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Chapter 1

Introduction

In everyday life, we often encounter the question of entering or not a queue.
In order to handle our time in the best possible way, we estimate quickly the
expected time of waiting in a queue. In ordinary queues, here referred to as
physical queues, we make the estimation according to the number of people
waiting in front of us. Sometimes, seeing all the people who have joined the
queue is not possible, making the actual queue “invisible”. Ticket Queues
are one of the most interesting examples of this type of queues.

Ticket Queues are systems that, upon arrival, provide customers with a
ticket which has a priority number printed on it. The number of the customer
who is in service is showed on a display panel. The difference between the
numbers of the arriving customer and the customer in service, referred to
as the ticket position, is only an upper bound of the actual queue length,
because some of them may have balked or reneged. Balking means that a
customer decides not to join the queue after s/he sees the ticket position while
reneging is when a customer abandons the system after joining the queue,
mostly because of impatience. An analysis of ticket queues with these two
kinds of customer abandonments before service has been done successfully
by Xu, Gao and Ou (2007), and Ding, Ou and Ang (2015) respectively.

Additionally, there are some other aspects which are really fascinating to
explore while dealing with Ticket Queues; customers may follow a specific
strategy when they face a Ticket Queue or they might just enter the queue
whatever the ticket position is and obtain service. This diversity of actions
leads us to research cases where we have different types of customers, so
that the population may not be always homogeneous, and other occasions,
where we meet strategic customers that follow a threshold strategy. A truly
interesting case of non-homogeneous population in Ticket Queues has been
studied by Hanukov, Anily and Yechiali (2019). Threshold strategies refer-
ring to when a strategic customer decides to enter the queue or not have
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been studied in the work of Kerner, Sherzer and Yanco (2017).
Generally, this kind of systems are widely used nowadays in a large num-

ber of various services. From their simplest forms, such as the take-a-number
systems, frequently seen in supermarkets and banks, to more complicated
forms, like tickets with letter and number combinations which indicate the
service type and the service order, Ticket Queues have many advantages.
They surely offer better waiting experience in many ways. One of them is
that the first-in, first-out (FIFO) service rule is not violated; everyone takes
his/her priority number and is served according to the arriving time. More-
over, the customers can make more productive use of their waiting time,
because they can leave the queue temporally in order to grab a coffee or
run several errands, and then return back to the waiting room. As a result,
Ticket Queues promote customer equality.

On the other hand, there’s one basic drawback; usually, customers are
naive and impatient, so they overestimate their waiting time and tend to
abandon the queue more frequently than in a physical queue. So, Ticket
Queues often lead to a much higher balking rate compared to physical queues.
This is a loss from both the customer’s and business perspective as the system
has a lot more capacity to process services that are not actually accomplished.

The basic disadvantage highlighted above leads to studies which aim to
improve the operation of Ticket Queues. For example, it has been noted that
if we offer customers more accurate information on their waiting time, the
balking rate can be reduced. In general, we are interested as well in topics
that can improve not only the Ticket Queues but also the strategic customer
behavior in order to achieve an even better waiting experience.

Throughout this work, we offer interesting insights on Ticket Queues.
Firstly, we introduce some basic mathematical tools, definitions and solution
techniques that are clearly useful all over this thesis; specifically of Matrix-
analytic and Game-theoretic character. Subsequently, we analyze two differ-
ent cases of Ticket Queues, namely Ticket Queues with Balking Customers
and Ticket Queues with Reneging Customers. Their analysis is supplemented
with proofs and conclusions relevant to our findings.
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Chapter 2

Basic Theory

2.1 Matrix Analytic Methods

It is well known that, the most fundamental queueing models are described as
birth-death processes. We remind that a birth-death process is a special case
of a Continuous Time Markov Chain (CTMC), where the state transitions
are distinguished in two forms: birth, in which the transition increases the
number of the state by one, and death, where the transition decreases the
number of the state by one. M/M/1, M/M/c and M/M/1/K queues are
the most basic and significant examples modeled with birth-death process.
The transition diagram of a birth-death process is described by arcs showing
the birth and death rates, λi and µi respectively, and is presented bellow in
Figure 2.1.

Figure 2.1 Diagram of a Birth-Death Process

However, the models that describe a Ticket Queue are much more com-
plicated, yet with similar logic. Specifically we can model a Ticket Queue as
a quasi-birth-death process (QBD) which actually describes a generalization
of a birth-death process. The rest of this section is dedicated to QBDs and
the necessary information about them.
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2.1.1 Description of QBD processes

As a matter of fact, the majority of the Continuous Time Markov Chains
that we encounter in introductory courses have a 1-dimensional state-space.
However, there are exceptions where the states should be represented by a
natural vector. For example, imagine a queueing problem where, apart of the
number of customers in the system, we also need the information of whether
the server is active or idle. So, if we assume that N and I are the random
variables that describe the number of the customers in the queue and the
condition of the server (0 : idle, 1 : active) respectively, the state space will
be represented by vectors (N, I).

Generally, in a vector state process, the states have the form (i, s). Com-
monly, these are pairs with i = 0, 1, . . . and s = 0, 1, . . . ,m. We shall say that
i represents the level of such a process, while s the phase. As a consequence,
all those states defined by (i, 0), (i, 1), . . . , (i,m) are the states at level i.

One of the most interesting facts is also that if a vector process has a
transition matrix with a repetitive block structure, we can calculate the sta-
tionary probabilities using a Matrix Geometric Method. Note that, if the
transition rate from state (i, j) to state (i+ k, j′) is independent of the value
of i for i > i∗, where i∗ is a specific level, and k = ±1 as the transitions
are only between adjacent levels, then, the process has repetitive transition
structure. Such a repetitive structure on the transition rate matrix signifies
that, eventually, all the matrix entries are repeated diagonally. This repeti-
tion is a substantial tool for obtaining the stationary distribution, and it is
the key of the matrix-geometric method.

The process described above is actually a quasi-birth-death process (QBD).
Recall again the birth-death process, and remember that it permits only
adjacent state transitions. In correspondence, a QBD process allows state
transitions only between adjacent levels or the same level. Actually, with
the name quasi, we bring up the fact that the nearest neighbor transitions
in a QBD are interpreted in terms of vectors of states while in a simple
birth-death process everything is explained using scalar states.

In the following, we will show how the Matrix Geometric Method works
through an example. Later, we will introduce the terms of Homogeneous and
Non-homogeneous QBDs which are also remarkably useful in the rest of our
work.
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2.1.2 The Matrix Geometric Method

An example is the best way to see how the repetitive structure in the gener-
ator matrix helps us to determine a solution and how exactly we can work
with the Matrix Geometric Method.

Let us consider a queueing system with Poisson arrivals where the rate is
λ′ if the system is empty, and λ otherwise. The customers, in order to obtain
service, have to pass through two different exponential stages: the first one
at rate µ1 and the second at rate µ2. Let every state be given by (i, s), i ≥ 0,
s = 0, 1, 2, where i is the number of the customers waiting in queue (so that
the customer who receives service is not included) and s the current stage of
the customer in service. By definition, we set s = 0 if the system is empty.
The state transition diagram under these assumptions is shown in Figure 2.2.

Figure 2.2 State Transition Diagram for a Vector Process

Actually, we have grouped states according to the number of customers
in the queue. If we take a closer look on the diagram, we can comprehend
that this model is a case of QBD process. We have two phases (s = 1, 2) and
infinite levels, where the non-zero transition rates are only within the same
level (from the first to second stage of the service) and between adjacent levels
(arrivals or service completions). This fact is illustrated better in Figure 2.3.
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Figure 2.3 Levels and Phases in Diagram for Vector Process

At this point, we can obtain easily the generator matrix; we order states
lexicographically, (0, 0), (0, 1), (0, 2), (1, 1), (1, 2), . . ., and let πi,s be the sta-
tionary probability of state (i, s). So, the transition rate matrix Q is given
by:

Q =



−λ′ λ′ 0 0 0 0 0 0 0 · · ·
0 −α1 µ1 λ 0 0 0 0 0 · · ·
µ2 0 −α2 0 λ 0 0 0 0 · · ·
0 0 0 −α1 µ1 λ 0 0 0 · · ·
0 µ2 0 0 −α2 0 λ 0 0 · · ·
0 0 0 0 0 −α1 µ1 λ 0 · · ·
0 0 0 µ2 0 0 −α2 0 λ · · ·
...

...
...

...
...

...
...

...
...

. . .


(2.1)

where we define αi = λ+ µi, i = 1, 2

Let πi = (πi,1, πi,2) for i ≥ 1, π0 = (π0,0, π0,1, π0,2) and π = (π0,π1,π2, . . .).
Furthermore, define the following matrices:

A0 =

[
λ 0
0 λ

]
, A0 =

[
α1 µ1

0 α2

]
, A2 =

[
0 0
µ2 0

]
,
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B1,0 =

[
0 0 0
0 µ2 0

]
, B0,1 =

0 0
λ 0
0 λ


and finally,

B1,0 =

−λ′ λ′ 0
0 −α1 µ1

µ2 0 −α2


According to the definitions given above, we now can partition the gen-

erator matrix into blocks as follows:

Q =



−λ′ λ′ 0 0 0 0 0 0 0 · · ·
0 −α1 µ1 λ 0 0 0 0 0 · · ·
µ2 0 −α2 0 λ 0 0 0 0 · · ·
0 0 0 −α1 µ1 λ 0 0 0 · · ·
0 µ2 0 0 −α2 0 λ 0 0 · · ·
0 0 0 0 0 −α1 µ1 λ 0 · · ·
0 0 0 µ2 0 0 −α2 0 λ · · ·
...

...
...

...
...

...
...

...
...

. . .



=


B0,0 B0,1 0 0 0 · · ·
B1,0 A1 A0 0 0 · · ·

0 A2 A1 A0 0 · · ·
0 0 A2 A1 A0 · · ·
...

...
...

...
...

. . .



(2.2)

Note that every entry 0 in (2.2) (and in all the following matrices) is a
matrix of zeros of the appropriate dimension. We observe that Q is block-
tridiagonal.

Let us call states (0, 0), (0, 1) and (0, 2) the boundary states, and all
the other states the repeating states. We already know how to solve the
stationary probabilities for the scalar case, and here, the procedure is in the
same manner. Firstly, as Q is a generator matrix, we have:

πQ = 0 (2.3)

Hence, given in block matrix form, we obtain from (2.3):
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πj−1A0 + πjA1 + πj+1A2 = 0, j = 2, 3, . . . (2.4)

As in the scalar case, since state transitions are between nearest blocks,
we discover with no surprise that the value of πj is a function only of the
transition rates between states with j − 1 queued customers and states with
j queued customers. Since these transition rates have no dependence on j,
there must be a constant matrix R such that:

πj = πj−1R j = 2, 3, . . . (2.5)

Hence, the values of πj , j = 2, 3, . . ., have a matrix geometric form, which
is calculated through recursion, and is:

πj = π1R
j−1 j = 2, 3, . . . (2.6)

The basic idea is to substitute this guess, (2.6), into (2.4). Therefore, we
get the equation:

π1R
j−2A0 + π1R

j−1A1 + π1R
jA2 = 0, j = 2, 3, . . . (2.7)

As a matter of fact, this equation must be true for all j, with j = 2, 3, . . ..
So, substituting j = 2 into (2.7) and simplifying yields gives:

A0 +RA1 +R2A2 = 0 (2.8)

This equation is quadratic in the matrix R, so typically, it can be solved
numerically. However, not all the solutions of matrix R can satisfy the
normalization condition, thus, it is important to determine an additional
condition for choosing the appropriate solutions.

Recall the scalar case, where we had two possible solutions in the quadratic
equation for ρ; one of these was ρ = 1 and it could not satisfy the normaliza-
tion condition. Similarly, if the spectral radius of R is greater than or equal
to 1, then the matrix R satisfies (2.8), but cannot be normalized. Thus,
as in the scalar case, we pick the minimal matrix R which satisfies (2.8).
Actually, the case where π1

∑∞
j=1R

j−1e < ∞, with e defined as a suitably
dimensioned column vector of 1s, is the one where the normalization con-
stant is satisfied for the vector state process. Furthermore, the analogous
criteria to ρ < 1 in the scalar case, is the fact that the spectral radius of R
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must be less than unity in our case. This is following from the fact that all
eigenvalues of R must be less than 1 for the sum above to converge.

At this point, we remind the basic definitions of the terms denoted before.
An eigenvector of a matrix M is a vector x for which Mx=αx. The value
α is the eigenvalue corresponding to the eigenvector. Last but not least, the
spectral radius of matrix M is the magnitude of the largest eigenvalue.

Another quite interesting aspect we can note is that the matrix R (see
[4]) has an interesting probabilistic interpretation. Recall that we are dealing
with the continuous time case, so the result for R is actually that the entry
in its (j, j′) position is the expected time that the process spends to phase
state j′ of level i+1 before returning to level i, given the fact that the process
is started from phase j of level i. So, have in mind that we start from a state
(i, j) and the expected time in state (i + 1, j′) before returning to level i is
R(j, j′). Thus, this interpretation explains that the entries of the rate matrix
must be non-negative.

Let us assume now that we have a solution for R, according to what we
have discussed before. The matrix R is termed as the rate matrix. As we
should determine the stationary probabilities, we continue following the same
process with the scalar state case. The probabilities of the boundary states
of the process, are given by:

π0B0,0 + π1B1,0 = 0

π0B0,1 + π1A1 + π2A2 = 0
(2.9)

These equations can be written in matrix form, so, if we substitute the
relation π2 = Rπ1 in (2.9), we have the following:

(π0,π1)

[
B0,0 B0,1

B1,0 A1 +RA2

]
= 0 (2.10)

Similar to the scalar case, the equations in (2.10) are not sufficient to
determine the probabilities π0 and π1. We also require the use of the nor-
malization constraint, which is:

1 = π0e+ π1

∞∑
j=1

Rj−1e = π0e+ π1(I −R)−1e (2.11)

In equation (2.11), we used the convergence of the infinite summation∑∞
j=1R

j−1 to (I −R)−1. The calculation is accomplished with the same
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technique that is used to close an infinite geometric series, and is showed
below.

Let S be the matrix obtained by the infinite sum. Thus, if we assume
that the sum converges, we can write:

S =
∞∑
j=1

Rj−1 = I +R+R2 + . . . (2.12)

Multiplying (2.12) by R on the right implies:

SR = R+R2 + . . .

Then, upon subtracting the last equation from (2.12), we have:

S(I −R) = (I +R+R2 + . . .)− (R+R2 + . . .) = I

The last step is to multiply on the right both sides of this equation by
(I −R)−1. Hence, we obtain the very useful result that we mentioned
before:

∞∑
j=1

Rj−1 = (I −R)−1 (2.13)

As a matter of fact,this derivation depends on the assumption that the
infinite geometric sequence converges. Remember that, for a nonnegative
scalar, 1 + x + x2 + . . . converges to 1

1−x if and only if x < 1. Similarly, the
geometric sequence for the nonnegative matrix R has an analogous criterion
for convergence that is the spectral radius of the matrix must be less than
unity.

We close this analysis by representing a different form of (2.11), more
suitable for linear equation solvers. Firstly, we defineM∗ to be the matrixM
without its first column, and [1,0] as a row vector with its first component 1
followed by 4 zeros. Under these assumptions, we can determine the solution
for the boundary states by solving:

(π0,π1)

[
e B∗0,0 B0,1

(I −R)−1e B∗1,0 A1 +RA2

]
= [1,0] (2.14)
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The equation that results by multiplying (π0,π1) with the first column of
the matrix is actually the normalization condition, while the rest equations
are given by (2.10). Hence, the linear equations given by (2.14) have a unique
solution that satisfies the normalization condition too. The process has come
to an end.

2.1.3 Homogeneous and non-homogeneous QBDs

Technically, now that we have seen how the Matrix Geometric Method works,
we can analyze more the form of generator matrix Q. In the previous exam-
ple, the generator matrix was generally defined as follows:

Q =


B0,0 B0,1 0 0 0 · · ·
B1,0 A1 A0 0 0 · · ·

0 A2 A1 A0 0 · · ·
0 0 A2 A1 A0 · · ·
...

...
...

...
...

. . .


