προεκπαι-

δευμένο νευρωνικό δίκτυο που αναπαριστά χρωματικά τα αντικείμενα της σκηνής. Ανα-

πτύσσουμε ένα πρόγραμμα, το οποίο δέχεται ως είσοδο εικόνες που εξάγονται από το

προαναφερθέν νευρωνικό δίκτυο και προβλέπει αν το ρομπότ μπορεί να προσπελάσει τα

απεικονιζόμενα αντικείμενα. Το πρόγραμμα αυτό εκπαιδεύεται και στη συνέχεια αξιολο-

γείται η αποτελεσματικότητά του. Τα αποτελέσματά μας κρίνουμε ότι είναι αρκετά ικανοποι-

ητικά. Το ποσοστό σφάλματος μπορεί να εξηγηθεί από το γεγονός ότι το περιβάλλον δεν

είναι ομοιόμορφα κατανεμημένο σε εμπόδια και προσπελάσιμες περιοχές ενώ παράλληλα

δεν είναι πάντοτε σαφές τι από τα δύο υπερισχύει. Τέλος, δείχνουμε ότι είναι εύκολο να

μειωθεί το ποσοστό σφάλματος με λίγες μόνο τροποποιήσεις.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Εκτίμηση προσπελασιμότητας

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: προσπελασιμότητα, συλλογή δεδομένων, πλοήγηση, εξερεύνηση,

νευρωνικά δίκτυα
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Autonomic tackling of unknown obstacles in navigation of robotic platform

1. INTRODUCTION

During the last years the focus of research for robotic applications evolved from well struc-

tured indoor environments to unstructured outdoor environments. With this expansion of

interest, it is a crucial prerequisite to reliably classify traversable ground in the environ-

ment, especially when it comes to truly autonomous (or else self-supervised) systems.

This topic is typically referred to as traversability analysis or obstacle detection [1]. The

verb traverse is defined as “to pass or move over, along, or through”. Hence traversability

refers to the affordance of being able to traverse [2]. Failing on this task can cause great

damage or restrict the robots movement unnecessarily.

So, traversability is the generic capability of a robotic ground vehicle to navigate within en-

vironments of varying complexity, while ensuring safety in terms of collisions or reaching

unrecoverable states and achieving goals in an optimal mode of operation [3]. Occasion-

ally other terms such as mobility [4], drivability [5], etc are used to describe the same

concept.

Although traversability is considered a fundamental capability for mobile robots, in some

cases it is limited to the problem of simple obstacle avoidance [2]. When such approaches

are used, the robot tries to avoid making any physical contact with the environment, and

heads only to open spaces. Its response would be the same whether it encounters an

impenetrable wall or a balloon that can just be pushed aside without any damage. There-

fore, methods that can automatically learn the traversability affordances from the robot’s

interactions with the environment are valuable for robotics.

In addition, there is the possibility that previously learned behavior is not relevant, because

the visual appearance and traversability of roads may have changed due to various rea-

sons [6]. That is probably why geometry-based analysis is the direction followed by the

majority of traversability analysis methodologies in the past [3].

Supervised learning approaches are unlikely to work reliably in unknown or unstructured

outdoor environments. That is because the system assesses the traversability using an

off-line learnedmodel trained with specific terrain types. For example, if a system is trained

with terrain samples in a specific season, the systems might not detect traversable regions

in other seasons [7].

Unsupervised, or else self-supervised, learning approaches may be the solution to this

problem. They use on-line learning methods in order to exploit newly- acquired training

data in making traversability predictions about unknown terrain [8]. That way the learned

traversability concepts are incrementally updated with new data only. That comes with the

N. Prokopaki Kostopoulou 15
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advantage that the updated classifier is immediately available for navigation and that the

memory requirements for learning are reduced, compared to off-line methods.

In the real world and its unstructured and dynamic surroundings such as vegetation land-

scape and terrain, the perception of a mobile robot needs to be capable of navigating this

unknown environment by using sensor modalities [9].

So, if autonomous mobile robots are to become more generally useful, they must be able

to adapt to new environments and learn from experience. To do so, they need a way to

store pertinent information about the environment, recall the information at appropriate

times, and reliably match stored information with newly-sensed data. They also must be

able to modify the stored information to account for systematic changes in the environ-

ment [10].

Estimating the traversability of terrain in an unstructured outdoor environment is a core

functionality for autonomous robot navigation [8]. Nevertheless, the traversability of more

complex terrain, such as vegetation and sloping ground, is extremely difficult to character-

ize beforehand. It is difficult to find general rules which work for each vehicle’s capabilities

and for a wide variety of terrain types such as trees, rocks, tall grass, logs, and bushes. As

a result, methods which provide traversability estimates based on predefined terrain prop-

erties such as height, shape or colour (geometry-based and appearance-based analyses)

will be unlikely to work reliably in unknown outdoor environments. That is why combining

data collected a priori together with the vehicle’s navigation experience is more likely to

work better for deciding terrain traversability (more about hybrid approaches in Papadakis

[3]).

Last but not least, traversability should be treated as an affordance and not simply as a

predefined property of different types of terrain [8]. That is because a large vehicle may

be able to drive over small saplings that would present an insurmountable obstacle to a

smaller vehicle. A stair that is traversable for a hexapod robot may not be traversable for

a wheeled one. So, when used here, affordance implies the complementarity of the robot

and the environment, the interaction between them [2].

In this thesis we will tackle on how an autonomousmobile robot can improve its traversabil-

ity estimation method in natural environments, meaning not only on bare ground-like en-

vironment but also on terrain containing vegetation. On contrast, we will rule out high-risk

applications where a single accident can be fatal to the robot like planetary or volcano

exploration. We will concentrate in everyday practical situations. We will determine how

to introduce a learning capability to the robot that will enable it to decide for itself the

traversability of the terrain around it, based on input from its sensors and its experience

of traveling over similar terrain in the past. We would also like our robot to plan further

ahead and avoid entering traps that prevent it from reaching its goal.

N. Prokopaki Kostopoulou 16
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The rest of the thesis is organized as follows:

• In Chapter 2 we give a background on the topic we are dealing with. We present

already existing traversability estimation algorithms; the goals, the approaches, the

methods used, the strengths and weaknesses.

• In Chapter 3 we present the rationale behind the decisions made and the algorithms

used or developed.

• In Chapter 4 we perform an evaluation of our implementation and explain why its

weaknesses occur.

• In Chapter 5 we give our conclusions and ideas for future work.

• In Appendix A we share some URLs of prototype implementations from researchers

who kindly offered their work open-source.

• In Appendix B we share the URLs of some popular datasets used for training neural

networks.

• In Appendix C one can find a brief outline on how we collected the sample data we

used for our evaluation.

N. Prokopaki Kostopoulou 17
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2. BACKGROUND

In order to have an autonomous robot improve its traversability estimation we will need to

address each sub-problem individually:

1. Traversability estimation algorithms that can be improved from experience and ex-

amples.

2. Methods for collecting the data needed by the algorithm above, from the sensory

input that is available to the robot. The input does not necessarily directly map to

positive or negative decision.

3. Navigation strategies. There might be an explicit goal to achieve, e.g. follow the

fastest or easiest route to a target. Or it could be curiosity-driven exploration, mean-

ing the abstract need to learn a new environment.

We will now present the state of the art in all three areas of research.

2.1. Learning traversability estimation algorithms

In order for an autonomous robot to be able to safely navigate, it is crucial for it to be able

to conclude on its own the terrain traversability around it. Historically, most commonly,

traversability analysis is treated as a binary classification problem [3], i.e. distinguishing

traversable from non-traversable terrain. But later on, it became clear that rough natural

terrain is not easily partitioned into clear traversable and non- traversable classes. The

need for finer classification was recognized. The new idea was to either assign a continu-

ous traversability score or classify the terrain into the various classes that were commonly

encountered within a particular application. Many papers have been published regarding

traversability estimation approaches, and here we present some of the most recent and

most influential.

This line of research starts with Lalonde et al. [4] that segment local three-dimensional

(3D) point clouds using a purely geometric approach, for autonomous robot navigation

purposes. A point cloud is a set of data points in space, generally produced by 3D scan-

ners. The approach used is a segmentation in three terrain categories, based on scatter-

ness, linear-ness, and surface-ness. That way the authors are able to represent porous

volumes such as grass and tree canopy, capture thin objects like wires or tree branches,

and capture solid objects like ground surface, rocks or large trunks, respectively.

A different line of research starts with Pfaff et al. [11] that decided to represent the en-

vironment of a mobile robot with elevation maps, another geometric approach. A digital

N. Prokopaki Kostopoulou 18
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elevation map (DEM) [12] is also known as a 21
2
-dimensional representation of the envi-

ronment [11]. It is a two-dimensional (2D) array of terrain elevation measurements. More

concrete, it is a grid that stores in each cell the vertical distance above or below the sur-

face, the height of the territory.

The representation of the environment with elevation maps, however, can be problematic

when a robot has to utilize these maps for navigation. For example, when a mobile robot

is located in front of a bridge, the underpass will completely disappear and the elevation

map will show a non-traversable object.

Pfaff et al. [11] classify the cells of elevation maps into four classes: parts of terrain seen

from above, vertical structures, vertical gaps and traversable areas. They also maintain

a set of intervals per grid cell, which are computed and updated upon incoming sensor

data. The authors use this classification for their extension to the elevation maps. The

advantage here is that they can deal with vertical structures like walls of buildings, but

also with overhanging structures like branches of trees or bridges. In order to determine

the class of a cell, they consider the variance of the height of all measurements falling

into this cell. If this value exceeds a certain threshold, they identify it as a point that has

not been observed from above. Then they check whether the point set corresponding to

a cell contains gaps exceeding the height of the robot. When a gap has been identified,

they determine the minimum traversable elevation in this point set. So they only keep the

height values for the lowest surface in each cell. As a result, the area under the bridge,

in the previous example, will appear as a traversable surface, and the bridge will not be

represented.

Yet, another approach works a little differently. The autonomous vehicle has also to decide

for itself the traversability of the terrain around it. But it has no a priori knowledge of the

kind of terrain it will traverse, so it must learn as it goes along by observing the geometry

and appearance of the terrain. That is both proprioceptive and exteroceptive sensory

data processing [3]. In a few words, proprioceptive analysis is useful in learning while the

vehicle traverses a given terrain, gathering data with on-board sensors as it goes. On the

other hand extreroceptive data processing is divided in geometry-based and appearance-

based analysis.

Shneier et al. [10] follow a hybrid approach such as the above. They use a local occu-

pancy grid map that scrolls under the vehicle as the vehicle moves, and cells that scroll off

the end of the map are forgotten. Occupancy grid maps [13] are 2D arrays depicting the

robot’s environment with regions classified as empty, occupied or unknown. Shneier et al.