We notice immediately that from the third row to below, the matrices

A0, A1 and A2 are repeated diagonally infinitely many times. This form is
incredibly simple and describes the Homogeneous QBDs.

Logically, the fundamental ideas for these problems can be applied beyond
homogeneous QBDs and yield more complicated systems. So, the systems
with increased complexity will have a more complicated generator matrix.

Actually, we refer to non-homogeneous QBDs. The state space is two di-
mensional too, with levels and phases, and the transitions are still allowed to
adjacent levels and the same level only, with a basic difference; the transition
probabilities out of the state (i, s) may depend on level i. This indicates that
the general form of the transition matrix in a non-homogeneous QBD is:

Q =


A

(0)
1 A

(0)
0 0 0 0 · · ·

A
(1)
2 A

(1)
1 A

(1)
0 0 0 · · ·

0 A
(2)
2 A

(2)
1 A

(2)
0 0 · · ·

0 0 A
(3)
2 A

(3)
1 A

(3)
0 · · ·

...
...

...
...

...
. . .
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Note that different levels may have different numbers of phases. In this
case, the blocks on the main diagonal are square matrices, but those on the
secondary diagonals can be rectangular matrices of appropriate dimensions.
Certainly, that depends on the system we are dealing with.

The interesting fact here is that, the method we analyzed for homogeneous
QBDs can be extended instantly to the non-homogeneous case. We can follow
the same steps to obtain the stationary distribution, but, as it was expected,
we have many more computational issues than in homogeneous QBDs. These
problems can be resolved if some additional assumptions are made about the
matrix Q and depend again on the specific model under study.

2.2 Game Theoretic Preliminaries

In this section, we remind some of the basic concepts from Game The-
ory mainly in the form of definitions. The following are fundamental for
understanding anything related to strategic behavior.

In essence, we are interested in non-cooperative games. To explain suc-
cinctly, a non-cooperative game is a game where the players cannot collabo-
rate and actually everyone is obliged to choose her/his actions alone. Hence,
our purpose is to give the fundamental background of such a kind of game
in classical Game Theory. We let:

◦ N = {1, . . . , n} be a finite set of players

◦ Ai be sets of action plans, one for each player i = 1, . . . , n

As for sets Ai, every one of them contains all actions available to player i.
Thus, every element in Ai specifies what actions should be taken during the
game, and it is referred as a pure strategy of i. Furthermore, a probability
distribution on Ai is defined as a mixed strategy of i. Hence, the use of a
mixed strategy describes the fact that a player chooses one of her/his pure
strategies through the probability distribution defined by the certain mixed
strategy. At this point, we also define:

◦ Si as the set of mixed strategies for player i

◦ s = (s1, . . . , sn) as the strategy profile, an ordered n-tuple of strategies,
one for each player, si ∈ Si, i = 1, . . . , n

◦ Ui noted as real payoff functions, one for each player i = 1, . . . , n.
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We now note that s−i is a (n-1)-dimensional vector which contains all the
strategies of s except of the one that corresponds to player i. Hence, we can
write a strategy profile as s = (si, s−i).

As it was expected, the payoff functions have a central role here. Actually,
a function Ui(s) = Ui(si, s−i) determines the payoff received by player i given
that the strategy profile s is adopted by the players. The function Ui(s) is
also assumed to be linear with respect to si. This means that, if the strategy
si mixes the strategies ski with probabilities αk respectively, k = 1, 2, . . . , r,
then we have:

Ui(si, s−i) =
r∑

k=1

αkUi(ski , s−i)

Now, let s1i and s2i be both strategies of player i. We define as well that:

◦ Strategy s1i weakly dominates strategy s2i , if for any strategy profile for
the other players, s−i, we have that Ui(s1i , s−i) ≥ Ui(s2i , s−i), with the
inequality strict for at least one of the strategy profiles s−i.

◦ Strategy s1i strongly dominates strategy s2i , if the inequality above is
strict for all the strategy profiles s−i.

◦ A strategy s∗i is noted as a best response for player i against the strategy
profile s−i if for every strategy si of i we have Ui(s∗i , s−i) ≥ Ui(si, s−i).
In other words, s∗i is a best response for player i if it maximizes the
function f(si) = Ui(si, s−i).

◦ A strategy profile sei = (se1, . . . , s
e
n) is a Nash equilibrium profile if for

every i ∈ N , sei is a best response for player i against se−i. That means
no player has an incentive to deviate from this specific strategy profile.
Note that a Nash equilibrium does not always exist.

Generally, we will deal mostly with games with an infinite number of players.
Certainly, the players in this work are the strategic customers of the system.
Thus, in this case, we denote the set of strategies and the payoff function by
S and U respectively. We also let U(s, s′) be the payoff function for a player
who chooses strategy s while the rest of the players choose strategy s′. Then,
we define the following:

◦ A strategy se ∈ S is a symmetric Nash equilibrium if it is a best re-
sponse to itself. That is, U(se, se) ≥ U(s, se) with s ∈ S.
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We also note that, in order to comprehend the strategic customers’ behavior,
we should compute the payoff function U(s, s′). It is natural to assume that
the tagged customer’s strategy, s, does not really make an impact on the
general behavior of the system which is actually determined by the strategy
s′ that the other customers follow.

Additionally, we will refer to threshold strategies, which are included in the
following of this work and generally are quite common in queueing systems.
Let us assume that, upon arrival, the customer has to choose between two
actions, namely A1 and A2. The decision has to be made according to the
observation of a random variable with a non-negative integer value which
describes the state of the system. The most common example of this value
may be the queue length, and the action join or balk respectively. Under
these assumptions, we define:

◦ A pure threshold strategy with threshold n is defined by a decision of
the action A1 for every state in {1, 2, . . . , n− 1}, while the action A2 is
decided for every other state.

Note also that there are cases where it is logical to look for a Nash equilibrium
pure threshold strategy. However, it does not always exist.

Generally, we can face differently defined cases of a threshold strategy
that can be adopted by customers, for example extensions of the definition
given above. We select the appropriate one in agreement with the problem
we are dealing with; the basic element is always that the decision in made
through one threshold or more.
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Chapter 3

Ticket Queues with balking
customers

In this chapter, we are going to analyze Ticket Queues where the customers
may balk if they consider that the queue length exceeds their patience. For
convenience, specifically here, we will refer to Ticket Queue with balking cus-
tomers simply as Ticket Queue. As mentioned before, this decision between
two actions, join or balk, is made through an observed information, where,
in this case is the ticket position. Remember that the ticket position is the
difference of the number on the issued ticket with the observed number on
the display panel. As a matter of fact, this is the only information customers
get in this system, as the physical queue is invisible. As a consequence, they
will overestimate their waiting time.

Subsequently, we will introduce an appropriate model for our analysis
and will obtain the steady state probabilities. Later, we will introduce some
suggestions for improvement according to this model, and we will also discuss
the case of threshold strategies. Finally, we conclude with our inferences. The
material we are working with here is mainly taken from the works of Xu, Gao
and Ou (2007) and Kerner, Sherzer and Yanco (2017).

3.1 Description of the Model

A Ticket Queue system with balking customers can be described as follows.
Imagine that a customer arrives at a single-sever system, and upon arrival,
is issued with a ticket that has a number which indicates her/his position in
queue. This number is increasing every time a new customer takes a ticket.
The customer sees on the display panel the number of the ticket that has been
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issued to the customer currently under service, and decides whether s/he is
going to enter the queue or not. When a service is completed, the system
calls for the next number. If the next number belongs to a balking customer,
the system calls the number after her/him. Otherwise, if no ticket has issued
after the customer who finishes service, there are no waiting customers and
the panel displays the next number so that the arriving customer who draws
it can be served immediately.

To simplify the analysis and focus on the main issues, we consider the
model of a single-server ticket queue where the customers arrive according to
a Poisson process and they have service times with independent and identical
exponential distributions. We let λ be the rate of the Poisson arrival process,
and 1

µ
be the mean of the exponential service times.

We now assume that, a customer will balk if her/his ticket position is
greater or equal to a threshold K, and no customer can renege if s/he has
entered the queue and waits for service. This constant K is actually the
tolerance level of a customer’s patience. We denote the ticket position as D.
We follow the assumption that an arriving customer perceives D as the actual
number of customers in the system. As discussed before, D is just an upper
bound of the actual queue length in the system which here is denoted as a
generic random variable N and it is referred as the queueing position. Thus,
customers join the system if D < K, otherwise they balk. Their decision is
not related to the actual queue length N .

The general difficulty in this system is that neither D nor N separately
carry all the information about the ticket queue, and this is also valid even
if they are jointly given. Thus, we have to define the states with more detail
in order to achieve a Markovian description of the system. More precisely,
we define the following: we let state 0 denote the empty system, while all the
other states are represented with an L-tuple vector n. L is defined as the
realization of N , which means that it corresponds to the actual number of
customers that are present in the system while being on the specific state.
Hence, a state is defined by the vector n = (n1, . . . , nL), with nl representing
the number of tickets issued from the arrival of the lth joining customer prior
to the (l+ 1)th joining customer for l = 1, . . . , L. Naturally, the first joining
customer is currently in service.

With the definitions given above, it is clear that we have complete infor-
mation on N and D. Specifically, in a state n = (n1, . . . , nL), we have L
joining customers and ticket position D equal to

∑L
l=1 nl, because an arriv-

ing customer sees, according to the number on the display panel, a difference
to her/his drawn ticket equal to the sum of the tickets issued from the cus-
tomer in service until her/him. For instance, at a state n = (1, 1, 4, 2) we
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have N = 4 and D = 1 + 1 + 4 + 2 = 8.
At this point it is natural to refer to the transitions between states. We

should consider the necessary condition for a customer to join the system,
which is D < K. Thus, if

∑L
l=1 nl < K, the arriving customer joins the

system, and consequently the state (n1, . . . , nL) will change at rate λ to state
(n1, . . . , nL, 1) which indicates that there are currently L+1 customers in the
system and the ticket position for the next arriving customer is

∑L+1
l=1 nl with

nL+1 = 1. On the other hand, if
∑L

l=1 nl ≥ K, the arriving customer balks
and hence the state (n1, . . . , nL) will change at rate λ to state (n1, . . . , nL+1).
That means we still have L joining customers to the system but the ticket
position for the next arriving customer has increased by one. Additionally, if
a service is completed at rate µ, the state (n1, n2, . . . , nL) will change to state
(n2, . . . , nL). The explanation here is simple too. The first joining customer
left the system and so there are L−1 customers left, but also releases all the
balking customers between her/him and the second joining customer, because
their numbers are called by the system automatically and the display panel
shows the number of the next joining customer in negligible time.

Pursuant to the discussion before, the complete state space is defined by:

S = {0} ∪

{
n ∈ NL :

L−1∑
l=1

nl < K,nl ≥ 1, l = 1, . . . , L, L = 1, . . . , K

}
(3.1)

The condition
∑L−1

l=1 nl < K in the state space definition actually ensures
that every joining customer has observed a ticket position lower than her/his
balking limit and hence entered the queue. Furthermore, we give two addi-
tional definitions for convenience. We note for a given state n = (n1, . . . , nL)
its dimension as |n| = L and its sum of components as ‖n‖ =

∑L
j=1 nj. In

the following, we present an example of this Ticket Queue with K = 4 in
order to make the Markovian model even more transparent and introduce
briefly the steps for calculating the stationary distribution.

The illustration in Figure 3.1 shows the transition diagram for the Ticket
Queue with balking limit K = 4. The black arrows correspond to new
arrivals with transition rate λ and the red arrows to service completions
with transition rate µ.

However, an observation of high interest on the transition diagram is the
gray-shaded states. We firstly remark that any arriving customer in a gray-
shaded state will balk, because the inequality

∑L
l=1 nl ≥ K is satisfied for

K = 4. That happens also for some states in the red-shaded zone. The
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actual difference though is that for every state in the gray-shaded zone we
have that nL ≥ K. This property shows the fact that, in order to have a
new joining customer in the system, we have to complete all the services of
the current customers in queue. This is the only way to release nL so that a
new customer observes a ticket position lower than her/his balking limit and
join the system.

As an example, we will consider two states, (22) and (25). An arriving
customer to state (22) observes a ticket position of 2 + 2 = 4 = K, so s/he
balks and therefore state (22) reduces to state (23) at rate λ. Moreover, if a
service completion takes place while being on state (22), we move to state (2)
at rate µ. An arriving customer in (25) will also balk, as 2 + 5 = 7 > 4 = K.
So, at rate λ, state (25) jumps to state (26). A service completion in state
(25) gives the transition to state (5) at rate µ as it was expected. The
difference noted above here is that, from state (22) we do not need to return
to empty system (0) in order to have a new joining customer, but from state
(25) we need to get back to (0) for an arriving customer to join. That is
why, in the gray-shaded zone all the states lead to (0) and the services of all
the current customers have to be completed for a new customer to enter the
queue.

Figure 3.1 Transition Diagram of Ticket Queue with K = 4
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3.2 Stationary distribution of the model

In the previous section, we described the model of Ticket Queue with balking
customers and we also presented the case where K = 4. At this point,
we need to obtain the steady state distribution of the system, denoted as
{p(n),n ∈ S}. The unpleasant situation here is that we have closed-form
solution of the steady state distribution only for small values of the balking
limit K. Fortunately though, we can follow a two-step procedure in order
to solve for the steady state distribution for general K. We now present
briefly the two steps, and the process is described in more detail in the next
subsections.

◦ We aggregate all the states n ∈ S with |n| = L and nL ≥ K into a
super state SL, L = 1, . . . , K, so that we have K super states. Hence,
the new Markov chain, hereafter called the aggregated Markov Chain,
has a finite state space and can be model as a QBD process.

◦ We disaggregate the super states and, recursively, we can obtain the
steady state probabilities of the remaining states.

3.2.1 Steady State Probabilities of Single States

The process we need to follow in order to obtain the steady state probabilities
starts with the state aggregation idea. As seen in Figure 3.1, the states in the
gray zone, that is the states n ∈ S with nL ≥ K, have a specific property if
we group them with criterion the real number of customers in queue, which
is |n| = L for each state. This property is the following:

◦ An arriving customer in such a state will surely balk as ‖n‖ ≥ nL ≥ K.
After this event, the number of joining customers will remain L and a
state transition will be accomplished towards a state of the same group;
that is a state with nL ≥ K and |n| = L.

◦ If a service completion occurs, the number of the joining customers will
be reduced to L − 1. At the same time, the Markov chain will jump
to a state which has nL−1 ≥ K and |n| = L− 1. Hence, the transition
will be done to a state of the lower group.

As an example, in the K = 4 case, states (1114),(1115),(1116), . . ., constitute
a group of infinitely many states where n4 ≥ 4 (have in mind that nL is the
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last component of each vector state) and |n| = 4. Every arrival in these
states will lead to a state in the same group, and every service will lead to a
state with |n| = 3 and n3 ≥ 4. That is, the lower group.

This is exactly the aggregation idea. As the states n ∈ S with nL ≥ K
and |n| = L have the same property we can aggregate all the states of the
same group to a super state. In that way, the state space becomes finite and
turns out to be a QBD process, as we will show later. We define the super
states as:

◦ SL = {n ∈ S : |n| = L, nL ≥ K}, L = 1, 2, . . . , K − 1.

◦ SK = {n = (eK−1, nK) : nK ≥ K},

where eL = (1, . . . , 1) is a L-dimensional unit vector. Thus, (eK−1, nK) =
(1, . . . , 1, nK). As an example, we can see that in Figure 3.1, all the states
which belong to the last column (where L = K) have exactly this form:
(111n4) for K = 4.

In that way, the state space has been reduced to a finite set. Hence, the
state space of the aggregated Markov chain is:

S∗ = {0} ∪

{
n ∈ NL :

L−1∑
l=1

nl < K,nL < K,nl ≥ 1,

l = 1, . . . , L, L = 1, . . . , K

}
∪ {S1, . . . , SK}

(3.2)

In order to model the aggregated Markov chain as a QBD process, we firstly
need to make a partition of the state space S∗. We divide S∗ into K + 1
parts, {K0, K1, . . . , KK}, where we note:

◦ K0 = {0}

◦ KL = {n ∈ S∗ : |n| = L, nL < K} ∪ SL, L = 1, 2, . . . , K

It is clear now that KL is a collection of all the L-dimensional states which
represent L joining customers in the system. This can be shown schematically
in Figure 3.2 below.

We should also note that, within KL, we order any two states lexico-
graphically. Particularly, for any two states in KL, namely n = (n1, . . . , nL)
and n′ = (n′1, . . . , n

′
L), n is listed ahead of n′ if nL < n′L or nL = n′L and∑L−1

l=i ni ≤
∑L−1

l=i n
′
i for all 1 ≤ i ≤ L− 1.

For instance, the partition of S∗ for K = 4, with all KL following the
lexicographic order described above is:
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K0 = {0}

K1 = {1, 2, 3, S1}

K2 = {11, 21, 31, 12, 22, 32, 13, 23, 33, S2}

K3 = {111, 211, 121, 112, 212, 122, 113, 213, 123, S3}

K4 = {1111, 1112, 1113, S4}

Figure 3.2 Transition Diagram of aggregated Ticket Queue with K = 4

Let us now treat the subsets {K0, K1, . . . , KK} as blocks with K+1 levels.
As we can easily see in Figure 3.2 for K = 4, we have K + 1 = 5 levels, and
a block transition can change its level by at most 1. For example, from
subset K1 we can only transit to K0 or K2, meaning that the we have solely
adjacent level transitions. Hence, for general K, if we assume that subsets
KL, L = 0, . . . , K are blocks with |KL| being the number of elements of the
corresponding subset, we can treat the aggregated Markov chain as a QBD
process and denote the following infinitesimal block partitioned generator
matrix:
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Q =



−λ A01

µe′K A11 A12

A21 A22 A23

. . . . . . . . .

AK−1,K−2 AK−1,K−1 AK−1,K

AK,K−1 AK,K


(3.3)

In matrix Q, e′K is the transpose of vector eK . Furthermore, AL,L, AL,L+1

and AL+1,L are |KL| × |KL|, |KL| × |KL+1| and |KL+1| × |KL| matrices,
respectively, for every L = 1, 2, . . . , K.

Since we have defined the transition matrix Q in a block form, it is time
to begin the computation of the stationary distribution. Hence, we let pL be
the steady state probabilities for states in KL. Naturally, p0 = p(0), as K0 is
composed by the single state (0), and pL is a row vector of |KL| dimension.
An example is that for K = 4, p1 =

(
p(1), p(2), p(3), p(S1)

)
, thus p1 is a

row vector of |K1| = 4 dimension. Hence, we can represent the distribution
{p(n),n ∈ S∗} using the notation p = (p0,p1, . . . ,pK) in order to make our
computations more convenient.

As it is well known, the stationary distribution can be computed by solv-
ing the balance equations: pQ = 0. Thus, we have:

(p0, . . . ,pK)



−λ A01

µe′K A11 A12

A21 A22 A23

. . .
. . .

. . .

AK−1,K−2 AK−1,K−1 AK−1,K

AK,K−1 AK,K


= 0

By carrying out the vector-matrix multiplication we obtain:

−λp0 + µp1e
′
K = 0 (3.4)

pL−1AL−1,L + pLAL,L + pL+1AL+1,L = 0, L = 1, . . . , K − 1 (3.5)

pK−1AK−1,K + pKAK,K = 0 (3.6)

For clarification, note that the result of (3.5) is a |KL| dimensional row vector,
which corresponds to the |KL| balance equations associated with the states in
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KL. As an example, (3.5) for K = 4 and L = 1 is p0A01+p1A11+p2A21 = 0,
where A01,A11 and A21 are 1 × 4, 4 × 4 and 10 × 4 matrices respectively,
and p0 is a scalar, while p1 and p2 are row vectors of dimension 4 and 10 in
correspondence. Every vector-matrix multiplication in the equation results
in a 1×4 matrix which is actually a row vector of |K1| = 4 dimension. Thus,
the resulting vector indeed corresponds to the 4 balance equations associated
with the states in K1 = {1, 2, 3, S1}.

As things stand now, the solution to (3.4),(3.5) and (3.6) can be given
through recursion. At first, equation (3.6) gives us after some simple matrix
operations:

pK = −pK−1AK−1,K(AKK)−1 ≡ pK−1RK−1,K (3.7)

where RK−1,K is a |KK−1|×|KK | matrix that can be found recursively using:

RK−1,K = −AK−1,K(AKK)−1 (3.8)

Following a similar process for (3.5), we can get pL. If we substitute K with
L in (3.7), we obtain:

pL = pL−1RL−1,L, L = 1, . . . , K − 1 (3.9)

Furthermore, if (3.9) holds for L = 1, . . . , K−1, then it holds for L = L+1 in
every case. We now substitute pL+1 given by (3.9) to equation (3.5). Then,
we have, for L = 1, . . . , K − 1:

pL−1AL−1,L + pLAL,L + pLRL,L+1AL+1,L = 0

pL
(
AL,L +RL,L+1AL+1,L

)
= pL−1

(
−AL−1,L

)
pL = pL−1

(
−AL−1,L

)(
AL,L +RL,L+1AL+1,L

)−1
= pL−1RL−1,L (3.10)

That means RL−1,L is a |KL−1| × |KL| matrix that can be found recursively
using:

RL−1,L = −AL−1,L
(
AL,L +RL,L+1AL+1,L

)−1
, L = 1, . . . , K − 1 (3.11)

We now observe that from (3.10) we can obtain pL for L = 1, . . . , K − 1.
Recursively, we have that pL = pL−1RL−1,L = pL−2RL−2,LRL−1,L = . . . =
p0R0,1 · · ·RL−1,L. Hence, we have:

30



pL = p0RL, L = 1, . . . , K (3.12)

RL =
L∏
l=1

Rl−1,l

where RL is defined as a |KL| dimensional row vector. The next step to
obtain the steady state probabilities, is to get p0. That is feasible, using the
normalization equation, which is:

pe′|S∗| = p0

(
1 +

K∑
L=1

RLe
′
|KL|

)

Note that |S∗| is defined as the total number of states in set S∗. Thus, from
normalization equation and (3.12), we obtain:

p0 =
1

1 +
∑K

L=1RLe′|KL|
(3.13)

pL =
RL

1 +
∑K

L=1RLe′|KL|
, L = 1, . . . , K (3.14)

We close this subsection with two interesting observations about the aggre-
gated Markov chain. Initially, we note that it contains complete information
about N , as P (N = L) =

∑
n∈KL p(n), L = 1, . . . , K. We can also obtain

from {p(n),n ∈ S∗} other useful information, such as the customer’s balk-
ing probability. However, we cannot obtain neither the complete marginal
distribution of D nor the complete joint distribution of (N,D), as there is
dependence on the individual probabilities of states in the super states. So,
we need to disaggregate the super states for this kind of information.

The second observation is, that in order to solve the aggregated Markov
chain, we could make a different partition of the state space S∗. Specifically,
the partition could be made according to the value of nL, so that we separate
the sets by rows (see Figure 3.2). Hence, we could define blocks like the
following: T0 = {0}, Tν = {n : nL = ν}, ν = 1, . . . , K − 1 and TK = {SL :
L = 1, . . . , K} and continue the process. However, this partition has bigger
computational complexity and that explains why we preferred the other one.

The first step has been achieved; we have the steady state probabilities of
all states in S∗. We need to obtain though the stationary distribution of all
the states in S, which means we have to find the steady state probabilities
of the individual states in super states. This will be shown in the next
subsection.
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3.2.2 Steady State Probabilities of States in Super States

The second step of our process begins with the disaggregation of super states
into individual states. Thus, we now work with the state space S which
includes all the single states. In order to find the steady state probabilities
of the remaining states, we have to repartition state space S into disjoint
subsets, namely {Tν , ν ≥ 0}. They are defined as:

T0 = K0 = {0}

Tν = {n ∈ S : nL = ν, L = 1, . . . , K}, ν = 1, 2, . . .

In other words, Tν contains all the states n where nL = ν, for ν = 1, 2, . . .,
so that the partition is done with criterion the last component of the state to
be ν. We literally treat the Markov chain like nL = ν denotes the level and
the rest of a state defines the phase. Therefore, we have to order any two
states within Tν , namely n and n′, lexicographically. So n is listed ahead of
n′ if |n| < |n′| or |n| = |n′| and at the same time

∑L−1
i=l ni ≤

∑L−1
i=l n

′
i for

any l. A look at Figure 3.4 makes the partition straightforward for K = 4;
Tν contains all the states in the νth row of the diagram, with ν > 1, and the
states also appear in lexicographic order for each set. Furthermore, it can be
shown that the number of states in each set Tν is given by:

|Tν | =
K∑
L=1

∑
n:nL=ν

nl = 2K−1, ν ≥ 1 (3.15)

The explanation of (3.15) is really simple. Have in mind that the joining
customers in this kind of system are K at most. Thus, there is only possibility
to have 1 or 2 or up to K joining customers in the system. As the first
joining customer in every case must be in service (first position), there are
K − 1 possible positions left for the other joining customers. That means,
the problem can be modeled as distribution of identical spheres in urns with
capacity at most 1. In order to make this straightforward, we show in the
next figure the correspondence between the spheres in urns and the states
in Tν for the case of K = 4. Every sphere indicates a joining customer, and
every urn her/his possible positions in the queue. So, for K = 4 we can see
that |Tν | = 2K−1 = 8 very easily.
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Figure 3.3 States in Tν for K = 4

It is definite now that the number of states in this case is:(
3

0

)
+

(
3

1

)
+

(
3

2

)
+

(
3

3

)
= 8

That is, generally:

(
K − 1

0

)
+

(
K − 1

1

)
+ . . .+

(
K − 1

K − 1

)
=

K−1∑
k=0

(
K − 1

k

)
= 2K−1

The last equation is due to the well known Binomial Theorem.
In the previous step, we obtained the steady state probabilities of all

states in the red zone, see Figure 3.1. These states, under the partition we
made before, are the ones in Tν where ν = K−1. Hence, we have to compute
the steady state probabilities for states in sets Tν , with ν ≥ K. Clearly, the
connection between the sets Tν and super states SL, L = 1, . . . , K is that⋃
ν≥K Tν =

⋃K
L=1 SL. So, now we have to follow a similar process and treat

the sets {Tν , ν ≥ 0} as blocks and ν ≥ 1 as level blocks. It is not difficult
to realize that, from Tν , the Markov chain can jump only to T0 or Tν+1,
or remain at the same level. Hence, we can presume that a portion of the
block-partitioned infinitesimal generator is given by:

Q̃ =


B λI0

B λI
B λI

 (3.16)
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where I is the 2K−1 × 2K−1 identity matrix, I0 = I with the difference
that its first entry on the main diagonal is zero, and B a lower triangular
2K−1 × 2K−1 matrix. Also note that in (3.16), the first row with nonblank
entries corresponds to the infinitesimal generator for TK−1, the second row
with nonblank entries to the same for TK , and so on. All the blank entries
are either equal to zero or they have nothing relevant about the computation
of our desired probabilities.

Figure 3.4 Transition Diagram of Ticket Queue with K = 4,
Under the Tν Partition

For the computation of the steady state probabilities, we need to ob-
tain the matrix B. That is totally achievable, once the balking limit K is
specified. We give an example for K = 4. The sets Tν for ν ≥ K − 1
are actually determined by Tν = {ν, 1ν, 2ν, 3ν, 11ν, 21ν, 12ν, 111ν}. Here,
|Tν | = 2K−1 = 23 = 8, which means that B is a 8× 8 matrix given by:
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B =



−(λ+ µ) 0 0 0 0 0 0 0
µ −(λ+ µ) 0 0 0 0 0 0
µ 0 −(λ+ µ) 0 0 0 0 0
µ 0 0 −(λ+ µ) 0 0 0 0
0 µ 0 0 −(λ+ µ) 0 0 0
0 µ 0 0 0 −(λ+ µ) 0 0
0 0 µ 0 0 0 −(λ+ µ) 0
0 0 0 0 µ 0 0 −(λ+ µ)



Regarding to the elements in the main diagonal of matrix B, they are equal
to −(λ + µ), because Q̃ is a stochastic matrix and every row sum must be
equal to unity.

At this point, we let p̃ν be the steady state probability vector which
corresponds to set Tν . For ν ≥ K, we get the balance equations of p̃ν in a
matrix form, so we have the following:

λp̃K−1I
0 + p̃KB = 0 (3.17)

λp̃ν + p̃ν+1B = 0, ν = K,K + 1, . . . (3.18)

With some simple matrix operations on equation (3.17) we obtain:

p̃K = p̃K−1(−λI0B−1) = p̃K−1R̃0 (3.19)

where R̃0 = −λI0B−1. At the same time, equation (3.18) gives us through
recursion:

p̃ν = p̃ν−1(−λB−1) = p̃ν−2(−λB−1)2 = . . . = p̃K(−λB−1)ν−K

Furthermore, we let R̃ = −λB−1. Hence, combining the last equation with
(3.19), we have:

p̃ν = p̃K−1R̃0(−λB−1)ν−K = p̃K−1R̃0R̃
ν−K

, ν = K + 1, K + 2, . . . (3.20)

The steady state probabilities of the individual states in the super states can
be given from (3.19) and (3.20). This is feasible as p̃K−1 has been computed
in the previous subsection, when dealing with the aggregated Markov chain.

In order to make the computation even clearer, the next subsection is
dedicated to the two step solution procedure of the stationary distribution
for K = 2.
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3.2.3 Solution of Steady State Probabilities for K = 2

Fortunately, as mentioned before, it is totally achievable to develop the ex-
plicit solution of {p(n),n ∈ S} for K = 2 with the transition diagram given
below. We simply follow the two step procedure we described before.

Figure 3.5 Transition Diagram of Ticket Queue with K = 2

The first step is to obtain the stationary distribution of the aggregated
Markov chain. Thus, we have to group all the states with nL ≥ K and
|n| = L and to aggregate them into super states, for K = 2 and L = 1, 2.
A closer look at Figure 3.5 will make it even more clear that we have now
K = 2 super states, namely S1 and S2, and the rate diagram of the aggregated
Markov chain is shown in Figure 3.6.
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Figure 3.6 Transition Diagram of Aggregated Markov Chain with K = 2

According to the usual procedure, the balance equations and lastly the
normalization equation are given by:

λp(0) = µ(p(1) + p(S1)) (3.21)

(λ+ µ)p(1) = λp(0) + µp(11) (3.22)

(λ+ µ)p(11) = λp(1) (3.23)

µp(S1) = µp(S2) (3.24)

µp(S2) = λp(11) (3.25)∑
n

p(n) = 1 (3.26)

Let ρ = λ/µ. We begin solving from equation (3.23) and thus we have:
p(11) = (λ/(λ+ µ))p(1). Substituting p(11) into (3.22), we get:

p(1) =
λ(λ+ µ)

λ2 + λµ+ µ2
p(0) = ρ

(
1 + ρ

1 + ρ+ ρ2

)
p(0) (3.27)

Now, combining equation (3.27) with equation (3.21) gives:

p(S1) = ρ

(
ρ2

1 + ρ+ ρ2

)
p(0) (3.28)

Equations (3.23) and (3.27) yield:

p(11) =
λ

λ+ µ
p(1) = ρ2

(
1

1 + ρ+ ρ2

)
p(0) (3.29)
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Finally, combining either (3.24) with (3.28), or (3.25) with (3.29), we get:

p(S2) = ρ2
(

ρ

1 + ρ+ ρ2

)
p(0) (3.30)

At this point, we have determined the probabilities p(1), p(11), p(S1) and
p(S2) in terms of p(0). So, we use the normalization equation to obtain p(0)
and then the stationary distribution of the aggregated Markov chain. Hence,
we have: ∑

n

p(n) = p(0) + p(1) + p(11) + p(S1) + p(S2) = 1

p(0) =
1

1 + ρ+ ρ2
(

1+ρ
1+ρ+ρ2

) (3.31)

Thus, we have the solution in closed form for K = 2, which means that
step one has come to an end. We continue with the second step, which is to
disaggregate the super states S1 and S2 and derive the probability for each
state they contain.