[10] do not use a global map and the previous known information is forgotten once the

robot moves away from that location. Considering distance above or below the ground,

color, texture, and contrast, they estimate each cell’s traversability. This estimation of the

cost of traversing regions is used to generate models of terrain in order for the robot to

learn from its own experience.

Kim et al. [8] developed a hybrid method that is based on autonomous training data col-
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lection. Their method exploits the robot’s experience in navigating its environment to train

classifiers without human intervention. The main idea is that image data obtained in the

past is associated with traversability labels obtained in the present, the so called on-line

machine learning. The learning process produces a classifier which makes traversabil-

ity predictions for new terrain regions. Successes and failures of the navigation provide

positive and negative traversability labels for cells in a grid-based representation of the

terrain surrounding the vehicle. Cells under the robot footprint that can be driven over

are traversable and therefore yield positive training examples, while those that hinder the

robot’s motion are non-traversable and result in negative examples.

Later on, Suger et al. [1] proposed a learning approach that uses a 2D occupancy grid map

(like Shneier et al. [10]), where each cell stores features that provide information from the

senors. Every sell is associated with at least one feature vector that is computed from

the 3D point clouds (like Lalonde et al. [4]) that are mapped to the respective cell. The

authors use the features mentioned bellow (mostly geometrical like Lalonde et al. [4] and

Pfaff et al. [11]) to distinguish different types of terrain as well as traversability constraints

of the robot.

1. Maximum height difference and

2. slope

reflect the ground-clearance of the robot as well as the motor power.

1. Roughness and

2. remission values (meaning the reflection or scattering of light by a material)

help to distinguish concrete and vegetation types.

In contrast with Kim et al. [8], Suger et al. [1] collect partially and only positive labeled

training data. And then they use existing strategies [14, 15] to learn a classifier from this

kind of training data.

Similarly to Kim et al. [8], Lee et al. [7] employ a self-supervised on-line learning ap-

proach. As the vehicle explores its environment, the classifier is trained incrementally with

autonomously labeled training samples. Their approach determines whether unknown

regions in front of a vehicle are drivable while the vehicle is in motion and without hu-

man’s input. Their traversability detection method is based on incremental nonparametric

Bayesian clustering (INBC). In probability theory and statistics, Bayes’ theorem (alterna-

tively Bayes’ law or Bayes’ rule) describes the probability of an event, based on prior

knowledge of conditions that might be related to the event. Many approaches have used

it for traversability estimation. For example, Suger et al. [1] use a naive Bayes classifier

[14], and Lalonde et al. [4] use Bayesian classification to label the incoming data.
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Several authors have considered the problem of simultaneous localization and mapping

(SLAM) in an outdoor environment. Some tried to solve it with elevation maps generated

from 3D range data acquired with a mobile robot [11]. But elevation maps only model a

single surface, they lack the ability to represent vertical structures or even multiple levels.

Multi-level surface maps (MLS maps) [16], on the other hand, store multiple heights in

each grid cell. This extension allows a mobile robot to model environments with more

than one surface, such as bridges, underpasses, buildings or mines.

The approach of Pfaff et al. [11] allows to deal with vertical and overhanging objects in

elevation maps. Despite their efforts, they still lack the ability to represent multiple sur-

faces. For example, the robot can plan a path under a bridge but not over it, as mentioned

before.

The attention hadmost often been focused onmethodologies that access the traversability

characteristics before actually driving over the respective region [3]. But Droeschel et al.

[5] use away for continuousmapping and localization duringmission, without the necessity

to map the environment beforehand or to stop for acquiring new 3D scans and to process

them. Their representation consists of local maps (multiresolution maps as the authors

call them) and a global map (called allocentric map).

Each local map is a robot-centered 3D grid map. It has high resolution in the vicinity of

the robot and coarser resolutions with increasing distance (hence its name multiresolution

map). Each cell stores 3D point measurements (including height from ground) along with

occupancy information. Since the robot, hence the sensor too, is moving during acquisition

of the data, individual grid cells are stored in a circular buffer to allow for shifting elements

in constant time. So when the robot moves, the circular buffers are shifted whenever

necessary to maintain the egocentric property of the map.

A forward-looking image alonemay be insufficient for planning and navigation [12]. Robots

operating in rough terrain may require knowledge of terrain that has been observed but is

currently out of the sensor field of view such as terrain under and behind the robot. And

that is the main reason why global maps are useful.

In this case, the global map is built from local multiresolution maps acquired at different

view poses of the robot [5]. This is useful in order to overcome pose errors and to localize

the robot with respect to a fixed frame. While traversing the environment, a local map is

extended whenever the robot explores previously unseen terrain and optimized when a

loop closure has been detected. The loop closure problem consists in detecting when the

robot has returned to a past location after having discovered new terrain for a while. The

authors localize towards this local map during mission to get the pose of the robot in the

global map. They assess the traversability of the terrain by analyzing height differences

in the global map and plan cost-optimal paths.

Subsequently, Wigness et al. [6] proposed another way to learn new behaviors quickly in

the field with no or minimal human supervision. They propose a methodology for learn-

ing reward functions from human examples via visual perception. This means that the

agent learns how to simply assign costs to distinct terrain types, and follows the trajectory

N. Prokopaki Kostopoulou 21



Autonomic tackling of unknown obstacles in navigation of robotic platform

with the minimum cost. This approach is more focused than this of Suger et al. [1] in

following the optimum path, but less in experimenting with traversability. It also insists on

dynamic environments, while Suger et al. [1] interprets the characteristic of traversability

to be static, and further assume that dynamic objects are detected and removed in ad-

vance.

Hirose et al. [17] introduced a semi-supervised approach for traversability estimation,

called GONet. The core of the proposed approach are Generative Adversarial Networks

(GANs) [18]. GANs are a framework for estimating generative models via an adversarial

process. They are deep neural network architectures that simultaneously train two mod-

els (more about neural nets we will see on Section 2.2.1). A generative model, let’s say

“a team of counterfeiters”, that captures the distribution of the training data and tries to

produce fake samples and use it without detection. And a discriminative model, let’s call

it “police”, that tries to detect the fake images by estimating the probability that a sample

came from the training data rather than the “counterfeiters”. Competition in this framework

drives both teams to improve their methods until the “counterfeits” are indistinguishable

from the genuine samples.

There is no need for anyMarkov chains or approximate inferences during either training or

generation of samples [18]. A Markov chain is a stochastic (or random) process describ-

ing a sequence of possible events in which the probability of each event depends only on

the state attained in the previous event. It has actually many similarities with Bayes’ theo-

rem mentioned above. Many authors use an extension of Markov chains, named Markov

Decision Process (MDP), to formulate the problem of autonomous navigation and allow

mobile robots to make decisions [6, 19]. Others use Markov Random Field (MRF) [20] to

i.e. enforce spatial consistency in a map or the preference that neighboring points have

the same label [4].

Returning to GONet [17], intuitively, it works comparing two images, an input image and

a generated one. The generated image is created with a particular class of GANs trained

on positive examples only. It is similar to the input image and looks as if it came from the

actual positive examples. The GONet compares the input with the generated image to de-

cide whether the area seen through the input image is traversable. The main assumption

of the approach is that when the input indeed shows a traversable area, the generated

image would look very similar to it. But when the input depicts a non-traversable scenario,

then the generated image would look different. The generated images not only look like

traversable areas, but also resemble the input query.

We have presented recent methods on how to conduct traversability estimation models

from data; noting that data needs to be labeled. We will now proceed to present how this

labeled data can be autonomously acquired and which sensors are needed.
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2.2. Data collection methods

For a long time until in recent years, robots have long been used in industrial environ-

ments. In industrial environments, robotic systems are pre-programmed with repetitive

assignments which lack the capability of autonomy and as such operate on the basis of

a structured approach [9]. Such an environment cannot be adaptive for a mobile robot

since it eliminates the need for autonomy. As such, surviving and adapting in the real

world is more complex for any robotic system in comparison to the industrial setting since

the risk of failure, system error, external factors, obstacles, corrupt data, human error and

unrecognizable environments is more prevalent.

So, for unstructured environments, a way to collect training data is to obtain them through

a human operator that drives a safe trajectory that is similar to the environment where the

robot should later be able to reliable operate in. This process for training data generation

has the advantage that it is fairly easy to execute.

One way to do that is to label the cells of the map that intersect with the projection of the

footprint of the robot as positive examples [1]. This has the drawback that the labeled data

are only positive examples, leaving tons of unlabeled data to learn from.

A similar approach, inspired by the above, is to train the robot with many positive images

of traversable places and just a small set of negative images depicting blocked and un-

safe areas [17]. The positive examples can be collected easily by simply operating the

robot through traversable spaces, while obtaining negative examples is time consuming,

costly, and potentially dangerous. But small amounts of negative examples can improve

traversability estimation in comparison to using only positive data.

In a variation of this, optimal trajectory examples are collected [6] in order to be used from

a reward function and train the robot.

Another way is to autonomously collect data without any human supervision [8, 7]. The

robot can image the terrain in front of it and store the resulting image patches in a data

pool [8]. Then, each image patch is an observation of a single cell in a grid-based terrain

map. Initially all of this data is unlabeled, because the robot has not yet interacted with

the terrain, and its traversability is unknown. Then the robot attempts to drive over the

terrain that it previously observed, thus discovering the traversability properties of the en-

vironment.

Autonomous driving in unstructured environments facesmany challenges which do not ex-

ist in structured environments [9]. In unstructured environments, object attributes needed

for driving cannot be defined as priori. Information concerning objects has to be gained

through sensors even though these are normally ambiguous and therefore introduce un-

certainty and avail information that is redundant.

In environments where the ground is not flat or contains obstacles that are not purely ver-
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tical, the basic approach of classifying based on the observed obstacles from 2D laser

scanners can not be safely used anymore. In these cases, 3D range data, by i.e. stereo-

cameras, radar or 3D-laser scanners, is necessary. A popular approach to collect data,

either for the initial training or to use them for traversability estimation, is to use light detec-

tion and ranging (LIDAR) [1, 4] (also called ladar [4, 10]). LIDAR is a surveying method

that measures distance to a target by illuminating the target with pulsed laser light and

measuring the reflected pulses with a sensor. LIDAR sensors use emitted light, so they

work independent of the ambient light. Night or day, clouds or sun, shadows or sunlight,

they pretty much see the same in all conditions. On the other hand they often have trou-

ble sensing highly reflective surfaces and transparent objects, such as mirrors and glass

doors [17].

Other commonly used sensors are stereo cameras. They are really inexpensive, espe-

cially compared to LIDAR. Because they use reflected light, they can see an arbitrary

distance in the daytime, as opposed to LIDAR whose range of vision is limited. They also

have higher resolution and are able to see color, instead of just a grayscale. But they

need illumination at night, and headlights might not be enough. When it comes to geo-

metric data, stereo camera sensory might not be enough to detect all important features

with the reliability necessary for safe traversing.

In occasions where sensors that can measure in all directions are needed, hardware re-

quirements are imposed. One can use a laser scanner that rotates around a vertical axis

[5]. That way the sensor can measure in all directions, except for a cylindrical blind spot

around the vertical axis centered on the robot.

Another option is to not use geometric data, but instead concentrate on visual data. In-

stead of using LIDAR [1, 4], one can use different sensors like fisheye camera [21, 17], to

estimate whether a physical space is traversable or not. This kind of approaches are

mainly focused on obstacle detection and avoidance, even in dynamic environments.

But they are less interested in traversability estimation for obstacles that may seem un-

traversable while in fact can be easily driven over by a robot, like tall grass.

More so, even without the introduction of uncertainty, sensors in themselves are ambigu-

ous [9]. For example, a lemon and a soccer ball can look similar from a certain perspective.

In addition, a cup could be invisible in case the cupboard is shut and it can be challeng-

ing to tell the difference between a remote control and cell phone is they are both facing

down. These factors are all contributive to the challenges of perceiving the state of the

environment.

A third choice is to use proprioceptive information, via on-board sensors such as inertial

measurement unit (IMU), motor current, and bumper switch [8] or even wheel encoder

data [7] (like wheel odometry measurements [5]). IMU is an electronic device using a

combination of accelerometers and gyroscopes, sometimes also magnetometers. It mea-

sures and reports a robot’s specific force, angular rate, and the 6D robot pose (i.e. 3D

location and orientation).
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The use of the sensors above make it possible to assess the progress of the robot auto-

matically and estimate its motion [5]. That way successes and failures of the navigation

provide positive and negative traversability examples [8]. This kind of approaches can

make predictions about the traversability of the terrain based on the robot’s past experi-

ences and navigation sensor values.

In some cases all three choices are used [8, 10]. While geometric data provide infor-

mation about the traversability of the terrain, they are not always sufficient to measure

the affordance of traversability. For example, a short (non-traversable) tree trunk and a

patch of tall (traversable) grass will result in a similar height. However, they differ in visual

appearance.

Likewise, a white vertical flat surface may be an impenetrable wall in one environment

whereas in another environment a similar surface may be a door that can just be pushed to

open [2]. But appearance data may not be enough to distinguish the two cases mentioned

above. So, a robot can be equipped with stereo vision cameras which collect visual and

geometric data from the environment, but also with a bumper switch at the front of the

vehicle that can be used along with motor current sensors to recognize situations like

getting stuck because of an obstacle or slipping, respectively [8].

The reason why proprioceptive sensory may not be sufficient on their own is that bumpers,

for example, do not prevent robots from falling off edges and can fail to detect small ob-

stacles [17]. That is why all geometric, appearance and haptic information are useful.

Since most of the approaches use at least some visual information, we will deepen a bit

more on this.

2.2.1. Visual information

From the perspective of intelligence, dealing with input directly to generate output without

further processing of input information is a kind of low-level intelligence [22]. It would be

more satisfactory if a mobile robot could imitate the way human beings deal with such

a task. Fortunately, deep learning, with its advantage in hierarchical feature extraction,

provides a potential solution for this problem.

Machine learning is a subset of artificial intelligence (AI) that studies the design of algo-

rithms that can learn. It is used to effectively perform a specific task without using explicit

instructions, but relying on models and inference instead. The idea of using machine

learning to control robots needs humans to show the willingness to lose a certain mea-

sure of control [9]. This is seemingly counterintuitive in the beginning although the gain

for doing this is to allow the system to begin learning on its own.
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Artificial Neural Networks (ANNs) or just neural networks or nets (NNs) are computational

processing systems which are heavily inspired by the way biological nervous systems

(such as the animal brain) operate [23]. Basically, it is a simplified model of the way the

brain processes information. The neural network itself is not an algorithm, but rather a

framework for many different machine learning algorithms to work together and process

complex data inputs. It learns to perform tasks by considering examples, generally with-

out being programmed with any task specific rules. Neural networks are mainly comprised

of a high number of interconnected computational nodes, referred to as neurons. These

neurons are aggregated into layers. Different layers may perform different kinds of trans-

formations on their inputs. The neurons work entwine in a distributed fashion to collectively

learn from the input in order to optimize the final output.

Deep learning is commonly introduced as a means of making sense of data with the use of

multiple abstraction layers [9]. The difference between deep learning and machine learn-

ing is that the former place emphasis on the subset of machine learning resources and

method and uses them to solve any difficulties that need thought, whether human or artifi-

cial. Deep learning has revolutionized computer vision and is the core technology behind

capabilities like autonomous mobile robots.

There are many different neural network architectures [24], such as Convolutional Neu-

ral Networks (CNNs or ConvNets [25]), Generative Adversarial Networks (GANs), Deep

Residual Networks (DRNs), etc.

Convolutional neural networks are analogous to traditional neural networks in that they are

comprised of neurons that self-optimize through learning [23]. The only notable difference

between convolutional and regular neural networks is that convolutional networks are pri-

marily used to solve image-driven pattern recognition tasks (but can also be used for other

types of input such as audio). A typical use case for a convolutional network is to feed it

images in order for it to classify the data, e.g. outputs “cat” if it is fed with a cat picture

and “dog” if it is fed with a dog picture. Thus, compared to other regular, deep, feed-

forward neural networks with similarly-sized layers, convolutional networks have much

fewer connections and parameters and so they are easier to train [26]. Convolutional

neural networks are perfectly suitable for computer vision (i.e. robot navigation), so below

we are going to concentrate mainly on them.

But when we come to adversarial examples, these are basically the images that fool con-

volutional networks [27]. Let’s take an example image and apply a perturbation, or a

slight modification, so that the prediction error is maximized. The difference between the

original and the altered content may be imperceptible to humans, but the network might

make drastic errors in classification. So the goal is to train a network to understand the

differences between real content and artificially created one.

That is what generative adversarial networks [18] do. As we have already mentioned in

Section 2.1, they are two networks working together. The one is tasked to generate con-

tent and the other has to judge the same content. The discriminative network receives
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either training data or generated content from the generative network. This creates a form

of competition where the discriminator is getting better at distinguishing real data from gen-

erated data and the generator is learning to become less predictable to the discriminator.

Generative adversarial networks can be quite difficult to train. There are two networks that

have to be trained and either of which can pose it’s own problems. Also their dynamics

need to be balanced. If prediction or generation becomes too good compared to the other,

the neural network will not converge as there is intrinsic divergence.

Networks that are very effective at learning patterns up to 150 layers deep, much more

than the regular 2 to 5 layers one could expect to train, are the so called deep residual

networks [28]. Basically, these networks add an identity to the solution, carrying the older

input over and serving it freshly to a later layer. This essentially drives the new layer to

learn something different from what the input has already encoded.

The section below provides a brief outline on how convolutional neural networks work. If

you are already familiar with basic information about convolutional neural networks, pro-

ceed to Section 2.2.1.2 where some of the most popular convolutional neural networks

are described.

2.2.1.1. Outline on Convolutional Neural Networks

Based mainly on Deshpande [29] beginner’s guide, we give a brief description on convo-

lutional neural networks.

When a computer takes an image as input, it sees an array of pixel values. This array is

sized depending on the resolution and size of the image. Let’s say we have a color image

in JPG form and its size is 32 × 32. The representative array will be 32 × 32 × 3 (the

3 refers to RGB values). Each of these numbers is given a value from 0 to 255 which

describes the pixel intensity at that point. These numbers, while meaningless to us when

we perform image classification, are the only inputs available to the computer. The idea of

neural networks is that we give the computer this array of numbers and it outputs numbers

that describe the probability of the image being a certain class (e.g. 80% for cat, 15% for

dog, 5% for bird etc).

So what we want the computer to do is to be able to differentiate between the images it is

given and figure out the unique features that make a dog a dog or that make a cat a cat.

This is what human minds do subconsciously as well. Roughly, we can classify a dog in

a picture if it has identifiable features such as paws or snout or four legs. In a similar way,

the computer is able perform image classification by looking for low level features such as

edges and curves, and then building up to more abstract concepts like paws and beaks,

through a series of convolutional layers. This is a general overview of what a convolutional
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neural network does.

The first layer in a convolutional neural network is always a convolutional layer. The best

way to explain a convolutional layer is to imagine a flashlight that is shining over the top

left of the image. Let’s say that the light this flashlight shines covers a 5 × 5 area. And

now, let’s imagine this flashlight sliding across all the areas of the input image. In machine

learning terms, this flashlight is called a filter (also referred to as a neuron or a kernel)

and the region that it is shining over is called receptive field. This filter is also an array of

numbers called weights or parameters. A very important note is that the depth of this filter

has to be the same as the depth of the input (in order for the math to work out), so the

dimensions of this filter is 5 × 5 × 3.

As the filter is sliding, or convolving, around the input image, it is multiplying the values

in the filter with the original pixel values of the image (aka computing element wise multi-

plications). Mathematically speaking, this would be 75 multiplications in total for the first

position the filter is in. Then these multiplications are all summed up to a single number.

The next step is to move the filter to the right by one unit and repeat. This process is

repeated for every location on the input volume and produce a number.

There are 784 different locations that a 5 × 5 filter can fit on a 32 × 32 input image. So

after sliding the filter over all the locations, the result is an 28 × 28 × 1 array of numbers,

called an activation map or feature map. Using more filters makes possible to preserve

the spatial dimensions. If there are two 5 × 5 × 3 filters used instead of one, the output

volume would be 28 × 28 × 2. The more filters, the greater the depth of the activation

map, and the more the information about the input image.

Each of these filters can be thought of as feature identifiers, for features like straight edges,

curves, simple colors. For example, let’s assume one filter is a curve detector. If there is a

shape in the input image that generally resembles the curve that this filter is representing,

then all of the multiplications summed together will result in a large value. And if not, the

value will be much lower. This will happen if there is nothing in the image section that

responds to the curve detector filter. So the activation map will have large values in the

areas where is most likely to have curves, and low values on the least likely.

Moving to the next layer, its input would be the output of the previous layer. In this case

the input of the second layer will be the activation maps that result from the first layer.

So the input is basically describing the locations in the original image where certain low

level features appear. Applying a set of filters on top of that, as it passes through the sec-

ond convolutional layer, the output will be activations that represent higher level features.