In this case, we can simply obtain the balance equations for each state
in S1 or S2. As we see in Figure 3.5, the states in S1 have the form ν, for
ν ≥ 2, while states in S2 are denoted as (1ν), for ν ≥ 2. So, we get:

(λ+ µ)p(2) = µp(12), ν = 2 (3.32)

(λ+ µ)p(ν) = λp(ν − 1) + µp(1ν), ν > 2 (3.33)

(λ+ µ)p(1ν) = λp(1(ν − 1)), ν ≥ 2 (3.34)

Firstly, we consider the steady state probability of of state (1ν) ∈ S1. Actu-
ally, equation (3.34) yields, through recursion:

p(1ν) =

(
ρ

1 + ρ

)
p(1(ν−1)) =

(
ρ

1 + ρ

)2

p(1(ν−2)) = . . . =

(
ρ

1 + ρ

)ν−1
p(11)

As a matter of fact, we have already obtained p(11) from the first step. Thus,
we finally have:

p(1ν) =

(
ρ

1 + ρ

)ν−1 ρ2
(

1
1+ρ+ρ2

)
1 + ρ+ ρ2

(
1+ρ

1+ρ+ρ2

) , ν ≥ 2 (3.35)
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Thence, we consider p(ν), ν ∈ S1. By combining (3.32) and (3.35), we can
obtain p(2). So, we get:

p(2) =
1

1 + ρ
p(12) =

ρ

(1 + ρ)2

ρ2
(

1
1+ρ+ρ2

)
1 + ρ+ ρ2

(
1+ρ

1+ρ+ρ2

) (3.36)

Also, for ν = 3, we can get from (3.33), (3.35) and (3.36):

p(3) =
λ

λ+ µ
p(2) +

µ

λ+ µ
p(13) =

ρ

1 + ρ
p(2) +

ρ

(1 + ρ)2
p(12)

=
ρ

1 + ρ
p(2) +

ρ

1 + ρ
p(2) =

2ρ

1 + ρ
p(2)

(3.37)

Generally, we can show through induction, that:

p(ν) = (ν − 1)

(
ρ

1 + ρ

)ν−1
p(2), ν ≥ 3 (3.38)

where, certainly, p(2) is given by (3.36). At this point, the second step came
to an end. It is obvious that this process works well for low values of K,
as it has been shown in this case. The next section is devoted to some
important computational benefits we have, given the stationary distribution
of the Ticket Queue.

3.3 Key Performance Measures

The computation of the stationary distribution {p(n) : n ∈ S}, gives us the
opportunity to obtain other significant measures, and through them we can
get really important information about the Ticket Queue. In this section, we
will discuss briefly the main performance measures we can get.

We surely can obtain the joint distribution of N and D, as well as their
marginal distributions, which are given by:

P (N = 0) = p(0) and P (N = L) =
∑
n∈KL

p(n), L = 1, . . . , K (3.39)

P (D = 0) = p(0) and P (D = d) =
∑

n:‖n‖=d

p(n), d = 1, 2, . . . (3.40)
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Naturally, for N and D, we can obtain the main performance measures such
as their means. But, most importantly, we can obtain key system perfor-
mance measures really useful for inferences, like the customer balking proba-
bility, Pb, and the system utilization factor, ρe, given bellow:

Pb = 1−
∑

n:‖n‖<K

p(n) (3.41)

ρe =
λ

µ
(1− Pb) = ρ(1− Pb) (3.42)

These quantities are particularly important from system’s perspective. How-
ever, from the customers’ side, the key information is mostly obtained by
the estimated queuing position given their ticket position, N |D = d. The
following equations give us the conditional distribution of N |D = d and its
mean respectively:

P (N = L|D = d) =
P (N = L,D = d)

P (D = d)
=

∑
n:n∈KL,‖n‖=d p(n)∑

n:‖n‖=d p(n)
, d = L,L+1, . . .

(3.43)

E[N |D = d] =

min(d,K)∑
L=0

LP (N = L|D = d) =

∑min(d,K)
L=0

∑
n∈KL,‖n‖=d Lp(n)∑
‖n‖=d p(n)

(3.44)

The equation (3.44) gives us another interesting result in order to improve the
Ticket Queue for both the system and the customers. That is the estimate
of the waiting time W given the ticket position:

E[W |D = d] =
1

µ
E[N |D = d] (3.45)

Furthermore, in case we need it, we can compute the distribution of W |D = d
by:

P (W ≤ w|D = d) =

min(d,K)∑
L=1

P

( L∑
l=1

Yl ≤ w

)
P (N = L|D = d), d ≥ 1

(3.46)
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where Yl are i.i.d exponential random variables with rate µ, and certainly,
P (N = L|D = d) is given by equation (3.43).

It seems that we managed to obtain everything we needed in order to
study about the system improvement; however, there is still a case that we
need to discuss. All the computational steps until this section can work
numerically only for small values of K. Actually, we have managed to carry
out the two step procedure just for K ≤ 9. So, in the next section, we will
explain why this happens and we will develop an approximation procedure
in order to compute the stationary probabilities and everything else needed
for values of K greater than 9.

3.4 The Approximation Procedure

In the last section, we mentioned that the two step procedure we have de-
veloped works for low values of K and has been numerically implemented
for K up to 9. The reason which leads to inability of carrying out all the
needed computations for higher values of K is the fact that the cardinalities
of KL and Tν grow exponentially large with K. Thus, every set KL or Tν
consists of such a huge number of states that we cannot handle the situation
numerically.

Specifically, we have already mentioned that |Tν | = 2K−1, ν ≥ 1, so for
K ≥ 10 we have already a prohibiting number of states. At this point, we
will show what happens with |KL|, the cardinality of KL, in the proposition
below.

Proposition 3.4.1. The cardinality of KL defined by

KL =

{
(n1, . . . , nL) :

L−1∑
l=1

nl < K, 1 ≤ nL ≤ K − 1, nl ≥ 1,∀l
}
∪ {SL}

is given by:

|KL| = (K − 1) ·
(
K − 1

L− 1

)
+ 1, L = 1, . . . , K (3.47)

with all nl and K positive integers.

Proof. Firstly, we note that we can partition set KL into disjoint subsets,
with the condition nL = ν, ν = 1, . . . , K − 1. In that case, we write:
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|KL| =

∣∣∣∣∣
K−1⋃
ν=1

{
(n1, . . . , nL−1, ν) :

L−1∑
l=1

nl < K,nl ≥ 1,∀l

}
∪ {SL}

∣∣∣∣∣
= (K − 1)

∣∣∣∣∣
{

(n1, . . . , nL−1, ν) :
L−1∑
l=1

nl < K,nl ≥ 1,∀l

}∣∣∣∣∣+ 1

(3.48)

The last equality holds because {SL} consists only of SL and all the disjoint
subsets have the same cardinality; the same number of elements in other
words. Now, we are looking for the cardinality of each set which appears in
(3.48). Thus, we define:

K(K,L− 1) =

{
(n1, . . . , nL−1, ν) :

L−1∑
l=1

nl < K,nl ≥ 1,∀l

}
(3.49)

In light of (3.47) and (3.48) it is sufficient to show that:

|K(K,L− 1)| =
(
K − 1

L− 1

)
, 1 ≤ L ≤ K (3.50)

We use induction on L−1 to prove (3.50). Firstly, we show that the statement
clearly holds for L− 1 = 1 and for any K ≥ L, because:

|K(K, 1)| = |{n1 : 1 ≤ n1 < K}| = K − 1 =

(
K − 1

1

)
We continue with the inductive step; we assume that (3.47) holds for L− 2,
and we show it holds for L− 1. Thus, with the same logic as above, we can
partition set K(K,L−1) into disjoint subsets. We denote the disjoint subsets
according to nL−1 = ν, and we have to determine all the possible values of
ν ∈ N. We observe that the condition nl ≥ 1 ∀l requires

∑L−2
l=1 nl ≥ L − 2.

Also, for nL−1 = ν, we have ν ≥ 1 and clearly, it holds that
∑L−1

l=1 nl < K.
Hence, using the last two inequalities, we have:

L−1∑
l=1

nl = nL−1 +
L−2∑
l=1

nl ≥ ν + L− 2

ν ≤
L−1∑
l=1

nl − L+ 2 < K − L+ 2
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So, the condition for nL−1 = ν in the disjoint subsets is 1 ≤ ν ≤ K − L+ 1.
Thus, we can write:

|K(K,L− 1)| =

∣∣∣∣∣
K−L+1⋃
ν=1

{
(n1, . . . , nL−2, ν) :

L−2∑
l=1

nl ≥ K − ν, nl ≥ 1,∀l

}∣∣∣∣∣
=

K−L+1∑
ν=1

|K(K − ν, L− 2)| =
K−L+1∑
ν=1

(
K − ν − 1

L− 2

)

The last step was obtained due to hypothesis for L− 2. Now, by adding and
subtracting L− 2, we can make a useful change of variables like this:

|K(K,L−1)| =
K−L+1∑
ν=1

(
K − ν − 1

L− 2

)
=

K−L+1∑
ν=1

(
(K − ν − 1− L+ 2) + (L− 2)

L− 2

)

=
K−L∑
y=1

(
y + (L− 2)

L− 2

)
, where y = K − L+ 1− ν

Finally, through the use of some formulas especially seen in combinatorics,
we have that:

K−L∑
y=1

(
y + (L− 2)

L− 2

)
=

(
K − 1

L− 1

)
which yields (3.50) and consequently proves (3.47).

Proposition 3.4.1 gives us the opportunity to compute the total number
of states in the aggregated Markov chain. In fact, we have:

|S∗| = |K0|+
K∑
L=1

|KL| = (K−1)
K∑
L=1

(
K − 1

L− 1

)
+K+1 = (K−1)·2K−1+K+1

Thus, the aggregated Markov chain has a huge number of states as K in-
creases, and consequently, there is a threshold where for values equal or
greater to it, we cannot carry out the computation with the two step pro-
cedure. As mentioned previously, that threshold is K = 10 for an ordinary
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PC, where we have maxL{|KL|} = 1, 135, |Tν | = 512 and |S∗| = 4, 619.
The exponential growth can be seen better if we compute these values for
a specific K > 10, for example K = 20, where maxL{|KL|} = 1, 755, 183,
|Tν | = 524, 288 and |S∗| = 9, 961, 493. These numbers are insanely huge so
we should handle the situation with another way. We develop an approxi-
mation procedure for the computations of the Ticket Queue. Thankfully, we
will see in the following that this approximation is quite accurate; hence we
can use it for values K ≥ 10 without any problem.

The fundamental idea for the approximation procedure is to intelligently
eliminate the states with negligible probabilities because we need to reduce
the sizes of KL and Tν for large K. In order to achieve something like that,
we should see the Ticket Queue differently. We observe that, if we separate
the customers into two groups, the joining and the balking customers, and
we only keep the total number of customers in each group, the number of
states in our Markov chain will be dramatically reduced. Hence, we can
consider a modification of the Ticket Queue, hereafter the modified Ticket
Queue, where we have two separated queues, one for joining customers and
another for balking customers (called joining customers’ queue and balking
customers’ queue respectively). The description of this modification is the
following; we have a higher priority of service to the joining customers’ queue.
So, an arriving customer draws a ticket with a number and decides if s/he is
going to join or balk with the same criteria as before, because her/his ticket
position corresponds to the total number of customers in both queues and
s/he cannot observe the real queue length. If the customer joins, s/he is
placed at the end of the joining customers’ queue, and if s/he balks, s/he
is placed at the end of the balking customers’ queue. Exactly because we
have a higher priority of service to the joining customers’ queue, when this
queue empties, all the customers in the balking customers’ queue are released
simultaneously.

Before we define the modified Ticket Queue, we should note that we
expect the two systems (the original Ticket Queue and the modified one) to
have similar stochastic behavior. This is of our concern, as there is no point
in the modification then. The two systems would have similar stochastic
behavior, if the balking customers in the original Ticket Queue intermix
rarely with the joining customers. Meaning that, when balking customers are
present, they are most likely at the end of the queue and not intermixed with
joining customers. If this happens to the original Ticket Queue, it appears
closer to the modified Ticket Queue, where all the balking customers are
placed at the end of the queue by default (as the have lower priority from
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the joining customers).
We now model the modified Ticket Queue; to represent the states we need

only an ordered pair, let (L, ν), where L with 0 ≤ L ≤ K is the length of the
joining customers’ queue and ν ≥ 0 is that of the balking customers’ queue.
The transitions here are made this way; with rate λ, a state (L, ν) goes to
(L+1, ν) for L+ν < K, otherwise goes to state (L, ν+1), 0 ≤ L ≤ K, ν ≥ 0.
Furthermore, with rate µ, a state (L, ν) goes to (L − 1, ν) for 2 ≤ L ≤ K
and for L = 1, (1, ν) goes to (0, 0),ν ≥ 0. (0, 0) represents the empty system,
with no staying and balking customers at all. As an example, Figure 3.7
below shows the transition diagram of the modified Ticket Queue for K = 4.

Figure 3.7 Transition Diagram of Modified Ticket Queue with K = 4

As a matter of fact, the solution procedure for the modified Ticket Queue
is similar to the two step procedure we described before, but with a drastically
reduced state space. So, we have to follow two steps in order to obtain
the stationary distribution. The first step is to aggregate all states with
1 ≤ L ≤ K and ν ≥ K − 1 into super states and model the aggregated-
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modified Ticket Queue as a QBD process; in the second step we disaggregate
the super states and we compute the probabilities of the individual states in
the super states. The description of the solution here is brief as we have seen
the similar one in a more detailed way.

To begin with step 1, we redefine the super states for the aggregated-
modified Ticket Queue as:

SL = {(L, ν) : ν ≥ K − 1}, L = 1, . . . , K

From the definition of SL, we can see that every arriving customer in a state
in SL would balk because L + ν ≥ 1 + (K − 1) = K. These are the states
in the gray zone, in Figure 3.7, for K = 4. We group again the states that
have L joining customers as KL, so we define:

K0 = {(0, 0)}

KL = {n = (L, ν) : 0 ≤ ν ≤ K − 2} ∪ {SL}, L = 1, . . . , K

We also observe that |KL| = K, L ≥ 1. Hence, the state space of the
aggregated-modified Ticket Queue is given by:

Sm = {n = (L, ν) : 0 ≤ L ≤ K, 0 ≤ ν ≤ K − 2} ∪ {S1, . . . , SK}

We can easily now see that the cardinality of Sm is |Sm| = K2 + 1, which
increases quadratically instead of exponentially in K. For example, a simple
comparison between the two models when K = 10 is that |S∗| = 4, 619 while
|Sm| = 101; and when K = 20, |S∗| = 9, 961, 491 and |Sm| = 401. These
results indicate that the modified Ticket Queue has a much more reduced
state space and this really simplifies the computation effort.

Continuing with the example of K = 4, we also represent the transition
diagram of the modified Ticket Queue with super states in Figure 3.8. The
diagram helps us to realize the way we will compute the stationary distri-
bution schematically. Let {pm(n) : n ∈ Sm} be the stationary distribution
of the aggregated-modified Ticket Queue. We again treat {K0, . . . , KK} as
blocks and L as block levels, 0 ≤ L ≤ K. Otherwise, we can describe L,
with 0 ≤ L ≤ K as levels and note ν as phases. Both notations lead to the
consideration of the aggregated-modified Ticket Queue as a QBD process,
with block-partitioned infinitesimal generator Q denoted by:
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Q =



−λ A01

µe′K A11 A12

µI A22 A23

. . . . . . . . .

µI AK−1,K−1 AK−1,K

µI AK,K


(3.51)

Note that A01 = (λ, 0, . . . , 0) is a matrix of dimension 1 × K, AL,L+1 is a
K ×K diagonal matrix with the first K − L main diagonal entries equal to
λ, L = 1, . . . , K − 1 and zero otherwise; and finally, the matrices named as
AL,L, L = 1, . . . , K, which are upper triangular and have the following type:

AL,L =



−(λ+ µ) 0
. . .

. . .

−(λ+ µ) 0
−(λ+ µ) λ

. . .
. . .