Types of these features could be semicircles (i.e. combination of a curve and straight

edge) or squares (i.e. combination of several straight edges).

As going through the network and through more convolutional layers, the activation maps

represent more and more complex features. By the end of the network, there might be

some filters that activate when there is handwriting in the image, when they recognize

green objects, etc. An interesting thing to note is that going deeper into the network, the
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filters begin to have a larger receptive field. That means they are able to consider infor-

mation from a bigger region of the original input volume.

Finally, at the end of the network there is a fully connected layer. This layer takes as input

the output from the layer preceding it, and outputs a vector with dimensions the number

of classes that the program has to choose from. Each value of the vector represents the

probability of a certain class. For example, let’s take a digit classification program. The

output is a dimensional vector such as [0 0.1 0.1 0.75 0 0 0 0 0 0.05], since there are ten

digits. This represents a 10% probability that the original image is a 1, a 10% that it is a

2, a 75% that it is a 3, and a 5% that it is a 9. Basically, a fully connected layer take the

activation maps of the previous layer and determines which features most correlate to a

particular class.

Now that we have seen how these things work roughly, let’s come across some of the most

well known and frequently used convolutional neural networks. In the next section many

types of neural network models will be discussed. Models that recognize scenes or ob-

jects present in the input image, models that detect the location of different objects, even

models that try to understand and describe the whole scene within an image. Each type

was thoroughly examined to find out which one is the most compatible with the purpose

of this thesis. For those not already familiar with common models for object classifica-

tion, localization and detection, as well as scene understanding and segmenting, the next

chapter will introduce these concepts. The others feel free to proceed to Section 2.3 where

navigation strategies are described.

2.2.1.2. Convolutional Neural Network models

One of the most remarkable feats of the human visual system is how rapidly, accurately

and comprehensively it can recognize and understand the complex visual world [30]. The

various types of tasks related to understanding what we see in a visual scene is called

visual recognition. In computer vision, visual recognition has enjoyed some great suc-

cess in recent years. Particularly in single object categorization (i.e., object classification,

object localization) like in the example with the classification of the cat and the dog men-

tioned above, in page 26. While recognizing isolated objects is a critical component of

visual recognition, a lot more is needed to be done in order to recognize multiple objects

(i.e., object detection, object segmentation), let alone reach a complete understanding of

visual scenes (i.e., scene segmentation).
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2.2.1.2.1. Classification and Localization

Convolutional networks have recently enjoyed a great success in large-scale image and

video recognition [25]. This has become possible due to the large public image reposito-

ries, such as ImageNet [31] and high-performance computing systems, such as GPUs or

large-scale distributed clusters. In particular, an important role in the advance of deep

visual recognition architectures has been played by the ImageNet Large Scale Visual

Recognition Challenge (ILSVRC) [32], an annual competition organized by the ImageNet

team since 2010 (basically, the annual Olympics of computer vision [27]). There research

teams evaluate their computer vision algorithms with various visual recognition tasks such

as Object Classification and Object Localization, as shown in Figure 2.1.

Figure 2.1: Object Classification is identifying that picture as a dog (left). Object Localiza-

tion involves as well a bounding box to show where the object is located, apart from the

class label “dog” (right). Both are suitable for single object.

Many research groups have been very generous in releasing their models to the open-

source community. Some of the most well-known models, such as AlexNet, VGGNet,

Inception, ResNet, Xception [26, 25, 33, 28, 34] won in the ILSVRC. And others, like

SqueezeNet, MobileNet [35, 36] etc participated in it.

Krizhevsky et al. [26] are widely regarded to have done one of the most influential publi-

cations in the field. Because of AlexNet, 2012 marked the first year where a convolutional

network was used to achieve a top 5 test error rate of 15.3%. The next best entry achieved

an error of 26.2%, which was an astounding improvement that pretty much shocked the

computer vision community. Top 5 error is called the rate at which, given an image, the

model does not output the correct label with its top 5 predictions. AlexNet really illus-

trated the benefits of convolutional networks and backed them up with record breaking

performance in the ILSVRC. Since then the use of convolutional neural networks for clas-

sification has dominated the field.

Simonyan and Zisserman [25] reinforced the notion that “convolutional neural networks
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have to have a deep network of layers in order for this hierarchical representation of visual

data to work”. VGGNet is characterized by its simplicity, using very small (3×3) convo-
lutional filters, instead of AlexNet’s (11×11), stacked on top of each other in increasing

depth from 16 to 19 layers. It was best utilized with its 7.3% error rate. But it is painfully

slow to train.

The original incarnation of the Inception architecture used in Szegedy et al. [33] submis-

sion to ILSVRC 2014 is called GoogLeNet. It is a 22 layer convolutional neural network. It

actually uses 12 times fewer parameters than the winning architecture AlexNet, from two

years ago. It is also significantly more accurate, with a top 5 error rate of 6.7%. Inception

was one of the first models that introduced the idea that convolutional layers do not always

have to be stacked up sequentially, but could perform many operations in parallel. Finally,

this new model places notable consideration on memory and power usage.

Depending on their skill and expertise, humans generally hover around a 5%-10% error

rate [27]. But He et al. [28] came up with the ResNet architecture that has an incredible

error rate of 3.6%. Aside from the new record in terms of error rate, ResNet is well-known

due to its extreme depth of up to 152 layers. This is 8 times deeper than VGGNet. ResNet

is also a great innovation for the idea of residual learning.

2.2.1.2.2. Detection

Image classification is a lightweight form of object detection. The difference between them

is that in classification algorithms the goal is to label an image with a category of the object

it belongs (or at least the most likely predictions). While in detection algorithms the aim

is to draw a bounding box around the object of interest to locate it within the image, as

shown in Figure 2.2. Also, it is not necessary to draw just one bounding box in the object

detection case. There could be many bounding boxes representing different objects of

interest within the image, the number of which is known a priori.

A naive approach to do that would be to take different regions of interest from the image

by sliding windows from left and right, and from up to down. And then use a convolutional

network to classify the presence of the object within the chosen region. The problem with

this approach is that the objects of interest might have different spatial locations and as-

pect ratios. Hence, the number of regions would be huge leading to computationally blow

up. Therefore, algorithms like SSD, YOLO and R-CNN [37, 38, 39] have been developed

to find these occurrences in the fastest way possible. The models mentioned above are

also released to the open-source community.

To bypass the problem of selecting a huge number of regions, Girshick et al. [37] proposed

a method called R-CNN: Regions with CNN features, one of the most impactful advance-
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Figure 2.2: Object Detection locates and identifies multiple objects and all their instances

(cat, dog, duck) within the image.

ments in computer vision [27]. The process can be split into two general components, the

region proposal step and the classification step. For the former step, a selective search

[40] is used to extract just 2000 regions from the image that have the highest probability

of containing an object. The authors called them region proposals. These 2000 candidate

region proposals are warped into a square and fed into a trained convolutional network

(VGGNet or AlexNet in this case) that acts as a feature extractor. In the latter step, the

extracted features are used to classify the presence of the object within that candidate

region proposal and to refine the boundary box with the most accurate coordinates. The

main disadvantage here is that it still takes a huge amount of time to train the network as

there are 2000 region proposals per image to classify. Also, the selective search algo-

rithm is a fixed algorithm. Therefore, no learning is happening at that stage, something

that could lead to generating bad candidate region proposals. That is why Fast R-CNN

and Faster R-CNN followed up.

But, as an alternative, is a separate region proposal step needed? Can both boundary

boxes and classes be directly derived from feature maps, in one step? Redmon et al. [38]

use a single convolutional network to predict the bounding boxes and the class proba-

bilities for these boxes. They use a single shot object detection algorithm called YOLO:

You Only Look Once, that is much different from the region based detection algorithm

mentioned above. YOLO divides every image into a S × S grid and every grid predicts

N bounding boxes and class probability for them. The bounding boxes having the class

probability above a threshold value are selected and used to locate the object within the

image. Note that at runtime, the image runs on the convolutional network only once.

Hence, YOLO is super fast and can be run real time. It sees the complete image at once

as opposed to looking at generated region proposals. However, a limitation for YOLO is

that it only predicts one type of class in each grid. Hence, it struggles with very small
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objects.

Yet another algorithm was developed by Liu et al. [39]. SSD: Single Shot Detector differs

from others single shot detectors due to the usage of multiple layers that provide a finer

accuracy on objects with different scales. SSD runs a trained convolutional network (for

example VGGNet model) on input image only once and calculates a feature map. Then it

runs a 3 × 3 sized convolutional filter on this feature map to foresee the bounding boxes

and classification probability. It attains a good balance between speed and accuracy.

2.2.1.2.3. Semantic Segmentation

Nowadays, semantic segmentation is one of the key problems in the field of computer

vision [41]. Looking at the big picture, semantic segmentation is one of the high-level

task that paves the way towards complete scene understanding. Although humans per-

form scene segmentation with apparent ease, automatic scene segmentation is a very

challenging problem [42]. Segmentation refers to the process of mapping each pixel in an

image to an object class. Each object class has to be segmented separately. For example

see Figure 2.3. As one can imagine, this is a much more complex problem as compared

to the classification or even detection problem.

The importance of scene understanding as a core computer vision problem is highlighted

by the fact that an increasing number of applications nourish from inferring knowledge

from imagery. Some of those applications include self-driving vehicles, human-computer

interaction, virtual reality etc. With the popularity of deep learning in recent years, many

semantic segmentation problems are being tackled using deep architectures, most often

convolutional neural networks, which surpass other approaches by a large margin in terms

of accuracy and efficiency.

Probably themost well knownmodels concentrating on scene segmentation are Fully Con-

volutional Neural Networks (FCNs) [43]. The original fully convolutional network is trained

for pixel-wise prediction, without extracting the region proposals. The authors adapt con-

temporary classification networks (AlexNet, VGGNet and GoogLeNet) into fully convolu-

tional networks and transfer their learned representations by fine-tuning to the segmenta-

tion task. Fine-tuning is a process in which a network model that has already been trained

for a given task, is modified in order to perform another similar task. The main idea of fully

convolutional networks is to make classical convolutional networks take as input arbitrary-

sized images. Contrary to them, fully convolutional networks only have convolutional and

pooling layers which give them the ability to make predictions on arbitrary-sized inputs.

Pooling layers are in charge of reducing the number of parameters when the images are

too large. The results of the original fully convolutional network trained on PASCAL VOC

are shown in Figure 2.4.
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Figure 2.3: Semantic Segmentation makes a prediction at every pixel within an image. That

means there is a label for each pixel, instead of object. The predictions are grass, cat, tree

and sky. Original image (left), output of the semantic segmentation (right).

Semantic understanding of visual scenes is one of the holy grails of computer vision [44].

The emergence of large-scale image datasets like ImageNet [31] and COCO [45], along

with the rapid development of the deep convolutional neural network approaches, have

brought great advancements to visual scene understanding.

Figure 2.4: Figure taken from Fully Convolutional Neural Networks for Semantic Segmen-

tation, trained on PASCAL VOC: Original image (left), predicted label map (right). Notice

the predictions are only for the foreground, the entire background in the left image appears

black on the right.

But what is the strategy for deciding where to go next? Is there a specific goal for the robot

to reach? Should it find the best trajectory? Explore the environment? A discussion of
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this topic is made in the following section.

2.3. Navigation strategies

A natural thing would be to let the robot learn about the traversability of the environment,

while another perspective would be to concentrate on more preservative situations, such

as go or no-go [21]. Even though the former method allows the robot to autonomously

learn a model of the environment, encourages exploration and consequently improves

the learning and generalization performance [19], the trial and error part of it involves a

high risk to damage the robot. The latter, on the other hand, has as main priority to prevent

robots from colliding with objects, injuring people, getting stuck in constrained spaces, or

falling over an edge.

A third approach would be to let the autonomous vehicle navigate from a defined start

point to a fixed goal point [10, 19]. That way the robot has to build a model of the world

around it and plan a path from the start to the goal. A way to do that is to enable the robot

to learn which regions to avoid and which to seek out, in early runs, so that in later runs

it can determine the most efficient path [10]. In cases where there is no knowledge of the

map of the robot’s current environment, the designated goal location can be acquired via

cheap localization solutions, such as visible light localization, Wi-Fi signal localization or

GPS [19].

Generally, intrinsic motivations are related to curiosity, exploration, the interest for novel

objects and surprising events and the interest in learning new behaviors. They come in

contrast to extrinsic motivationswhich are to obtain biologically relevant resources to avoid

damage and vouch survival.

In robotics, extrinsic motivations can be related to the accomplishment of the user tasks

assigned to the robot. In contrast, intrinsic motivations drive behavior and actions to gain

knowledge: e.g., to explore the world, to learn to predict novel or surprising stimuli, to

acquire a higher competence to change the environment with action.

In our knowledge, most approaches concentrate on robot navigation in order to make sure

they do not collide with other objects and they follow a route to reach a specific goal. There

is not much work done on curiosity-driven exploration, in which there is no explicit goal, but

the abstract need for the robot to learn a new environment. The traversability estimation

is most commonly performed in order for the robot to move safely rather than explore the

environment and learn which areas are traversable and which are not.
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2.4. Conclusions

Intrinsic motivations fully entered the field of machine learning and robotics only recently.

That is despite some early pioneering computational explorations, and although they were

investigated by psychologists for a long time. Intrinsic motivations are very important for

autonomous robotics. They allow the acquisition of knowledge and skills, in the absence

of tasks directly established by the robot users, e.g. to learn to manipulate different objects

without being instructed to do so. Also they are task-independent. That means they can

drive the robotic system to acquire skills re-usable to accomplish many possible tasks in

a certain class of environments.

It has become clear to researchers in robotics and adaptive behavior that current ap-

proaches are yielding systems with limited autonomy and capacity for self-improvement.

To learn autonomously and in a cumulative fashion is one of the hallmarks of intelligence.

So that is what we want to achieve in the current thesis. The traversability estimation can

become a goal of action based on intrinsic motivations.

We explored many ways for a robot to be able to decide for itself the traversability of the

terrain around it and plan paths to avoid any obstacles. We also investigated ways to

improve the robot’s traversability estimation method in everyday practical situations. So,

this thesis will be focused on the one thing that is missing; intrinsically motivated learning.

It will mainly concentrate on how to explore the environment around the robotic platform

and improve its knowledge of traversability.

Enough of background, let’s now see how our autonomous mobile robot takes input from

its environment and handles the newly acquired knowledge to improve its traversability

estimation method.
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3. AUTONOMOUS NAVIGATION

The goal is for the robot to be able to autonomously navigate in natural environments.

To do so, we could use a pre-trained neural network in order to be able to distinguish

traversable from non-traversable terrain.

For the purposes of this thesis we will basically deal with pre-trained models. By borrowing

a little story from Gupta [46] we are going to explain why. Imagine two people, Mr. Potato

and Mr. Athlete. They sign up for soccer training at the same time. Neither of them has

ever played soccer and the skills like dribbling, passing, kicking etc. are new to both of

them. Mr. Potato does not move much but Mr. Athlete does. That is the core difference

between the two even before the training has even started. As you can imagine, the skills

Mr. Athlete has developed as an athlete (e.g. stamina, speed and even sporting instincts)

are going to be very useful for learning soccer even though Mr. Athlete has never trained

for soccer. Mr. Athlete benefits from his pre-training. Mr. Potato on the other hand will

have to develop all these skills from scratch, something that will cost him much more en-

ergy and time.

In this chapter we describe the primary thoughts and the actual strategy on how to reach

the goal mentioned above.

3.1. Selecting a convolutional neural network

Primarily, a neural network is needed in order to convert images that depict the environ-

ment seen by the robot, to a form more recognizable by it. Ideally, after the conversion,

all objects would be distinguished from all traversable areas. But the idea of finding such

a neural network is probably not realistic. Thus, the goal for this section is to find a neural

network that distinguishes all objects from one another.

3.1.1. Object classification, localization, detection

The first attempt was to use one of the most-well known models from ILSVRC. With a little

help from the code of Rosebrocke [47] we experimented on pre-trained VGGNet, ResNet,

Inception and Xception. We fed them images and, as expected, they returned classifica-

tion predictions about them. With the contribution of ImageNet a list of human-readable

labels and the probability associated with them was printed.

Images containing just one object (e.g. soccer ball, couch) led to predictions that were
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satisfactory in their entirety. But being fed with images containing multiple objects (e.g.

book and glasses) the networks got confused. They gave some decent predictions (like

envelope or book jacket, in the previous example) but also some that were a little bit off

(like lighter or birdhouse), within their top-5 list.

Images that contain vegetation, which are of particular interest to us in this work, were the

worst case scenario. For example, the networks above, after being fed with an image of a

tree, gave as most likely predictions kinds of seeds like lemons. This probably happened

because the networks concentrated on the one part of the whole image that was most

recognizable by them. Finding out what the predictions with smaller probabilities were,

did not help. As the networks kept predicting, they got desperate and started giving all

sorts of predictions.

Even though these networks are proven to be great on object classification, when it comes

to scene recognition there is no trivial way to make them work correctly.

Similarly, models specialized in object detection like SSD or YOLO, do not seem to be

able to generalize on scene segmentation issues. As dictated by their name, they detect

all objects within an image, but ignore the rest of the scene.

3.1.2. Related work

Many papers have been published regarding robot navigation approaches that use already

existing deep neural networks, or modify them in order to meet their needs. Unfortunately

some of these researchers had not made their code publicly available, in order for us to

rely on part of their work and extend it with our own ideas. And while others kindly released

their code online, their networks were not trained compatible to the needs of this thesis.

Some papers considering traversability estimation concentrate on go or no-go situations,

[17, 48]. They use generative adversarial networks and train them to estimate whether

the space seen through the given image is traversable or not. They are trained in indoor

environments, which means that we would have to train them from scratch to work in nat-

ural outdoor environments.

Likewise, Tai et al. [22] further extended the concept of deep neural networks to not only

perception but also decision-making. Basically, they used a structure that fuses several

convolutional neural network layers with decision-making process, in order to explore an

unknown environment. According to the authors, in traditional computer vision applica-

tions each label of the output represents either an object or scene categories. The outputs

of their model are control commands that show the platform which route to follow.
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Other researchers use neural networks to classify the area in front of the robot according

to traversability and level of confidence [49, 50]. These neural networks assign class la-

bels to parts of the input image. Classes which show that “only ground or only obstacle is

seen in the area”, are of high confidence. While the rest inspire lower confidence. These

classes are separated to “ground and obstacle may be seen”, “obstacle is seen but does

not fill the area”, “location where an obstacle meets the ground”.

Some approaches identify only a few class labels to classify the whole image [51, 52, 53].

While others have as their main goal to find and follow a path [54, 55]. The first category

usually includes scene labels that can be used in outdoor environments (such as sky,

road, tree, grass, building), as their title declares. The second one, while also being able

to recognize such class labels, identifies them as obstacles.

3.1.3. Scene segmentation

So, the aim is on total scene segmentation rather than single or even multiple object cat-

egorization. Semantically meaningful image understanding is a relatively recent topic in

computer vision. That explains why, compared to recognition, far fewer papers address

scene segmentation in neural networks [42]. A general semantic segmentation architec-

ture can be broadly thought of as an encoder network followed by a decoder network [41].

The encoder is usually a pre-trained classification network like VGGNet or ResNet that

outputs a feature map. The task of the decoder is to semantically project the lower reso-

lution features learned by the encoder, onto the higher resolution (pixel space) to get the

best closest match to the original input.

Given a visual scene of, let us say, a living room, a robot equipped with a trained convo-

lutional network can accurately predict the scene category. However, to freely navigate in

the scene and manipulate the objects inside, the robot has far more information to digest

[44]. It needs to recognize and localize not only the objects like sofa, table, and television

but also to segment the stuff like floor, wall and ceiling for spatial navigation. It probably

needs to recognize also object parts, e.g. a seat of a chair or a handle of a cup, to allow

proper interaction.

Following the instructions of Le [41], on his guide on how to do semantic segmentation us-

ing deep learning, we attempted to implement the most popular architecture for semantic

segmentation, fully convolutional networks. We had in mind that the encoder, VGGNet in

this case, would be pre-trained, but we would have to train the decoder from the beginning

on KITTI [56]. But fully convolutional networks, at least those trained on KITTI dataset,

do semantic segmentation only on foreground and ignore the background (Figure 2.4, in

page 34). In order for us to be able to decide terrain traversability, whole scene segmen-

tation is necessary.
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3.1.4. Datasets

Scene parsing, or recognizing and segmenting objects in an image, remains one of the

key problems in scene understanding [44]. Going beyond the image-level recognition,

scene parsing requires a much denser annotation of scenes with a large set of objects.

However, the current datasets have limited number of objects, e.g. COCO [45], PASCAL

VOC [57]. In many cases those objects are not the most common objects one encoun-

ters in the world like frisbees or baseball bats. Or the datasets only cover a limited set of

scenes, like urban sceneries, e.g. Cityscapes [58] and KITTI [56]. Most of the large-scale

datasets typically only contain labels at the image level or provide bounding boxes, e.g.