−(λ+ µ) λ
−µ


(3.52)

Now let pm0 = pm(0, 0), and pmL be the probability vector corresponding to
set KL, L = 1, . . . , K. In fact, we follow the same process as in (3.4)-(3.14),
with some differentiation. We obtain again that:

pm0 =
1

1 +
∑K

L=1RLe′K
(3.53)

pmL =
RL

1 +
∑K

L=1RLe′K
, L = 1, . . . , K (3.54)

where we have a difference in the notation of RL. So, we redefine RL as:

RL =
L∏
l=1

Rl−1,l (3.55)

and then, with the new notation, RL−1,L can be derived recursively by:

RK−1,K = −µ(AK,K)−1 (3.56)

RL−1,L = −µ(AL,L − µRL,L+1)
−1, L = 1, . . . , K − 1 (3.57)
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Figure 3.8 Transition Diagram of Aggregated-Modified Ticket Queue
with K = 4

Thus, we have shown briefly the results we get after carrying out the first
step. For the step 2, we need to compute the probabilities of the individual
states in the super states, a process similar to the one described in subsection
3.2.2. Hence, we firstly disaggregate the super states into individual states,
and we repartition the states of the modified Ticket Queue by ν which is the
length of the balking customers’ queue. This way, we redefine the sets Tν as
the sets of states that have ν balking customers by:

T0 = {(0, 0) ∪ (L, 0) : L = 1, . . . , K}

Tν = {(L, ν) : L = 1, . . . , K}, n = 1, 2, . . .

Naturally, the states in Tν are ordered increasingly with L. Actually, each
row of states in Figure 3.7 represents a state set Tν , for ν ≥ 0. As for ν ≥ 1,
note that |Tν | = K. We also observe that, the steady state probabilities of
states in sets T0, . . . , TK−2 are already known via (3.54).

The infinitesimal generator Q̃ in this case is similar to (3.16). So, the

portion of Q̃ needed for the computation of the steady state probabilities of
n ∈ Tν , ν ≥ K − 1 is given by:
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Q̃ =


B λI0

B λI
B λI

 (3.58)

The differences are that now, I is the K ×K identity matrix, I0 is the same
as I except the fact that the first entry on its main diagonal is zero; and,
finally, B is a K ×K lower triangular matrix given by:

B =


−(λ+ µ)

µ −(λ+ µ)
. . .

µ −(λ+ µ)
µ −(λ+ µ)

 (3.59)

We denote as p̃mν as the probability vector corresponding to set Tν , with
ν ≥ K − 1. We follow the similar process which led to (3.19)-(3.20), and we
obtain:

p̃mν = p̃mK−2(−λI0B−1)(−λB−1)ν−K+1 = p̃mK−2R̃
0
R̃
ν−K+1

, ν = K−1, K, . . .
(3.60)

where R̃
0

= −λI0B−1, R̃ = −λB−1 andB is given by (3.59). Consequently,
we can compute p̃mν for ν ≥ K−1 through (3.60), using also (3.54) in order to
indicate p̃mK−2. Thus, the second step is over and the steady state probabilities
of the modified Ticket Queue have been obtained. Note also, that given
the distribution {pm(n)}, we can compute the same way the performance
measures we defined back in section 3.3, this time for the modified queue.

We continue this section by comparing the behavior of the original and
the modified Ticket Queue. The results are based in our primary source, the
work of Xu, Gao and Ou (2007), and are given through computations and
simulation. The idea is that we compare various measures in a total of 130
different system parameter settings which are created from combinations of
13 different balking limits (K = 2, 3, . . . , 9, 10, 20, 30, 40, 50) and 10 different
traffic intensity levels (ρ = λ/µ = 0.1, 0.2, . . . , 0.9, 1.0). Note that, although
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the system is stable for any ρ > 0, we only test cases where 0 < ρ ≤ 1,
because there they represent the most common system situations.

Furthermore, we need to highlight how actually the comparison between
the original and the modified Ticket Queue works for the various values of
K. For the original Ticket Queue, we carry out the computations up to
K = 9 and for K ≥ 10 we simulate the results as the computation is not
possible due to the exponential growth of the state space. For the modified
Ticket Queue we can compute the stationary distribution for all the tested
values of K; so the results can be obtained completely through numerical
computations. Hence, in the following, the compared measures are given
just as we described before.

We should note that the comparisons are virtually shown with plots.
Therefore, to quantify how close are two plotted lines, we define the following
measures:

◦ MAD (Maximum Absolute Difference), noted as the maximum of all
the absolute differences

◦ TAD (Total Absolute Difference), which is the sum of all the absolute
differences

Table 3.1 below shows interesting statistics on MAD and TAD, on a numer-
ical comparison of N and Nm, and D and Dm; to begin with, it reports
their values of the 10 worst scenarios of TAD over the 130 scenarios tested.
Additionally, the last row of Table 3.1 shows the averages of MAD and TAD
over 130 cases. In brief, the inferences made from Table 3.1 are the follow-
ing; the approximation is excellent, and even though it may worsen with
tremendously heavy traffic intensity (e.g. ρ = 1), the worst values of TAD
and MAD (about 0.07 and 0.0059 respectively) indicate that the modified
Ticket Queue generates a good approximation in every case. Generally, the
statistics obtained in Table 3.1 support the fact that the plotted lines of the
distributions of N and Nm, as well as for those of D and Dm, are definitely
very close over a wide range of parameter values.

At this point, we begin with the plot comparisons of different measures
in order to investigate the behavior of the two tested queues; firstly we will
show the plots between the distributions of N and Nm in Figure 3.9 and
the distributions of D and Dm in Figure 3.10 for two specific cases. These
cases are K = 9 or K = 50 with various values of ρ. As expected from
the numerical statistics observed in Table 3.1, the original and the modified
Ticket Queue have extremely close behavior relatively with the distributions
of N , Nm, D and Dm.
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Table 3.1 Comparisons of N and Nm and D and Dm: 10 Worst Cases of
TAD Over 130

Figure 3.9 Comparisons of Distributions of N and Nm
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Figure 3.10 Comparisons of Distributions of D and Dm

The next measures we are going to compare are the balking probabilities
of the original and the modified Ticket Queue, noted as Pb and Pm

b . The
partial results for the 130 scenarios are featured in Figure 3.11.

Finally, we compare E[N ] and E[Nm] for various values of K, ρ. In this
case, we define the next measure in order to obtain the desired the results:

◦ APE (Absolute Percentage Errors), which can be computed as:
APE= 100%× |E[Nm]− E[N ]|/E[N ]

Note that APE is a meaningful measure to compare the relative differ-
ence of two quantities, but has the disadvantage of the instability when the
denominator is really close to 0; hence it can be used properly when the prob-
ability or distribution comparisons do not approach 0 rapidly. Here, APE
can be used and therefore, we have the comparisons shown in Figure 3.12.

In conclusion, we shall say that the numerical evidence we have been
provided with, truly indicate the fact that the approximation of the origi-
nal Ticket Queue by the modified one is of high quality in all terms. This
explains our decision to define the modified Ticket Queue, and thus provide
solutions despite the problem of exponential growth that appeared in the
original problem.

We should also note that it is reasonable to guess that Nm is a stochastic
lower bound of N . This conjecture can be confirmed when K = 1, . . . , 9
and ρ = 0.1, . . . , 1.0. Furthermore, the computation results show that the
difference P (N ≥ ν)− P (Nm ≥ ν) has a tendency to be increased in K and
ρ. However, we have only computational evidence for this guess, as it was
not possible for us to prove it using some formal probabilistic argument.

52



Figure 3.11 Comparisons of Balking Probabilities Pb and Pm
b

Figure 3.12 Comparisons of E[N ] and E[Nm]

Before the end of this section, we will report an interesting discovery
that has been done. We have found that there is an approximately linear
relationship between the queuing position and the ticket position, when K
(the customers’ tolerance limit) is increased. So, surprisingly, we saw that
E[Nm|Dm = cK], with c constant, increases approximately linearly in K.

The procedure we followed in order to reach this discovery begins with
the computation of E[Nm|Dm = cK]. We observe in Figure 3.13 that, for the
modified queue, the event of {Dm = d} corresponds to the entries on the dth
northeast to southwest diagonal. Remember that Dm, the ticket position,
is computed by Dm = L + ν for every state. Hence, using the previous
information, we have:
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P (Dm = d) =

min(d,K)∑
l=1

pm(l, d− l) (3.61)

E[Nm|Dm = K] =

∑min(d,K)
l=1 l · pm(l, d− l)

P (Dm = d)
(3.62)

The next step is to use equations (3.61) and (3.62) for computing the values
of E[Nm|Dm = cK] for c = 0.5, 0.6, . . . , 1.0 at different values of ρ and K. In
Figure 3.14 we see the approximate linear relationship of E[Nm|Dm = cK]
in K for the previous noted values of c and ρ = 0.9. This also holds for any
other ρ value tested.

Figure 3.13 The Event of {Dm = d} in Modified Ticket Queue
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Figure 3.14 E[Nm|Dm = cK] with c = 0.5, 0.6, . . . , 1.0 and ρ = 0.9

In addition, as we wanted to establish the validity of the linear relation-
ship, we have simulated E[N |D = cK] for the original Ticket Queue, using
the same c, K and ρ values. In Figure 3.15 we can see that thee approximate
linear relationship is also confirmed for the original Ticket Queue.

Figure 3.15 E[N |D = cK] with c = 0.5, 0.6, . . . , 1.0 and ρ = 0.9
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In conclusion, we also observe the following inferences:

◦ E[N |D = cK] is decreasing in c

◦ E[N |D = cK] ≈ cK for sufficiently small c

◦ E[N |D = cK] is decreasing in ρ

The second observation is made because when the ticket position is small
there is a big possibility that almost all customers are present. The third one
comes from the fact that a higher traffic intensity implies a higher percentage
of balking customers and that means lower E[N |D = cK].

At this point, the analysis of Ticket Queue with balking customers has
been completed. In the next section, we will use this analysis and we will
examine more issues in order to offer improvement suggestions for both the
system and the customers in this kind of Ticket Queue.

3.5 Service Improvement

As we have already illustrated, although the Ticket Queue offers several
advantages over the physical queue (the corresponding queue without ticket
issuance; in this case M/M/1/K queue), there is a significant drawback for
both management and customers. That is, no one of them has complete
information about the number of customers in the system. The result is that
the customers overestimate their waiting time and may abandon the queue
without entering; so we have a higher balking rate and the system tends to
be less productive exactly for this reason. Then, is there a way to improve
the performance of the Ticket Queue in order to benefit both the customers
and the system? This section is dedicated to the answer of this question.

Recall our assumption that customers are naive and they balk if their
ticket position D is greater or equal to their patience limit K. Our goal is to
use the comparison of this Ticket Queue and the physical queue (M/M/1/K)
for obtaining results which will lead to a new, improved model, where we
will virtually eliminate the performance gap between the physical and ticket
queues. Thus, firstly the comparison, and secondly the improved Ticket
Queue, are the subjects of our next subsections.
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3.5.1 Comparison of Ticket Queue and Physical Queue

Our first step is to show that, compared with a physical queue, a Ticket
Queue is “less crowded”, but still has a higher balking probability. In other
words, the Ticket Queue, compared with the physical queue, even though
often has less customers waiting for service, the arriving customers tend to
balk more frequently because they perceive the ticket position as the real
number of joining customers in the system.

Denote N , Nm and Np as the stationary numbers of joining customers in
the ticket, modified and physical queues respectively. The same goes for W ,
Wm and W p, which are referred as the stationary waiting times of joining
customers in each queue. Finally, we can indicate that Pb, P

m
b and P p

b are the
balking probabilities in the ticket, modified and physical queues respectively.
Using this notation, we introduce the next proposition which shows exactly
this fact; the modified and the original Ticket Queue are less crowded but
they still have a higher balking probability than the physical queue.

Proposition 3.5.1. Consider the ticket, modified ticket and physical queues
which have the same arrival rate λ, service rate µ, and balking limit K. Then:

◦ P (N ≤ n) ≥ P (Np ≤ n) and P (Nm ≤ n) ≥ P (Np ≤ n)

◦ As a consequence, E[N ] ≤ E[Np] and E[Nm] ≤ E[Np]

◦ Pb ≥ P p
b and Pm

b ≥ P p
b

Proof. The proof is omitted. The proposition can be shown using coupling.
The reader is referred to the Appendix C of Xu, Gao and Ou (2007) for more
information.

As for the waiting time W , we have that W =
∑N

l=1 Yl, where Yl, l ≥ 1,
are i.i.d. exponential random variables independent of N . The same goes for
Wm and W p with Wm =

∑Nm

l=1 Yl and W p =
∑Np

l=1 Yl respectively. Hence,
Proposition 3.5.1 implies:

P (W ≤ w) ≥ P (W p ≤ w) and P (Wm ≤ w) ≥ P (W p ≤ w) (3.63)

E[W ] ≤ E[W p] and E[Wm] ≤ E[W p] (3.64)

It is clear now that Proposition 3.5.1 and (3.63), (3.64), can give us easily
computable bounds for the key performance measures of the Ticket Queue,
whose analytical solutions cannot be obtained.
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We can surmise that the probability of abandonment in the system is a
key measure that is essential for both the customers and management, as it
is important for the two sides to lower it. In order to understand the effect of
partial information on abandonments, we compute and compare the values
of TAD and APE of the balking probabilities between the modified Ticket
Queue and the physical queue, for all values of 0 < ρ ≤ 1 and 2 ≤ K ≤ 50.
At this point, we remind the meaning of the two measurements and we give
their formula:

◦ TAD (Total Absolute Difference), defined as Pm
b − P

p
b

◦ APE (Absolute Percentage Errors), noted as 100%× (Pm
b − P

p
b )/P p

b

Thus, we now present our findings for TAD as a function of K and ρ in Figure
3.16, while Figure 3.17 shows the corresponding results of APE. Thereafter,
we discuss briefly the management insights that have been obtained from our
qualitative and quantitative results.

Figure 3.16 On the left: Balking Probability Difference (TAD) of Ticket
Queue and M/M/1/K. On the Right: Partition of Parameter Space (K, ρ)

with Different TAD Ranges.

As seen if Figure 3.16, we have partitioned the parameter space (K, ρ)
into three, non-overlapping regions: significant, moderate and insignificant.
The partition has been done in order to identify the parameter settings under
which the two systems (ticket and physical queue) give different ranges of
TAD. So, the significant region contains the (K, ρ) values that give TAD
measurements at least 3% and up to 6%; in the moderate region, TAD varies
from 1% to 3%; and finally, in the insignificant region, TAD is less than 1%.
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Figure 3.17 On the left: Percentage Balking Probability Difference (APE)
of Ticket Queue and M/M/1/K. On the Right: Partition of Parameter

Space (K, ρ) with Different APE Ranges.

We shall introduce our findings and be led to an idea of improvement:

◦ Firstly, we can presume from Proposition 3.5.1, that although the
Ticket Queue is actually less crowed (in stochastic sense) than the
physical queue, it appears busier than the later. Thus, the ticket posi-
tion is the visible information and the actual position in queue is the
hidden, causing naive behavior from the customer’s perspective. This
is a fact which can be harmful from both customers and the business.
For business, it means lost sales even there was enough capacity in the
system to provide service. For customers, it means unsatisfied demand
even though they can tolerate the wait. So, there comes the idea to
communicate to the customers the hidden information of the actual
queue in a clear, quantifiable way, which will help them realize that
their waiting is not so intolerable as they think.

◦ As seen in Figure 3.16, TAD decreases in K for fixed ρ, and also in-
creases in ρ for fixed K, meaning that the ticket and physical queues
show the most significant balking probability differences (up to 6%) for
small K and large ρ values. This difference in behavior between the
two queues measured by TAD is completely reasonable, as low K values
mean that the customers are impatient and large ρ values that traffic
intensity is high. Therefore, we should discover effective strategies for
maintaining service performance especially for the Ticket Queue with
impatient customers and moderate or heavy traffic. Furthermore, we
observe in Figure 3.16 that as K increases and/or ρ decreases, TAD
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gradually decreases and eventually vanishes (for sufficiently large K
and/or small ρ). Hence, these insignificant-difference cases indicate a
Ticket Queue system which can offer customers a comfortable queuing
environment keeping the same service level as that of a physical queue.

◦ One more well known thing to point out is the convexity of the balk-
ing probability of M/M/1/K queue, P p

b , which is increasing in ρ and
decreasing in K. That is, the physical system’s performance worsens
rapidly when K becomes smaller and ρ larger. Our findings can confirm
the same pattern for Pm

b and TAD= Pm
b − P

p
b . So, both Pm

b and TAD
deteriorate at an accelerating speed as the balking limit K decreases
and the traffic intensity ρ increases. Thus, in this case, the Ticket
Queue tends to exacerbate the already poor service of the physical
queue. Numerically, we have carried out that in the moderate region
the M/M/1/k system has an average balking probability of 5% which
is worsen to 7% in the Ticket Queue. Also, the corresponding results
for the significant region is that the average balking probability of the
physical queue is 14.3%, which is rather high, but its performance de-
teriorates to 18.7% in the Ticket Queue. As a consequence we really
need an effective management of the Ticket Queue when its parameters
fall into the moderate or significant region.

◦ It can be observed that the Ticket Queue technology is applied mainly
in systems with heavy traffic, such as bank offices. This is not a co-
incidence as it finally works better in systems with this characteristic
according to our results. Additionally, note that TAD should be the
primary measure for our inferences, supplemented by APE for quanti-
fying the stochastic difference between the two systems.

Thus far, we came up with computational and numerical evidence regard-
ing the comparison of the ticket and physical queues. The results help us to
determine a Ticket Queue model, which mends the difference between the
balking probabilities of the two models and takes queuing with use of tickets
to another level. This model is represented in the next subsection.

3.5.2 The Ticket-Plus Queue

As seen previously, a larger performance gap takes place between the ticket
and the physical queues when the customer is impatient and/or the traffic
intensity is high. In order to reduce this difference, we propose a new model,
namely the Ticket-Plus Queue.
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Recall section 3.1, where we have reported an interesting finding, which
is the approximately linear relationship between E[N |D = cK] and K.
This discovery suggests that management can perform sensitivity analysis
of E[N |D = cK] with various values of customer’s tolerance limit K and
use the result to develop a service improvement policy. For example, assume
that c = 1. Then, E[N |D = K] denotes the expected queuing position of
the marginal balking customer. So, if this information can be easily com-
puted for various K values and pass on to the customers, it can help them
estimate their expected waiting time more correctly and hence reduce the
balking rate. That is precisely the idea behind the recommendation of the
Ticket-Plus Queue.

The Ticket Queue we are proposing has an additional element; we suggest
that on the issued ticket, except of the number, there can also be printed the
expected waiting time (1/µ)E[N |D = d] for a given ticket position d. This
new information will rectify the customer’s incorrect estimate of hers/his
expected delay (d/µ). Furthermore, we assume that the ticket technology
enables the system to keep track of ticket count d, so that it can provides
the needed information dynamically. Under these assumptions, the resulting
queue is the Ticket-Plus Queue. In fact, people feel better about queuing
when they can estimate in advance their waiting time, hence the Ticket-Plus
queue gives them the additional information they need to achieve it.

It is time to point out the computational perspective of our recommen-
dation; thus, in order to get the expected waiting time (1/µ)E[N |D = d]
printed on the ticket correctly, we assume that the system is aware that a
customer will balk the queue if hers/his estimation of their waiting time is
more than K/µ for an integer value of K. So, the management knows that
a customer will balk, when hers/his ticket position is K and higher.

The next step is to find the smallest integer K̃ such that:

E[N |D = K̃] ≥ K (3.65)

where the expectation can be computed as seen in equation (3.62) of the

approximative procedure in section 3.4, using K̃ instead of K as the balking
limit. Therefore, an upward search is applied in the finding of K̃. Also, as
E[N |D = K] increases approximately linear in K, we can claim that K̃ is
well defined.

After the computation of K̃, we use the result to obtain (1/µ)E[N |D = d]

for ticket positions d = 1, . . . , K̃. So, we can now provide the customer with
ticket position d with the unbiased, average waiting time (1/µ)E[N |D = d].
With this modification, customers will balk if and only if their ticket position
is K̃ and above, so that the Ticket-Plus Queue will finally behave as the
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Ticket Queue with balking limit K̃. Naturally, we expect K̃ to be greater
than K, as the Ticket-Plus Queue implies an improvement of the initial
model. Furthermore, we recommend printing the average waiting time on
the ticket, because we really need to communicate this information to the
customers, and with this way we can guide them appropriately to behave the
same way as in the Ticket Queue with balking limit K.

Figure 3.18 Comparison of Balking Probabilities of Ticket-Plus and
Physical Queues, ρ = 0.1, 0.3, . . . , 0.9

Finally, we shall see graphically in Figure 3.18 that the Ticket-Plus Queue
always yields a balking probability virtually identical to that of the M/M/1/K
queue. Also, note that the largest balking probability difference (TAD) is
0.009, a really low value. Additionally, we can use the relationship ρe = ρP p

b ,
where ρe is the system utilization factor, to show that the Ticket-Plus Queue
and the physical queue have virtually the same system utilization. Lastly, our
numerical results imply that the expected waiting times for those customers
that do not balk in two queues is almost identical.

In conclusion, we shall say that by informing the customer of his antici-
pated delay based on the ticket position, management can raise the perfor-
mance of the Ticket Queue to the level of the physical queue and at the same
time maintain the benefits of the former. However, although the performance
of both queues is virtually identical in several first moment measures like the
expected waiting time, it cannot be inferred that this will happen in higher
moment measures.
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3.6 Threshold Strategies in Ticket Queues

In this section, we examine the same model of Ticket Queue from a differ-
ent perspective. In synopsis, we have considered a Markovian queue with
homogeneous customers where, each customer upon arrival is issued a ticket
with an assigned number, and decides whether to join or balk according to
hers/his ticket position (the observed difference of the number on hers/his
ticket with the display panel number). The decision is made through a sim-
ple threshold-based strategy, to join if and only if the ticket position is below
a threshold K. Hence, we keep the same assumptions and we also consider
that the customers are homogeneous with respect to their payoff functions.

Now, we are going to model the system as a symmetric non-cooperative
game in which the set of actions is to join or balk. So, given this simple
threshold strategy we can show that it is not a Nash equilibrium strategy.
Using this statement we mean that, if all the customers follow the same single
threshold strategy we have described, an individual customer will prefer not
to adopt it and deviate from the other customers. Consequently, our principal
concern is to determinate which is the best response of an individual against
the threshold strategy adopted by all the other customers, and the answer is
going to be surprising.

In the following, we will reexamine the same model and we will focus at
some different points in order to reach our main goal which is the determi-
nation of the best response. We will also take the previous analysis of the
stationary distribution a few steps further, because we need to get scalar
expressions instead of a matrix representation of the solution. Thus, in the
subsequent subsection, we will remind briefly the basic aspects of the model
described in section 3.1 and we will give a definition and two useful, for our
next purposes, propositions.

3.6.1 Steady State Probabilities

The model we presented before works like a standard FCFS M/M/1 queue
with arrival and service rate λ and µ respectively. A customer who finds
the system empty joins surely, otherwise decides to stay only if hers/his
ticket position D, which is perceived as the actual queue length, is below the
tolerance limit K, that is the same for all customers. Therefore, a customer
joins if and only if D < K, otherwise balks. Also, a balking customer who is
called for service, is considered to spend zero time being served.

We remind the state representation; the Markovian description is achieved
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with the definition of the L-dimensional vectors n = (n1, n2, . . . , nL), where
L is the number of joining customers and nl, l = 1, . . . , L is the number of
tickets issued to the balking customers after the lth and prior to the (l+1)th
joining customer. The state space is given by (3.1). We have shown the
transition diagram for K = 4 and K = 2 in Figures 3.1 and 3.5 respectively,
and in Figure 3.19 below we show the case of K = 3 to cover the three
simplest cases and recall schematically the model.

Figure 3.19 Transition Diagram of Ticket Queue with K = 3

In Figure 3.19, levels denote the infinite groups of states with the same
nL, where the total of 2K−1 phases represent state groups which have similar
rest of the state, noted as (n1, . . . , nL−1). This is actually the partition we
made in 3.2.2 in order to model again the problem as a QBD process and it
is useful to bring back that in mind.

At this point, we are going to expand the results we obtained before by
providing the steady state distribution in two forms; the first one is a matrix
geometric form, while the second, and the most useful, is a scalar form. For
convenience, we use the same notation as in 3.2.2; so, we denote as p̃ν the
2K−1 vector of steady state probabilities associated with Tν (as defined in
3.2.2). Hence, with the other way, if we note V as the level and H as the
phase, the jth component of p̃ν is: p̃ν(j) = P (V = ν,H = j).

Recall that, for all ν ≥ K equation (3.18) gives (3.20), so that we have:
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p̃ν = p̃KR̃
ν−K

, R̃ = −λB−1

Remember that B is a lower triangular matrix, placed on the diagonal of
the generator matrix, thus contains the transition rates that do not change
the level. Also, each element of the main diagonal of matrix B is equal to
−(λ+ µ) exactly because B appears on the diagonal of generator Q̃. So, let

us now show the transition matrix Q̃ for K = 3, which is:

Q̃ =



A00 A01 0 0 0 0
C A11 A12 0 0 0
C A21 B A23 0 0
C 0 0 B λI4 0
C 0 0 0 B λI4
...

...
...

...
...

...


Now, let Ei,j be a 4 × 4 matrix, with 1 in position (i, j) and 0 everywhere
else. For instance, E12 is defined as:

E12 =


0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0


Furthermore, note that I4 is the 4×4 identity matrix. Hence, in Q̃ we have:

A00 = (−λ)

A01 = (−λ, 0, 0, 0)

A11 = B + λ(E12 +E24)

A12 = λI4 − λ(E11 +E22)

A21 = λE13

A23 = λI4 − λE11

The extra thing we need to obtain for our purposes in this section, is an

explicit expression for R̃
ν−K

, for an arbitrary ν ≥ K. The first thought that
comes in mind is, since R̃ is a lower triangular matrix, so are its powers.

However, before we represent the proposition for R̃
ν−K

below, we should
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discuss a relation between the real number of customers in the system and
the phases.

Let n(j) be the number of joining customers in the system associated
with phase j. That is, mathematically defined:

n(j) = min

{
k :

k−1∑
l=0

(
K − 1

l

)
≥ j

}

As an example, in the case where K = 3, we have that n(1) = 1, n(2) = 2,
n(3) = 2 and n(4) = 3. We can see this schematically in Figure 3.15, that
each column (phase) consists of states which have 1, 2, 2 and 3 components
respectively. We also define the following set:

◦ Let α = (n1, . . . , nn(j)) be a representative state of phase j for any
given level nn(j). Then, A(j) is the set of all phases i such that the last
n(j) components of their states are similar to α.

In other words, we can say that A(j) contains all phases i which, without
their w(i, j) = n(i)−n(j), w(i, j) ≥ 0 first components, represent the phase j.
We will give an example to make this definition straightforward; for K = 3,
A(1) = {1, 2, 3, 4}. This can be understandable by computing all w(i, j)s for
i = 1, 2, 3, 4 (all the phases) and j = 1 (as we want to indicate A(1)). So, we
have:

w(1, 1) = n(1)− n(1) = 0

w(2, 1) = n(2)− n(1) = 1

w(3, 1) = n(3)− n(1) = 1

w(4, 1) = n(4)− n(1) = 2

Indeed, if we remove none of the first components of states in phase 1, it
looks like itself. Furthermore, if we remove the first components of states in
phase 2, it looks like phase 1. The same goes for phase 3, while for phase 4, if
we remove the first two components from every state, it is similar to phase 1.
Following this procedure, we can show also that A(2) = {2, 4}, A(3) = {3}
and A(4) = {4}.

Given this definition, we can now represent the proposition for the explicit

solution of R̃
ν−K

. This proposition will lead us to a second one, which is
about the presentation of the steady state probabilities in a scalar expression,
as said before, more useful for our purpose in this section.
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Proposition 3.6.1. Consider two phases, i and j. We have:

R̃
ν−K(

i, j
)

=


(
ν−K+w−1

w

)(
µ

µ+λ

)w(
λ

µ+λ

)ν−K
, if i ∈ A(j)

0, otherwise
(3.66)

where w = w(i, j).

Proof. We show a proof with probabilistic/ combinatorial approach. Actu-
ally, in this approach, we observe the process with a discretized way; that is,
we focus on an equivalent discrete time Markov chain, with transition matrix
P = I + 1

λ+µ
Q.

Firstly, note that, for levels greater than or equal to K (the gray zone
in diagrams), changes in phases can only be in one direction. In fact, these
changes take place only after service completions and hence the result always
decreases the phase.

In addition, note that the levels can only be increased in this zone (ν ≥
K). So, if we project the transitions only on the phase axis, there is only one
trajectory of the process until reaching state 0. That means, the number of
trajectories from a state until reaching another state (with a lower phase and
a higher level, as there is no other possibility when navigating from state to
state in gray zone, ν ≥ K), is finite and easy to characterize.

At this point it is time to determine (3.63); first of all, we shall say that
if i /∈ A(j), there cannot be any transition from a state of phase i to a state

of phase j, so, in that case, R̃
ν−K(

i, j
)

= 0 for all j.
Let us now consider that i ∈ A(j). We can distinguish two cases here;

the one is i = j and the other is i 6= j.
For i = j, we remain in the same phase. That is, the level is increased

by ν −K without any phase changes. This also means that there are ν −K
arrivals without service completions. The probability of such an event is(

λ
µ+λ

)ν−K
, which is exactly the value of (3.36) with w = 0. As a matter of

fact, w = w(i, j) = n(i) − n(j) is equal to 0 if i = j. Thus, (3.36) holds in
this case.

For i 6= j, in order to reach the higher level of ν−K units, we should jump
from a phase to another phase. So, actually, we have service completions
taking part here. There are

(
ν−K+w−1

w

)
trajectories that can change the level

by ν −K together with w service completions.
Giving an example here, imagine that ν = 5 ≥ K = 3. So, we have that(

ν−K+w−1
w

)
=
(
w+1
w

)
= w + 1. That means, for w = 0, we have no service

completions, so there is only one way to reach a level 2 units higher, and this
is only by two arrivals. For w = 1, we have two ways to reach a level 2 units
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higher so that it occurs only one service completion. For instance, from state
(113) there are two possible ways of reaching the fifth level with one service
completion: (113)→(114)→(14)→(15) and (113)→(13)→(14)→(15).

Therefore, each event of the type described before comes with probability(
µ

µ+λ

)w( λ
µ+λ

)ν−K
(w service completions, ν−K arrivals). Hence, (3.36) holds

for all possible cases.

Proposition 3.6.2. For 1 ≤ i ≤ 2K−1 we have:

p̃ν(j) =
∑
i∈A(j)

p̃K(i)

(
ν −K + w − 1

w

)( µ

µ+ λ

)w( λ

µ+ λ

)ν−K
(3.67)

with ν ≥ K + 1. Additionally, note that p̃K(i) can be obtained through a set
of linear equations implied by the boundary condition.

Proof. Given the matrix geometric structure p̃ν = p̃KR̃
ν−K

and Proposition
3.6.1, the proof is straightforward.

Hence, the ground for obtaining an expression for the conditional waiting
time given the total number of customers in the queue has been prepared.
Generally, the results obtained from this subsection are useful to determine
the best response of an individual according to the information s/he receives
for the queue upon arrival, and also show that the simple threshold strategy
is not a Nash equilibrium strategy. All the stuff we mentioned here is the
subject of our next subsection.

3.6.2 Waiting Time Distribution and Best Response

It is time to use the results we obtained before for obtaining the waiting
time distribution and the best response of an arriving customer, given the
information s/he observes upon arrival. It is a good idea to recall briefly any
useful notation and its meaning here. Remember that:

◦ D is the number of all customers that have been issued a ticket, joining
and balking, in other words the ticket position.

◦ N is the number of joining customers in the system.

◦ We use in the following the two-dimensional continuous time Markov
chain we studied above; that is, any pair (ν, j) determines uniquely a
state of the form (n1, . . . , nn(j)), where n(j) is the number of joining
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customers of the state and for level ν holds that ν ≥ K + 1, while for
phase j we have 1 ≤ j ≤ 2K−1.

◦ As a consequence, D =
∑n(j)

l=1 nl and the realization of N is n(j). Hence,
the value of L is noted as n(j).

◦ Last but not least, note that the queueing time of an arriving customer
is W =

∑n(j)
l=1 Xl, where Xl ∼ Exp(µ) and is independent of anything

else.