ImageNet [31], PASCAL VOC and KITTI. ImageNet has the largest set of classes, but

contains relatively simple scenes. Compared to the largest annotated datasets COCO

and ImageNet, ADE20K [59] comprises of much more diverse scenes.

Finally, existing datasets with pixel-level labels typically provide annotations only for a

subset of foreground objects, and no background, e.g. PASCAL VOC and COCO. That is

probably why fully convolutional networks trained on KITTI, as mentioned before, do not

give class labels to the background pixels. But, generally, pixel appearance features al-

low to perform well on classifying (amorphous) background classes. ADE20K categorizes

semantic classes present in the scene into three super classes: stuff (sky, road, building,

etc), foreground objects (car, tree, sofa, etc), and object parts (car wheels and door, peo-

ple head and torso, etc).

3.1.5. Pre-trained models on scene segmentation

After finding some pre-trained models 1 we experimented on different algorithms and train-

ing datasets. The backbone network in all those cases was ResNet. Be reminded that

successful deep neural network architectures for image level classification like AlexNet,

VGGNet and ResNet are a natural precursor to, and often a direct part, of semantic seg-

mentation architectures.

The algorithms mentioned previously are the fully convolutional network [43], Pyramid

Scene Parsing Network (PSP) [60] and DeepLab [61]. All three of them when trained on

COCO or PASCAL VOC do not perform complete scene semantic segmentation. When

they are fed with indoor images they recognize only foreground objects. No class labels

are given to the background pixels. Our hypothesis that the part of the image they ignore

1 https://gluon-cv.mxnet.io/model_zoo/segmentation.html
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is the background is further intensified by the way outdoor images are handled. Their

result on outdoor input is a black image. On the contrary, when trained on ADE20K all

tree networks transact semantic segmentation on the whole scene. The outputs from all

tree algorithms trained on each of the three datasets are depicted in Figure 3.1 for indoor

inputs, and Figure 3.2 for outdoor inputs.

(a) Original image (b) COCO or VOC

(c) FCN with ADE (d) PSP with ADE (e) DeepLab with ADE

Figure 3.1: Results given from indoor input. Fully convolutional network, Pyramid scene

parsing network and DeepLab trained on COCO, PASCAL VOC and ADE20K dataset.

Many deep learning architectures have been proposed for image segmentation. As far as

we know, in order to be able to semantically segment the whole image we can use any

of the three algorithms mentioned above as long as they are pre-trained on the ADE20K

dataset. But how can we use them to help us distinguish traversable from non-traversable

terrain?

3.2. Estimating traversability

We implemented a program that when given an image predicts whether the illustrated

scene is traversable or not. The program trains itself and then evaluates its effectiveness.

All the input values are images extracted from a neural network for whole image semantic

segmentation. These images, as shown in Figure 2.3, in page 34, consist of colors depict-

ing objects and parts of the scene. Each color is recognized by the computer as a triad of

numbers representing the amount of red, green and blue present to produce the original

color.
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(a) Original image (b) COCO or VOC

(c) FCN with ADE (d) PSP with ADE (e) DeepLab with ADE

Figure 3.2: Results given from outdoor input. Fully convolutional network, Pyramid scene

parsing network and DeepLab trained on COCO, PASCAL VOC and ADE20K dataset.

For humans to be able to observe the program’s functionality we keep a default corre-

spondence between colors and class labels. Also, to ease comprehension, all operations

are rounded to the second decimal place.

During the program training period, it reads previously annotated images. These anno-

tations are penetrable region or obstacle. In this thesis, the term penetrable will be used

interchangeably with the term traversable. The program keeps track of how many times

each color is found in traversable and how many in non-traversable images. So, it can

compute the traversability percentage of each color. For example, let’s suppose that brown

corresponds to “earth”. Brown color exists in 70 images from which 56 are traversable and

the other 14 non-traversable. So the traversability percentage of the earth is

56× 100÷ 70 = 80

Therefore, the earth (and, consequently, the color brown) has 80% chance of being traver-

sable.

During evaluation we implement two different calculating methods. Both of them are re-

sponsible for deciding whether the given images are traversable or not. Every image with

chance of being traversable greater or equal to 50% is considered to be traversable (and

therefore with chance less that 50% is considered to be non-traversable). Let’s take Fig-

ure 3.3 and try to explain the two methods. For the purpose of this example, we suppose

that brown has 80% chance of being traversable, as is found to be penetrable 8 times

out of the total of 10. Green 9 out of 30 (30%) and blue 9 out of 20 (45%). To ease our

understanding let’s say that brown corresponds to “earth”, green to “tree” and blue to “sky”.
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(a) Original image (b) Image resulting from PSP

Figure 3.3: Example for explaining the differences between the two calculating methods -

earth (80% chance of being traversable, found to be penetrable 8 times out of the total of

10), tree (30%, 9 out of 30), sky (45%, 9 out of 20)

Intuitively, the difference between the two methods is that the former considers all classes

as equal, while the latter pays attention to how often a class has been seen. More techni-

cally:

1. the first method determines the probability of an image to be penetrable, as the

average of the traversability percentages for each color contained within. Figure 3.3,

which contains brown, green and blue, has a probability of 51.67% being traversable.

(80% + 30% + 45%)÷ 3 = 51.67%

2. the second method uses the number of times each color was found in traversable

and in non-traversable images. It assumes that the likelihood of an image being

traversable is in direct dependence of the number of times each color found within,

is penetrable. In other words, it specifies that the traversability percentage of an

image, is the weighted average of the traversability percentage of all the colors within

it. This time, the probability of Figure 3.3 being traversable is 43.33%.

(8 + 9 + 9)× 100% ÷ (10 + 30 + 20) = 43.33%

The first method is an obvious way to find the probability of an image being penetrable.

The second one, however, emphasizes on statistics, in the sense that a one-time event

may be a coincidence, but the more often it happens the more secure it is to become a

rule. In the previous example class earth was found to be traversable 8 times out of the

total of 10. This means that 2 out of 10 times, it was found to be non-traversable. Let’s

suppose the first given image containing earth was non-traversable. So, the traversability

percentage of earth would be 0%. While the first method will use it as a certainty, the

second one will have low confidence on it.
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It is known in advance whether the testing images are penetrable. It is trivial to discover

whether the previously described methods’ decisions are right or wrong. In the exam-

ple above the first method decides that the image is non-traversable, while the second

method determines the opposite. Note that in other cases the results of the two methods

may concur.

As we have introduced a program that decides whether the input images are traversable

or not, we will proceed in the next section to evaluate the effectiveness of our approach.
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4. EXPERIMENTAL VALIDATION AND COMPARISON

In this chapter we will evaluate our program. We will describe the model-validation tech-

nique we use, present the obtained results and discuss them.

4.1. Evaluation setup

We evaluate our machine learning model with a procedure called cross validation [62]. It

is also known as rotation estimation or out-of-sample testing. Cross validation is primarily

used in applied machine learning to estimate the skill of a machine learning model on un-

seen data. That is, to use a limited sample in order to estimate how the model is expected

to perform in general when used to make predictions. In a prediction problem, a model is

usually given two datasets. First a dataset of known data on which training is run (training

set). And then a dataset of unknown data (or first seen data) against which the model is

tested (validation set or testing set). The goal of cross validation is to test the model’s

ability to predict data not used during the training of the model.

The procedure has a single parameter N that refers to the number of folds that a given

data sample is to be split into. As such, the procedure is often called N-fold cross valida-

tion.

In this thesis our data sample consists of twenty directories containing images. Ten of

these directories contain 778 traversable images and the other ten include 945 non-

traversable. Formore information about howwe gathered these datasets, see Appendix C.

In order to evaluate our model we split our data sample in five folds and perform 5-fold

cross validation. Because we have twenty directories, each fold has an equal number of

four directories. During each fold we use two traversable and two non-traversable direc-

tories for testing and the rest for training. In Table 4.1 one can see the numbers of images

used for training and testing for each fold.

Let’s see next the evaluation results of our model.

4.2. Results

As mentioned in Section 3.2 we implemented a program that predicts whether a scene is

traversable or not. It accepts as input images outputted by a neural network for semantic
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Table 4.1: Number of images for each testing and training set in 5-fold cross validation.

Total number of images: 778 traversable and 945 non-traversable.

Fold
Traversable images Non-traversable images

Testing set Training set Testing set Training set

1 153 625 184 761

2 169 609 221 724

3 164 614 225 720

4 109 669 165 780

5 183 595 150 795

segmentation. In Section 3.1 we established that the ADE20K dataset is the best fit for

whole scene semantic segmentation. And that, in theory, any of the

1. fully convolutional network (FCN),

2. pyramid scene parsing network (PSP) and

3. DeepLab

can be used equally effectively. So we run our program with images that have emerged

by each one of them to check which has the best results.

We gave as input to each of the three neural network models the images contained in the

directories mentioned in Section 4.1. And then fed our program with their outputs. The

results of the first calculating method, described in Section 3.2 are shown in Table 4.2.

And the results of the second method in Table 4.3. In both tables it is quite obvious that

the PSP has clearly better results than the other two models, for both individual and global

trials.

Table 4.2: 1st calculating method - Percentage of evaluation images whose traversability

was found correctly. In the second column are the results from images derived from the

FCN, the third from PSP and the forth from DeepLab.

Success on 1st calculating method

Fold with FCN (%) with PSP (%) with DeepLab (%)

1 57.57 77.45 56.97

2 65.9 94.36 56.67

3 66.58 87.15 58.87

4 84.31 86.86 72.26

5 75.98 94.89 75.08

Average 69.3 88.33 63.26
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Table 4.3: 2nd calculating method - Percentage of evaluation images whose traversability

was found correctly. In the second column are the results from images derived from the

FCN, the third from PSP and the forth from DeepLab.

Success on 2nd calculating method

Fold with FCN (%) with PSP (%) with DeepLab (%)

1 54.6 62.61 54.6

2 57.69 93.33 56.67

3 57.84 80.46 58.35

4 63.5 79.2 60.58

5 45.05 45.05 45.05

Average 55.6 72.84 55.02

Consequently, we decided to continue our research using the PSP model. In Table 4.4 we

gathered the results from both methods when using data from the PSP algorithm. Even

thought we think that the second calculating method is more representative of the overall

sample, in this case the first one gives better results. That happens probably because the

non-traversable images of the training set are much more that the traversable ones, as

shown in Table 4.1.

Table 4.4: PSP - Percentage of testing images whose traversability was found correctly with

the 1st and the 2nd calculating method.

PSP trained on ADE20K dataset

Fold Success with 1st method (%) Success with 2nd method (%)

1 77.45 62.61

2 94.36 93.33

3 87.15 80.46

4 86.86 79.2

5 94.89 45.05

Average 88.33 72.84

Therefore, as is obvious, we chose to deepen into the first method of deciding on image

traversability. In Table 4.5 we describe how the success rates of the first method arose.

• In column 1 each fold is shown.

• In columns 2 and 3 we give the number of traversable images and the percentage

of those that were successfully predicted traversable.

• In columns 3 and 4 the same for non traversable images.

• Finally, column 5 gives the total success rate of the first method, summarizing the

results of both traversable and non-traversable images.
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Table 4.5: PSP 1st method - Number of traversable and non-traversable images for each

testing set, with their success rate in finding traversability. Observe that the success rate

for non-traversable images is always 100%, while in traversable images is much lower.

Testing images on 1st method with PSP

Fold
Traversable Non-traversable

Average (%)
Number Success (%) Number Success (%)

1 153 50.33 184 100 77.45

2 169 86.98 221 100 94.36

3 164 69.51 225 100 87.15

4 109 66.97 165 100 86.86

5 183 90.71 150 100 94.89

Average 778 74.16 945 100 88.33

4.3. Discussion

In Table 4.5 we can see that the prediction for non-traversable images is always correct.

The foresight on penetrable images is not equally great though. Also one can easily ob-

serve that fold 1 has the worst results compared to the other folds. Followed by fold 4 and

fold 3. But why does this happen? Why non-traversable images are easier to predict than

traversable ones? And why does each fold have different success rate? These are some

questions we will try to answer in this section.

In Tables 4.8 we have gathered all class labels appearing in each one of the traversable

images for validation. And in Tables 4.9 same thing for the images perceived as obstacles.

Each subtable contains the information for each fold.

• Column 1 mentions all class labels appearing in the current fold.

• Column 2 keeps track of the number of each label appearances in the current fold

(in how many images is the color participating?).

• In column 3 appears the traversability percentage of each label, after the system is

trained with the images in the remaining directories (after training, how likely is for

this color to be traversable?).

• Finally, column 4

– shows all classes with traversability percentage > 50%, in Tables 4.8, and

– those with ≤ 50% chance of being traversable, in Tables 4.9.

Have in mind that in this work we do not care about the annotations representing each

color within the image. These labels are available to facilitate reading. We do not stick

to the fact that they do not always represent what is depicted in the image. This thesis is
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not about judging the proper functioning of the neural network. It is about estimating the

traversability of images resulting from the neural network. More technically, similar and

often confused objects tend to be similarly traversable or non-traversable. So, any mis

prediction of the neural network does not affect the proper operation of our program.

As mentioned in the beginning of this section, we can see in Table 4.5 that the predictions

for non-traversable images are much better than those for traversable images. Let’s try

and find out why. Let’s take for example class labels sky, earth and tree. These three

classes appear in most, if not in all, of the testing images. In Tables 4.8 (folds 1, 2, 3 and

5 ) the instances of these classes are equal to the number of the traversable images. And

in Table 4.8d are only slightly fewer. The probability of each of them being traversable is

between 43 and 48%. So sky, earth and tree are treated as impenetrable. And therefore

contribute to seeing the image in which they belong as non-traversable. Same thing hap-

pens for the non-traversable images. Class tree appears in all images in Tables 4.9 and

sky and earth in most of them.

To visualize it, we give a traversable and a non-traversable image in which these classes

appear. The ground in Figure 4.1 is translated as earth. Similarly, the short wall that

makes Figure 4.2 impenetrable is recognized from PSP as a mix of earth and wall. In

both cases we can see that the class tree is on the background. Both images are found to

be non-traversable. The difference is that this prediction is correct for the second image

but wrong for the first one.

(a) Original traversable image (b) Image resulting from PSP

Figure 4.1: Class labels tree, sky, earth, plant, wall (in red circle) in a traversable image that

was incorrectly predicted.

As humans, we are able to identify earth as traversable and tree as an obstacle. The

sky does not belong to either of the two categories. On the contrary, our model judges

traversability depending on the occurrence of objects in traversable and non-traversable

images. But the traversable images of the training sets are much fewer than the non-

traversable, by at least 100 images on each fold (columns 3 and 5 on Table 4.1). There-

fore, since these classes exist in almost all of the images (penetrable or not), they end up

being perceived as impenetrable (traversability percent ≤ 50%). And thus this leads to a
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(a) Original non-traversable image (b) Image resulting from PSP

Figure 4.2: Class labels tree, sky, earth, wall in a non-traversable image that was correctly

predicted.

greater likelihood for traversable images to be found as non-traversable.

The more the non-traversable classes, the fewer the chances for an image to be found

as traversable. Tables 4.6 and 4.7 show the numbers. In these tables we count the

traversable classes in the traversable images (from Tables 4.8) and the non-traversable

classes in the non-traversable images (from Tables 4.9) for each fold. And we present

which percentage of the total classes is penetrable in the former case and impenetrable

in the latter. The best case scenario for traversable images is fold 5 in which, however,

only 50% of the classes included are correctly identified. While the worst case scenario

for non-traversable images is fold 2 with 73.33% of the classes included to be correctly

identified. Having that in mind one can understand why traversable images have a much

lower percentage of success in being identified than the non-traversable.

Table 4.6: Percentage of classes in traversable testing images found to be traversable, for

each fold.

Traversable testing images

Fold Traversable classes All classes Success (%)

1 4 13 30.77

2 4 9 44.44

3 4 10 40

4 3 9 33.33

5 6 12 50

Let’s take Figure 4.1 for example. This image belongs to the testing set of fold 1. It contains

the classes plant, tree, sky, earth and wall. According to the first calculating method,

its traversability result is computed from the average of the sum of the traversability rates

of its classes. Specifically, by adding the traversability rates of the above classes from
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Table 4.7: Percentage of classes in non-traversable testing images found to be non-

traversable, for each fold.

Non-traversable testing images

Fold Non-traversable classes All classes Success (%)

1 9 10 90

2 11 15 73.33

3 12 14 85.71

4 10 12 83.33

5 9 11 81.82

Table 4.8a and dividing the result with the number of these classes:

73% + 45% + 46% + 46% + 24%
5

= 46.8% (4.1)

So Figure 4.1 has a 46.8% probability to be traversable. Which is lower than 50% and

therefore is declared as non-traversable.

Now that we have seen why non-traversable images are easier to predict than traversable

ones, let’s concentrate on why each fold have different success rate for the traversable

images.

As established before, fold 1 has worse results than all the other folds (see Table 4.8a).

First of all notice that the class label house appears in 10 out of the 153 traversable im-

ages for testing in fold 1. This class is missing from all the images in the training set. In

this case our model does not count the specific class neither as traversable nor as non-

traversable and completely ignores it. As can be inferred from the other Tables 4.8 class

house only appears in the images of the testing set of fold 1 and is found to be 100%

traversable. But it is ignored when calculating the traversability of the images containing

it. And therefore this class does not contribute to the final result.

As can be seen in Table 4.6 fold 1 has the fewer traversable classes in proportion to the rest

folds, followed by fold 4 and fold 3. And many validation images in fold 1 contain classes

with very low traversability rate. For example, class label floor exists in 19 images and

has 0% traversability rate. Class building has 101 instances with only 8% traversability

rate and wall has 97 with 24%. And these are not the only three classes with many in-

stances in the testing images and low traversability percentage (Table 4.8a).

Figure 4.1 belongs to the testing set of fold 1. Even though this image basically contains

the classes tree, sky, earth and plant, PSP detected a small area ofwall. Trees, sky and

earth have all been decided to be impermeable. Nevertheless having only the first four

classes, the image would be presumed as permeable, with 52.5% traversability percent

(equation 4.2). But adding the extra classwall the rate reaches only 46.8% (equation 4.1),
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resulting to name the image non-traversable.

73% + 45% + 46% + 46%
4

= 52.5% (4.2)

So what can be done in order to improve the success rate of recognizing the traversable

images? In real life, the environment is not evenly distributed in penetrable and impen-

etrable areas. So, we cannot limit the number of the training images in a way so that

traversable and non-traversable images are equal in number. Nonetheless, some ideas

in how to achieve better results are discussed in the next chapter.
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Table 4.8: Traversable images for testing - Labels, number of their instances and their

traversability percentage as emerged from training. The last column shows all classes with

traversability percentage > 50%. (continuing in next page)

(a) Fold 1 (153 traversable images)

Fold 1

Class label Instances Traversability (%) Traversable

grass 52 100 X
person 47 30

plant 153 73 X
tree 153 45

signboard 11 18

sidewalk 68 22

path 60 100 X
earth 153 46

sky 153 46

car 93 100 X
building 101 8

house 10 - -

wall 97 24

floor 19 0

(b) Fold 2 (169 traversable images)

Fold 2

Class label Instances Traversability (%) Traversable

grass 1 100 X
person 6 58 X
plant 169 72 X
tree 169 46

flower 17 100 X
earth 169 46

sky 169 47

rock 13 22

house - 100 X
wall 13 30
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Table 4.8: (continued) Traversable images for testing - Labels, number of their instances

and their traversability percentage as emerged from training. The last column shows all

classes with traversability percentage > 50%. (continuing in next page)

(c) Fold 3 (164 traversable images)

Fold 3

Class label Instances Traversability (%) Traversable

grass 18 100 X
plant 161 73 X
tree 164 46

sidewalk 29 65 X
path 22 100 X
earth 164 47

sky 164 47

rock 27 20

building 68 12

house - 100 X
wall 72 28

(d) Fold 4 (109 traversable images)

Fold 4

Class label Instances Traversability (%) Traversable

grass 49 100 X
plant 86 84 X
tree 109 46

signboard 1 25

earth 83 48

sky 109 47

rock 33 17

house - 100 X
wall 21 30

fence 2 100 X
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Table 4.8: (continued) Traversable images for testing - Labels, number of their instances

and their traversability percentage as emerged from training. The last column shows all

classes with traversability percentage > 50%.