Except for the reminders, we also introduce two definitions, which are useful
for the following:

◦ Let Sd =
⋃K
L=1

{
n ∈ NL : nl ≥ 1,

∑L
l=1 nl = d, l = 1, . . . , L

}
, d ≥ K, so

that Sd is a set that contains all the states n in which we have D = d
for d ≥ K.

◦ Let Ad be the number of real customers in the system, when for the
first time a state is in Sd, in an arbitrary busy period.

So, let us recall Figure 3.19, the case of K = 3. Imagine that every state is
replaced with their corresponding pair (ν, j) of levels and phases. Moreover,
note also that we are interested in cases where d ≥ K, that is we are looking
for the behavior of the system where the customers notice a ticket position
which leads them to balk according to their simple threshold strategy. We
are willing to examine now if a given individual would choose to follow the
threshold strategy adopted by all the others for all possible d ≥ K values.
The answer will be revealed in the next theorem. Meanwhile, we should
introduce three useful lemmas that lead us to the proof of this theorem and
give interesting results generally.

Lemma 3.6.1. For any d ≥ K, Sd contains exactly 2K−1 states; each one
comes from a different phase. Furthermore, the state with phase 2K−1 has
the lowest value of nL, which is d− (K − 1).

Proof. We begin with the observation of the fact that within a phase, the
values of d increase by one as the level increases by one. Consequently, the
lower value of d in a phase meets in level 1. The values of d in a level are also
depending on the phase, which can be any integer from 1 to K. Therefore,
we get that for every value of d ≥ K there is exactly one state in phase, and
that is the first part of the proof.

For the second part, we simply note that the state in phase 2K−1 has the
form (1, 1, . . . , nL) for any given level and K ≥ 1. The number of 1s prior
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to nL is K − 1, which is the largest value of
∑L−1

l=1 nl, according to the state

space (3.1). Thus, for a given d, nL = d−
∑L−1

l=1 nl. So, nL obtains its lowest
value for the largest value of the sum, which is K − 1.

As seen, Figure 3.20 below illustrates the result obtained from Lemma
3.6.1 for the case of K = 3.

Figure 3.20 Sd Sets of Ticket Queue with K = 3

Lemma 3.6.2. For d ≥ 2K−1, during a busy period, the number of joining
customers in the system decreases.

Proof. Firstly, nL ≥ K is a necessary and sufficient condition such that
no customer joins the queue until the system empties. That is, because it
guarantees that d ≥ K for the rest of the busy period and as seen before,
the states in the gray zone of diagrams represent this condition. Hence, no
customer will join until the system empties and only service completions can
be occurred. So, the number of joining customers in the system is decreased.
We should now point out the value of d in which this phenomenon starts to
appear; in order to achieve this, we utilize the construction of the state space
(3.1). Thence, we finally have:

nL = d−
L−1∑
l=1

nl ≥ (2K − 1)− (K − 1) = K ⇒ nL ≥ K
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Lemma 3.6.2 shows the fact that whether d has value greater or equal
than 2K − 1, the joining customers start to decrease. This outcome makes
us wonder if it is truly the best policy to balk if D ≥ K, knowing that
everyone else will do the same.

Lemma 3.6.3. For d ≥ 2K − 1, we have that Ad+1 ≤st Ad.

Proof. Since there cannot be any joining customers within a busy period
for d ≥ 2K − 1, we obtain a necessary condition for {Ad+1 ≥ n}, which is
{Ad ≥ n}. Consequently, in order to have at least n joining customers while
visiting Sd+1, we must have at least n joining customers when visiting Sd
before that. Thus, we have:

P (Ad+1 ≥ n) = P (Ad ≥ n)P (Ad+1 ≥ n|Ad ≥ n) ≤ P (Ad ≥ n)

We are ready to introduce the essential theorem of this subsection. The
theorem will be followed by inferences and a second theorem, which makes our
analysis complete, as we discuss there the best response of a given individual.

Theorem 3.6.4. For d ≥ 2K − 1, the conditional distribution of N |D = d
is stochastically decreasing with d. Additionally, we have:

lim
d→∞

P (N = 1|D = d) = 1

Proof. Firstly, we should prove the monotonicity. The result can be shown
by employing a coupling argument. Actually, the idea is the following: we
observe that the distribution ofN |D = d+1, Ad+1 = α is equivalent toN |D =
d,Ad = α, where α is any integer in {1, . . . , K}. This can be explained quite
simply; to begin with, future transitions themselves do not depend on the
current state. Moreover, the number of joining customers in the queue after
a transition depends only of the number of joining customers present exactly
before it occurred. Thus, if we add the information regarding to the number
of balking customers to the given number of joining customers present, the
distribution of the future does not change. So, together with Lemma 3.6.3,
we shall say that N |D = d+1 is stochastically smaller than N |D = d. Hence,
we just showed that the distribution of N |D = d is stochastically decreasing
with d.

Next, we are going to prove that, when d → ∞, the limit is a unit mass
at ν = 1. So, at this point, we make a use of Proposition 3.6.2 in order to

71



write the joint probabilities P (N = ν,D = d) as the appropriate polynomial
in d, for d ≥ 2K − 1. Thus, we have:

P (N = ν,D = d) =
∑

J :n(j)=ν

∑
i∈A(j)

p̃K(i)

(
ν −K + w − 1

w

)( µ

µ+ λ

)w( λ

µ+ λ

)m−K
(3.68)

where m = d −
∑n(j)−1

l=1 nl. Substituting m, equation (3.68) can be written
as:

P (N = ν,D = d) =∑
J :n(j)=ν

∑
i∈A(j)

p̃K(i)
(m−K) · · · (m−K + w − 1)

w!

( µ

µ+ λ

)w( λ

µ+ λ

)d−∑n(j)−1
l=1 nl−K

We see that each term in this sum is polynomial of rank w in d, times
(

λ
λ+µ

)d
.

Also, note that w = n(i) − n(j) ≤ K − n(j), which in the above relation
equals K − ν. That is, the whole sum is a polynomial of rank K − ν in d,

times
(

λ
λ+µ

)d
.

The conditional probabilities are given by:

P (N ≥ ν|D = d) =
P (N ≥ n,D = d)

P (D = d)
, n ≥ 1

We observe that this quantity cancels the geometric factor
(

λ
λ+µ

)d
and leaves

us only with the fraction of polynomials. As the degree of the polynomial in
the numerator is K−ν, and the degree of the polynomial in the denominator
is K − 1, we have that:

lim
d→∞

P (N ≥ ν|D = d) =

{
1, ν = 1,

0, ν > 1.

Therefore, when d→∞, the distribution of N |D = d tends to unit the mass
at ν = 1.

Theorem 3.6.4 can give us explicit results for small threshold values. As an
example, we show briefly how the statement of this theorem can be simplified
for the case of K = 2. Thus, as N |D = d is stochastically is decreasing in d,
P (N = 1|D = d) should be increasing in d and tend to 1 as d→∞. Hence,
we get:

P (N = 2|D = d) =
p̃d−1(2)

p̃d(1) + p̃d−1(2)
=

(1 + ρ)3

1 + ρ(3 + ρ(2 + d+ ρ))
−→
d→∞

0
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Have in mind that the values of p̃d(1) and p̃d−1(2) are obtained directly from
subsection 3.2.3.

The main thing we shall comment about Theorem 3.6.4 is the intuition
behind it. Remember, that an arriving customer perceives the ticket position
D = d as the real queue length in the system. Thus, we realize that the
larger the total queue length observed by an arriving customer, the longer
s/he estimates the elapsed time since the arrival of the last who joined. That
is, the number of the customers who joined back then and are still queuing
is likely to be small. So, the realization obtained by this theorem leads us to
express the best action of an arriving customer given what he observes upon
arrival.

Before we state the next theorem, that gives us the best response, we
define the following:

◦ Let U be the utility from being served.

◦ Let C(t) be waiting cost function, while t is the waiting time. Moreover,
assume that C(t) is any monotone increasing function of t.

◦ As a result, U−C(E[W |D = d]) is the expected utility for an individual
who observed ticket position d.

Theorem 3.6.5. Consider the M/M/1 Ticket Queue. Assume that cus-
tomers are homogeneous with respect to the service value and the waiting
cost. Furthermore, suppose also that the service value is large enough such
that for lower values of d, U − C(E[W |D = d]) ≥ 0. Then, we have:

◦ For any waiting cost function C(t) that is increasing with the waiting
time, a threshold strategy is not a symmetric Nash equilibrium strategy.

◦ If all customers adopt the same threshold strategy, then the individual’s
best response is to follow a double threshold strategy (K1, K2) where
K1 < K2: join if and only if D < K1 or D > K2.

Proof. Let us consider that all adopt some threshold strategy K. As for a
customer upon arrival, we assume firstly that the observed queue length D is
relatively small. In that case, the arriving customer gets a positive expected
utility from joining which is U −C(E[W |D = d]) ≥ 0, exactly what we have
presumed for lower values of d.

As a second case, we present the one where an arriving customer ob-
serves an extreme large queue length. Due to Theorem 3.6.4, the customer
concludes that for big values of d (from 2K − 1 and up), the actual queue
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length which describes the number of joining customers in the system is
extremely small and hence, his expected utility from joining is positive as
well.

Thus, the best response of a given arriving customer is a double threshold
strategy (K1, K2) with K1 < K2 and the logic behind it is to join if and only
if D < K1 or D > K2. So, this given individual deviates from the strategy
chosen by all others, and as a consequence, the simple threshold strategy
cannot be a Nash equilibrium strategy.

Theorem 3.6.5 brought to the surface the best response of a given indi-
vidual if all the other customers follow the simple single threshold strategy;
s/he will want to join the queue even if the observed queue length is enor-
mous. At first thought it would seem odd, however, after our analysis, it
appears pretty logical. So, a great way to close this subsection is to give a
plain example with numbers on this best response.

Assume that the customers balk if they observe a ticket position greater
or equal than 10. Now, consider an individual who observes a ticket position
equal to 50. Due to the strategy of all others, s/he knows that the last 40
tickets issued belong to customers who actually balked upon arrival. So, it
is more likely that, since the arrival of the last joining customer, there were
more than 40 arrivals who balked and also a few service completions taking
place. Thus, this individual customer can conclude that the actual number
of customers currently in the system is really small and hence, s/he will want
to join the queue.

3.6.3 Summary and Extensions

In the current section, we showed that although in real life customers can
adopt simple one threshold strategies, these cannot be Nash equilibrium
strategies. That happens because given that all others follow them, a specific
individual prefers to deviate and join even if the queue is long. We are closing
the section by introducing some extensions and thoughts on this subject.

An interesting question at this point is whether the double threshold
strategy we presented is a candidate for Nash equilibrium. However, it is clear
that this option is rejected; since, if all adopt it, then the tagged individual
who observes a really long queue knows that the queue tail and more must
be constructed of joining customers. Thus, s/he prefers not to join, because
hers/his waiting time distribution is relatively large in the stochastic sense.
So, the double threshold strategy cannot be a Nash equilibrium strategy.
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A next appealing topic for discussion is about the validity of our results
if we change some of our model assumptions. Are these assumptions nec-
essary for obtaining the same result about the threshold strategy, that it
cannot be a Nash equilibrium? We end this subsection referring to different
generalizations of the system, and whether the result we get changes.

The first issue we should refer to is about the set of actions. The assump-
tion we made has two possible actions: to join or balk upon arrival. Yet, in
many systems, a customer joins upon arrival but reneges after a while. If
we expand the set of actions in this model accordingly, then our main result
still holds. A tagged individual will still prefer to adopt the double threshold
strategy, as we have proved it is a better response against the simple one. On
the other hand, if we want to examine whether the double threshold strategy
is the best response against the threshold strategy, the answer depends on the
properties of the cost function. Thus, if the waiting cost function is concave
with time, then if one decides to join, s/he would never leave. However, if the
waiting cost function is convex with time, then one may abandon the queue
at some point; exactly when the waiting would have become more expensive
than it was while joining the queue.

One more generalization we are going to report is about multiple servers;
so that we are dealing with a M/M/c queue rather than a M/M/1 queue.
In this case, if there is an idle server, customers will join for reasonable
parameter values. Additionally, if we assume that all servers are busy, the
behavior of a customer depends on the number of servers only through the
total service rate, something that does not affect our results; hence all of
them still hold.

There are far too many generalizations that can be discussed, however
they need more analysis in order to reach a proper answer about the issue
we are interested in. Hopefully, this work could widen the horizons about
the wealth of topics we shall discover about Ticket Queues and the benefits
we can derive by them.
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Chapter 4

Ticket Queues with Reneging
Customers

In the current chapter, we examine a Ticket Queue under different assump-
tions; that is, we focus on the customers who entered the queue, lost their
patience and eventually left the system without obtaining service, the so-
called reneging customers. Our analysis relies on the fine work of Ding, Ou
and Ang (2015).

As in the previous model, a customer estimates her/his expected waiting
time through the difference between the displayed service number and her/his
ticket number, the ticket position. So, if that difference is too large, s/he may
balk. However, even after joining the queue, s/he may renege at any moment.
In this chapter, we assume that the customers’ tendency to renege depends
dynamically on the ticket position.

Once more, we need to point out that the ticket position is not a precise
description of the actual number of queuing customers in between. Hence,
we consider such type of Ticket Queue with customer reneging; yet because
of the difficulty we face due to the exponential growth of the state space,
we should analyze this queue through approximation. Therefore, we will call
R-Ticket Queue the Ticket Queue with reneging customers, and we shall
introduce the appropriate modification later.

In the following, we represent this model’s formulation. We are also
specifically interested in obtaining the total reneging percentage, as we would
like to reduce it in order to improve the R-Ticket Queue model. Last but
not least, we will briefly present an extension of this model regarding to the
R-Ticket Queue with multi-servers.
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4.1 Model Formulation and Definitions

We begin with the description of the Ticket Queue with reneging customers,
the one we call the R-Ticket Queue. This model has the same basic elements
as the Ticket Queue with balking customers, so, it is plausible to recall them
and point out the differences.

As expected, the customers are issued a ticket upon their arrival, which
represents their waiting position in the queue. The number of the customer
being served is broadcast on display panels; so that the only queuing informa-
tion which the server and the customer have, is the difference between their
ticket number and the number being served, the well known ticket position
we denote generically as D.

It is known as well, that the Markovian model of the R-Ticket Queue
assumes Poisson arrival process with rate λ and service times identically
exponentially distributed with rate µ. Additionally, the time to call up a
customer to service is negligible, so every time a reneged customer is called
for service, the server moves to the next number with no delay.

We should now introduce our assumptions about the customers’ reneging
behavior; we presume that it is also Markovian, and, at the time when a
customer observes a ticket position D = d, then the rate of reneging is τd.
As expected, τd gets higher as d increases and we have a faster increase of τd
for a larger d. This can be written formally as:

τd ≥ 0, τd+1 ≥ τd, τd+2 − τd+1 ≥ τd+1 − τd, d ∈ 0, 1, . . . (4.1)

Note that τ0 = 0. That means, the customer is in service and therefore,
s/he will never renege. Apparently, the stability of the R-Ticket Queue is
guaranteed; that is a consequence of such reneging, because it does not allow
the number of customers to be infinite.

Furthermore, we need to define the state notation for R-Ticket Queue,
which is actually similar to the one we introduced in Chapter 3. We denote
the empty system as n = (0) and the non-empty system using a vector
n = (n1, . . . , nL), where L is the number of customers who are still in the
system, and positive integers nl, l ∈ {1, . . . , L − 1} represent the difference
of ticket numbers issued to the lth and (l + 1)th customers who are waiting
in queue. Thus, nl actually shows how many customers reneged between the
lth and the (l + 1)th customers in the system. Moreover, nL represents the
difference of ticket numbers issued to the last customer who is still in the
system and the next forthcoming customer. In Figure 4.1 below, we can see
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an example on this model. It is also observable that the notation is similar
to the Ticket Queue of the previous chapter, with the difference that nl,
l ∈ {1, . . . , L} represent reneging customers and not balking.