(e) Fold 5 (183 traversable images)

Fold 5

Class label Instances Traversability (%) Traversable

person 14 62 X
plant 182 84 X
tree 183 43

flower 9 100 X
signboard 17 13

path 1 100 X
earth 183 43

sky 183 43

car 117 100 X
rock 99 10

pole 11 - -

house - 100 X
wall 100 23

fence 94 100 X

N. Prokopaki Kostopoulou 55



Autonomic tackling of unknown obstacles in navigation of robotic platform

Table 4.9: Non-traversable images for testing - Labels, number of their instances and their

traversability percentage as emerged from training. The last column shows all classes with

traversability percentage ≤ 50%. (continuing in next page)

(a) Fold 1 (184 non-traversable images)

Fold 1

Class label Instances Traversability (%) Non-traversable

plant 1 73

tree 184 45 X
water 1 0 X
rock 74 20 X

building 184 8 X
earth 184 46 X
sky 183 46 X

mountain 42 0 X
wall 146 24 X
floor 32 0 X

(b) Fold 2 (221 non-traversable images)

Fold 2

Class label Instances Traversability (%) Non-traversable

person 2 58

plant 1 72

tree 221 46 X
rock 219 22 X

building 221 19 X
windowpane 168 0 X

earth 195 46 X
sky 221 47 X

mountain 47 0 X
wall 137 30 X
floor 192 7 X

sidewalk 37 59

skyscraper 43 0 X
crt screen 48 0 X
signboard 82 100
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Table 4.9: (continued) Non-traversable images for testing - Labels, number of their in-

stances and their traversability percentage as emerged from training. The last column

shows all classes with traversability percentage ≤ 50%. (continuing in next page)

(c) Fold 3 (225 non-traversable images)

Fold 3

Class label Instances Traversability (%) Non-traversable

plant 7 73

tree 225 46 X
water 1 0 X
rock 218 20 X

building 202 12 X
windowpane 93 0 X

earth 220 47 X
sky 225 47 X

mountain 8 0 X
wall 225 28 X
floor 70 5 X
ceiling 1 - -

sidewalk 68 65

hill 51 - -

skyscraper 97 0 X
crt screen 36 0 X
television 27 - -

microwave 72 - -
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Table 4.9: (continued) Non-traversable images for testing - Labels, number of their in-

stances and their traversability percentage as emerged from training. The last column

shows all classes with traversability percentage ≤ 50%.

(d) Fold 4 (165 non-traversable images)

Fold 4

Class label Instances Traversability (%) Non-traversable

person 30 81

plant 98 84

tree 165 46 X
rock 122 17 X

building 165 18 X
windowpane 94 0 X

earth 165 48 X
sky 165 47 X

mountain 43 0 X
wall 162 30 X
floor 69 5 X

computer 8 - -

crt screen 35 0 X

(e) Fold 5 (150 non-traversable images)

Fold 5

Class label Instances Traversability (%) Non-traversable

person 14 62

plant 119 84

tree 150 43 X
rock 150 10 X

building 150 18 X
windowpane 68 0 X

earth 127 43 X
sky 122 43 X
wall 140 23 X
floor 66 5 X

streetlight 20 - -

crt screen 31 0 X
plate 9 - -
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5. CONCLUSIONS AND FUTURE WORK

In this thesis we concentrated on traversability estimation methods. In Chapter 2 we ex-

plored many ways for a robot to autonomously decide the traversability of the terrain in

front of it. We also found ways for it to be able to learn from the past and improve its

traversability estimation. We investigated approaches to autonomously acquire labeled

data and the sensors needed to do so. Finally we discussed about the most common

strategies for the robotic platform to decide where to go next.

In Chapter 3 we implemented a program that when given images, predicts whether they

are traversable or not. These images are extracted from a convolutional neural network

for total scene semantic segmentation. We chose Pyramid Scene Parsing Network (PSP)

pre-trained on ADE20K dataset for this purpose, as it seemed to have the best results.

We fed PSP with images from natural outdoor environments, containing vegetation. It

resulted with images consist of colors depicting objects and parts of the scene.

Lastly, in Chapter 4 we evaluated our implementation and explained how the traversable

images are more difficult to predict than the non-traversable. The main reason for this

is that the data sample used for training, consists of many more non-traversable than

traversable images. That is something we are not able to control because we want our

system to be autonomous. So what can be done in the future to improve the results?

The program can be modified to ignore specific classes. Possibly the classes that appear

in a large amount on both traversable and non-traversable training images. For exam-

ple, class labels earth, sky and tree seem to appear in almost all of the images used for

training and validating the system (as can be seen in Tables 4.8, 4.9). All of them are

predicted as non-traversable, because of the large number of non-traversable training im-

ages. However, as we know, earth is traversable, sky is neither of the two, and only trees

are non-traversable.

Another way would be to concentrate on the part of the image that is more likely to be on

the foreground. For example, see Figures 4.1a, 4.2a. Both of them contain the classes

tree and sky. And in both cases these classes appear only on the background. An ap-

proach could be to calculate the image area that is accessible by the robot in its next move,

according to its height and width. And then check whether this smaller area is traversable

or not. A rough example of the minimized Figures 4.1b, 4.2b is shown in Figure 5.1. In

other words, we suggest a way to perceive depth without the use of geometric data.

A further step, though, could be to actually combine appearance with geometric data. That

way the robot would be able to visually recognize the environment around it, while at the
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(a) Minimized Figure 4.1b (b) Minimized Figure 4.2b

Figure 5.1: Two minimized images (one traversable and one non-traversable) so that the

robotic platform fits marginally within their frame.

same time gather geometric information about it, like height or depth. We believe that with

a combination like this, the results would be significantly improved.

However, we believe that our contribution has been noteworthy. As said before, it has

become clear to researchers in robotics that current approaches are yielding systems

with limited autonomy and ability for self-improvement. We managed to create a system

that not only autonomously learns the traversability of its environment, but also has the

capacity to self improve. With only a few modifications our program could be ready to be

used on an actual robotic platform to explore its surroundings and improve its knowledge

of traversability.
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APPENDIX A. REFERENCE IMPLEMENTATIONS

Many authors published their code open-source so that other researchers may use their

work. In Table A.1 we give some URLs and comments about the work mentioned above,

in Section 2.1, Section 2.2 and Section 3.1. Some of them were actually used as our ex-

perimental basis.

Table A.1: References and their prototype implementations

Authors URL

Droeschel et al. [5] https://github.com/AIS-Bonn/mrs_laser_map
Hirose et al. [17] https://github.com/NHirose/GONET

Goodfellow et al. [18] http://www.github.com/goodfeli/adversarial
Krizhevsky et al. [26] https://github.com/Abhisek-/AlexNet

Simonyan and Zisserman [25] http://www.robots.ox.ac.uk/~vgg/research/very_deep/
Szegedy et al. [33] https://github.com/google/inception

Chollet [34] https://github.com/kwotsin/TensorFlow-Xception
He et al. [28] https://github.com/KaimingHe/deep-residual-networks

Iandola et al. [35] https://github.com/DeepScale/SqueezeNet
Howard et al. [36] https://github.com/Zehaos/MobileNet
Girshick et al. [37] https://github.com/rbgirshick/rcnn
Redmon et al. [38] https://pjreddie.com/darknet/yolo/

Liu et al. [39] https://github.com/weiliu89/caffe/tree/ssd
Long et al. [43] https://github.com/shelhamer/fcn.berkeleyvision.org

Le [41] https://github.com/udacity/CarND-Semantic-Segmentation/
Yang et al. [54] https://github.com/DeepMotionAIResearch/DenseASPP
Oršić et al. [55] https://github.com/orsic/swiftnet
Zhou et al. [59] https://github.com/CSAILVision/sceneparsing
Zhou et al. [44] https://github.com/CSAILVision/semantic-segmentation-pytorch
Chen et al. [61] https://github.com/tensorflow/models/tree/master/research/deeplab
Zhao et al. [60] https://github.com/hszhao/PSPNet

In the first three links appear the available source code of some researchers dealing with

traversability estimation methods. Their work is described in Chapter 2.

The next seven URLs give the source code of the most popular convolutional neural net-

works for object classification and object localization, participated in ILSVRC. They are

described in Section 2.2.1.

The next five link to the available code of other very popular convolutional neural networks

for object detection and semantic segmentation. They are also described in Section 2.2.1.

The next two are used for semantic segmentation in street scenes. They are mentioned

in Section 3.1.
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The last four URLs are pre-trained convolutional neural networks for semantic segmen-

tation. They are described in Section 3.1 and used in this work for experimentation. The

last one, from Zhao et al. [60] was actually used for the purposes of this thesis (see Sec-

tion 3.2).
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APPENDIX B. DATASETS

In Table B.1 one can find some of the available datasets used for neural network training

and evaluation. For our system we used ADE20K dataset to perform total scene semantic

segmentation (see Chapter 3).

Table B.1: Datasets and their URLs

Dataset URL

ADE20K [59] http://groups.csail.mit.edu/vision/datasets/ADE20K/
ImageNet [31] http://www.image-net.org/
Places [63] http://places.csail.mit.edu/
COCO [45] http://cocodataset.org/

Cityscapes [58] https://www.cityscapes-dataset.com/
KITTI [56] http://www.cvlibs.net/datasets/kitti/

PASCAL VOC [57] http://host.robots.ox.ac.uk/pascal/VOC/
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APPENDIX C. COLLECTING DATA

In order to have the robot autonomously fine-tune its traversability estimation, it is essen-

tial to be able to measure the traversability of a path after traversing it or having failed to

traverse it [64]. One key concept put forward is that traversability can be measured as

the “error in proprioceptive localization”. That is, in localization that relies on the wheel

encoder and IMU signals.

The rationale is that along an easily traversable path, encoder drift is small and when

fused with IMU becomes negligible. The more difficult a path is, the more the wheels

drift and this error increases. In order to calculate this error, proprioceptive localization is

compared against the full 3D localization that fuses the encoders, IMU, and stereoscopic

camera signals.

(a) Paved path (b) Vegetation (c) Wall

Figure C.1: Indicative scenes for the localization error experiments.

In order to prove this concept, several locations were selected with varying degrees of

traversability ranging from paved path, to vegetation, to a wall. The vegetation appears

as an obstacle in the 3D point cloud created by the stereo camera but can be pushed back

and traversed. Figure C.1 shows some indicative examples.

The following experiment was executed using a DrRobot Jaguar rover fitted with a Zed

stereoscopic camera. After using standard ROS 1 navigation to approach an obstacle, the

robot synchronizes a secondary proprioceptive localization module with the main localiza-

tion it uses to navigate. Then it circumvents normal obstacle avoidance to push against

the obstacle. The velocity is the minimum velocity that the robot can obtain, guaranteeing

the safety of the platform even when pushing against a wall.

The experiments have been carried out were at varying locations and approaching the

obstacle from different angles. There was empirically found that for this specific platform

and these specific sensors a localization error of 21cm or less signifies that the path is

1 Robot Operating System (ROS) (http://www.ros.org) is an open source, meta-operating system for

robots. It is a set of software libraries and tools that help in building robot applications.
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traversable. This simple rule achieved an accuracy of 9/10 in both the traversable and the

non-traversable tests. The specific threshold is likely to be different for different sensors.

It would probably need to be empirically identified for each robotic platform and mix of

sensors.
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