Figure 4.1 An example for recording the system state of the single-server
R-Ticket Queue. Customers with tickets 10,12 and 15 are waiting in the
queue, while the others have reneged from the system. Such state can be
written as n = (2, 3, 4)

The Markovian model we build in order to describe the R-Ticket Queue
is illustrated in Figure 4.2. We use again black arrows for new arrivals, red
arrows for service completions and we add gray arrows which represent the
reneging situation. There, we can notice that the state space explodes up
really fast. Accurately, for a given l, there are 2l possible states if the ticket
position of the next arriving customer is lower or equal than l, equivalently∑L

k=1 nk ≤ l. For instance, when l = 3, there exist 23 = 8 possible states
which are (0), (1), (2), (3), (1,1), (1,2), (2,1) and (1,1,1).

Moreover, we can observe in Figure 4.2 a partition of the states. Actually,
system states in the dash-and-dot rectangles are grouped into super states.
We give a formal definition; let super state SL represent the collection of all
states in which there are L customers in the system, waiting or being served.
As we can see, super state S0 contains only state (0), while super state S1

includes states (1),(2),(3),. . . and so on.
We define as p(SL) the steady probability for super state SL in the single-

server R-Ticket Queue. In the following, we will introduce two interesting
propositions; the first one provides us with tight lower and upper bounds for
the steady probabilities of super states in the R-Ticket Queue. The second,
gives us also an useful outcome which is about the total reneging percentage
of the single-server R-Ticket Queue; in fact it provides us with a tight lower
bound of it.
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Figure 4.2 Transition Diagram for Single-server R-Ticket Queue
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Proposition 4.1.1. For a single-server R-Ticket Queue, there exists an in-
teger m ≥ 1, such that:

◦ If 0 ≤ n ≤ m, we have:

p(SL) ≥

∏n
k=1

λ

µ+
∑k−1

d=1 τd

1 +
∑∞

j=1

(∏j
k=1

λ

µ+
∑k−1

d=1 τd

)
◦ If n ≥ m, then:

p(SL) ≤

∏n
k=1

λ

µ+
∑k−1

d=1 τd

1 +
∑∞

j=1

(∏j
k=1

λ

µ+
∑k−1

d=1 τd

)
The lower and upper bounds are tight when all τd are same, or when λ/µ
approaches to zero or infinity.

Proof. In order to obtain the desired result, we firstly consider the corre-
sponding to the R-Ticket Queue physical queue. That is, a normal queue
with reneging customers, with no tickets. The transition diagram of such a
queue appears in Figure 4.3.

Figure 4.3 Transition Diagram for Single-server Physical Queue

We assume that a non-negative integer n denotes the system state, so that n
describes the number of customers who is still in the system. Additionally,
we denote as pp(n) the steady state probability for state n in the physical
queue.

From the balance equations of states (0) and (0), we obtain:

λpp(0) = µpp(1) or pp(1) =
λ

µ
pp(0) (4.2)
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λpp(0) +

(
µ+

1∑
d=1

τd

)
pp(2) = (µ+ λ)pp(1) (4.3)

Substituting (4.2) into (4.3), we get:

pp(2) =
λ

µ+
∑1

d=1 τd
pp(1) =

λ

µ+
∑1

d=1 τd

λ

µ
pp(0)

Following a similar, procedure, we have:

pp(n) =
λ

µ+
∑n−1

d=1 τd
pp(n− 1) =

n∏
k=1

λ

µ+
∑k−1

d=1 τd
pp(0) (4.4)

Hence, using the normalization equation, we get:

1 =
∞∑
n=0

pp(n) =

(
1 +

∞∑
n=1

(
n∏
k=1

λ

µ+
∑k−1

d=1 τd

))
pp(0) (4.5)

From (4.5), we obtain pp(0). Thus, substituting this result to (4.4), we have:

pp(n) =

∏n
k=1

λ

µ+
∑k−1

d=1 τd

1 +
∑∞

n=1

(∏n
k=1

λ

µ+
∑k−1

d=1 τd

) , n = 0, 1, . . . (4.6)

So far, we have obtained the steady state probabilities for each state in the
corresponding physical queue of R-Ticket Queue. Now, we consider the R-
Ticket Queue, where we will work with the super states we have defined.
Hence, primarily, from the balance of super state S0 we get:

λp(S0) = µp(S1) or p(S1) =
λ

µ
p(S0) (4.7)

We shall take a look in Figure 4.2 and consider the balance of super state S1.
Equation (4.7) shows that the transition from super state S0 to super state
S1 is balanced with those from super state S1 to super state S0. Therefore,
the transitions from super state S1 to super state S2 will also be balanced
with those from super state S2 to super state S1. This leads to the equation:(

µ+
∞∑
d=1

τd

)
p(S2) = λp(S1)
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Furthermore, notice that each state in super state S2, transfers to a state
in super state S1 at reneging rate τ1, τ2, . . ., which are all no less than τ1.
Mathematically, we can write µ+

∑1
d=1 τd ≤ µ+

∑∞
d=1 τd. That is, using the

last equation, we obtain:(
µ+

1∑
d=1

τd

)
p(S2) ≤ λp(S1), or

p(S2) ≤
λ

µ+
∑1

d=1 τd
p(S1) =

λ

µ+
∑1

d=1 τd

λ

µ
p(S0)

Following similar procedures, we get:

p(Sn) ≤ λ

µ+
∑n−1

d=1 τd
p(Sn−1) ≤

n∏
k=1

λ

µ+
∑k−1

d=1 τd
p(S0) (4.8)

We now combine (4.5) and (4.8) and hence, we obtain:(
1 +

∞∑
n=1

(
n∏
k=1

λ

µ+
∑k−1

d=1 τd

))
pp(0) =

∞∑
n=0

pp(n) = 1

=
∞∑
n=0

p(Sn) ≤

(
1 +

∞∑
n=1

(
n∏
k=1

λ

µ+
∑k−1

d=1 τd

))
p(S0)

That is, we have: p(S0) ≥ pp(0). Using (4.2) and (4.7), we get in addition
that p(S1) ≥ pp(1). However, since

∑∞
n=0 p(Sn) =

∑∞
n=0 p

p(n) = 1, we cannot
have p(Sn) > pp(n) for all n. Thus, there is some m, where p(Sm) ≤ pp(m),
and then, from (4.4) and (4.8), we obtain:

p(Sm+1) ≤
λ

µ+
∑m

d=1 τd
p(Sm) ≤ λ

µ+
∑m

d=1 τd
pp(m) = pp(m+ 1)

This leads to the inference that p(Sn) ≤ pp(n) for all n ≥ m. Finally, the
tightness of the bounds can be easily verified.

An observation we can make about Proposition 4.1.1, is that the threshold
m highly depends on the reneging rate series τd, as well as the system traffic
low λ/µ.
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Proposition 4.1.2. For single-server R-Ticket Queues,

1−

(
1− 1

1 +
∑∞

j=1

(∏j
k=1

λ

µ+
∑k−1
d=1 τd

)) · µ
λ

is a lower bound for its total reneging percentage. The bound is tight when
all τd are same, or when λ/µ approaches zero or infinity.

Proof. This is a straightforward corollary of Proposition 4.1.1. More pre-
cisely, let us examine the single server R-Ticket Queue when the system is in
steady state. Then, the average number of customers in the queue increases
by 1 with arrival rate λ, while it decreases by 1 with both the service rate,
(1−p(S0))µ, and the average reneging rate. Consequently, the total reneging
percentage is:

λ− (1− p(S0))µ

λ
= 1− (1− p(S0))

µ

λ

Proposition 4.1.1 gives us that p(S0) ≥ pp(0), and pp(0) is given by (4.6).
Therefore, the lower value of the total reneging percentage can be given
easily by substituting pp(0) into it. Hence, we obtained simply the lower
bound of total reneging percentage for the single-server R-Ticket Queue.

4.1.1 The Modification of R-Ticket Queue

We have considered during the proof of Proposition 4.4.1 the physical R-
Ticket Queue, which is the normal queue with reneging customers. We shall
make a comparison with the R-Ticket Queue in order to investigate their
relation in respect of their total reneging percentage.

As a matter of fact, the customers in the R-Ticket Queue renege at rates
depending on their ticket position, which are higher than those in the cor-
responding physical queue. That is because, τd increases faster for a large
d, and generally, the ticket position is higher than the number of real cus-
tomers in the system. Hence, intuitively, we can say that the total reneging
percentage of the physical queue is a lower bound for that of the R-Ticket
Queue.

In addition, note that, when all τd are the same, the reneging rates
are independent of queuing positions and as a consequence, the R-Ticket
Queue and the corresponding physical are identical. Moreover, when λ/µ
approaches infinity, that is the service rate is relatively negligible, the total
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reneging rates tend to be 1 in both systems. There is also the case when λ/µ
approaches zero, which means the arrival rate is relatively negligible, and
hence the total reneging rates tend to be 0 in both systems.

In order to investigate further the total reneging percentage of the R-
Ticket Queue, we have performed simulation studies with various parameters.
Especially, we normalized the customers’ arrival rate, λ = 1, and we varied
the service rate µ in interval [0.5, 2]; so that the traffic load ranges from 50%
to 200%.

We assume that there are two general types of reneging rates in the
simulation; so, for d ∈ {1, 2, . . .} we have:

τd = γ · dβ (4.9)

τd = γ · βd−1 (4.10)

Have in mind that in both cases, γ = τ1 ≥ 0 is the reneging rate for the
waiting customer with d = 1 and β ≥ 1 is required to satisfy (4.1). As for
a special case, we have β = 1, so that (4.9) becomes linear and (4.10) a
constant reneging rate. We cover a large variety of possibilities by randomly
varying γ ∈ [0, 1] and β ∈ [1, 2] in the simulation study.

In Figure 4.4, we present graphically the total reneging percentage ac-
cording to our simulation; note that, for each combination choice of µ, τd
series, γ and β, the R-Ticket Queue is simulated 1000 times and each time, 1
billion customers are served. Intuitively, we expect that as γ and β increase,
so does the total reneging percentage, while for higher values of µ we have
the opposite. In the worst cases of our simulation study, there are more than
60% of customers who leave the system without obtaining service.

Figure 4.4 Simulated Total Reneging Percentage for the Single-server R-
Ticket Queue. We only show the cases of β = 1 and β = 2 (lower and upper
surfaces respectively).
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As mentioned before, the extremely large state space of R-Ticket Queue
causes difficulties. The reason why the state space is so huge, lies on the fact
that reneging customers can be anywhere in the queue. Thus, if all reneging
customers were packed together in the queuing positions, there could be a
significant reduce of the state space. This idea led to experiments with two
options to pack all the reneging customers together: one with all of them
packed at the head of the queue, and another at the tail. We simulated both
of them for the same range of parameters as for the R-Ticket Queue. In
Figure 4.5, we can see the results that show which one of these queues is
closer to the R-Ticket Queue. The upper surfaces show the total reneging
percentage differences between the R-Ticket Queue and the queue with the
reneging customers packed all at the head, while the lower surfaces indicate
the same for R-Ticket Queue and the queue with all reneging customers
packed together at the tail. The last graphic shows that in the case of
τd = γ, the differences are negligible. That is because the customer reneging
rate does not depend on the queueing position.

Figure 4.5 Total Reneging Percentage Differences Between R-Ticket
Queue and Two Candidate Models for its Approximation
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As we can see, the winning model of our simulation is the one where
all reneging customers are packed at the head of the queue. In fact, the
differences between the total reneging percentages of these two queues lie
in a tight range of −0.0065 to 0.0114. As for the model with all reneging
customers packed at the tail, the differences are much wider, with the largest
more than 0.0424. This corresponds to a relative difference of 10.5%.

As a consequence, we choose the first candidate model in order to approx-
imate the R-Ticket Queue. That is, thereafter, we will call the queue with
all reneging customers packed at the head the modified R-Ticket Queue. The
important outcome we should highlight is that the total reneging percentage
of single-server R-Ticket Queue can be approximated by that of single-server
modified R-Ticket Queue with the same parameters. Thus, we shall analyze
the modified R-Ticket Queue in the next section, because it is a model we
can work with.

4.2 Analysis of the Modified R-Ticket Queue

In the first place, we should describe the form of the states we have in mod-
ified R-Ticket Queue; since the modification we made is to put all reneging
customers at the head of the queue, we can represent its state by a two-
dimensional vector n = (L, ν), where L represents the number of customers
in the system and ν is the number of customers that have reneged but their
tickets are still counted in the queue. Note that, L customers in the system
means 1 in service and L− 1 waiting in queue.

The state transitions in this kind of system are achieved with three ways;
assume that we are in state (L, ν). Then, if a customer completes hers/his
service, this state changes to (L − 1, 0), so that we have one less customer
waiting and at the same time all reneging customers’ tickets are released.
Additionally, an arrival of a customer will change the state to (L+1, ν), while
after a customer’s reneging we transit to (L − 1, ν + 1) (one less customer
waiting, one more ticket counted at the head which will be deleted after the
next service completion). One more information we obtain from the state
(L, ν) is that the corresponding ticket position equals to L + ν. In Figure
4.6 below, we can see the state transition diagram of the modified R-Ticket
Queue.

We were interested in making a modification which decreases significantly
the state space. In the modified R-Ticket Queue, we observe that for a given
l, there are (l2 + l + 2)/2 possible states if the ticket position of the next
arrival customer is no more than l, that is if L + ν ≤ l. For example, when
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l = 3, there are (32 + 3 + 2)/2 = 7 possible states in the queue, (0,0), (1,0),
(1,1), (1,2), (2,0), (2,1) and (3,0). If we compare this number with the 2l

possible states of the R-Ticket Queue, then we see that we have achieved our
purpose; it is an important reduce especially when l is not too small.

Figure 4.6 Transition Diagram of the Modified R-Ticket Queue

Let us denote as pm(n) the steady probability for state n of the modified
R-Ticket Queue. We can obtain the balance equations quite easily:

pm(0, 0) · λ =

(
+∞∑
j=0

pm(1, j)

)
· µ

pm(L, 0)·

(
λ+µ+

L−1∑
k=1

τk

)
= pm(L−1, 0)·λ+

(
+∞∑
j=0

pm(L+1, j)

)
·µ, L = 1, 2, . . .

pm(1, ν) · (λ+ µ) = pm(2, ν − 1) · τν , ν = 1, 2, . . .
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pm(L, ν) ·

(
λ+ µ+

L+ν−1∑
k=ν+1

τk

)
= pm(L− 1, ν) · λ+ pm(L+ 1, ν − 1) ·

L+ν−1∑
k=ν

τk,

L = 2, 3, . . . , ν = 1, 2, . . .

As a matter of fact, these infinitely many linear equations can be solved
approximately if we truncate their system into a finite number equations.
Naturally, the results can be more accurate by keeping more equations in
this new system, which, thereafter is called the truncated R-Ticket Queue.

The truncation we are about to make constitutes a reasonable approx-
imation of the original model; indeed, the reneging rate τd can seen to be
infinitely large when d is larger from a point and on. Thus, there is a level V
where all customers renege immediately when they observe a ticket position
no less than V . So, we cutoff the queue at this level. We also partition the
state space into blocks, namely Ki, where i = 0, . . . , V , and each of them
represents the number of states that have exactly i customers in the system.

However, there are still infinitely many equations even after the trunca-
tion. Every Ki consists of infinitely many states, so we additionally aggregate
in a super state, denoted as SV , all the states where the ticket position is
more than V . Therefore, SV includes the states {(1, V − 1), (1, V ), . . .} from
K1, the states {(2, V − 1), (2, V ), . . .} from K2 and so on. That is, the super
state SV will remain unchanged when a new customer comes. In Figure 4.7
we can see the illustration of the truncated R-Ticket Queue model.

Clearly, at this point we have a reduced finite set of system states, that
is partitioned into V + 1 blocks K0, . . . , KV as follows:

K0 = {(0, 0)},

K1 = {(1, 0), (1, 1), . . . , (1, V − 2), SV },
...

Kl = {(l, 0), (l, 1), . . . , (l, V − l)},
...

KV = {(V, 0)}

According to the previous description, the transition rate matrix Qt of the
truncated R-Ticket Queue can be written as bellow:
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Qt =



−λ
µe′V A11 A12

A21 A22 A23
...

. . . . . . . . .

AV−1,1 AV−1,V−2 AV−1,V−1 AV−1,V

AV,1 AV,V−1 AV,V


(4.11)

The matrixQt is of dimensions
(
V 2+V+2

2

)
×
(
V 2+V+2

2

)
. Furthermore, eV is the

V-dimensional unit vector and e′V its transpose. We also define the following
matrices: A01, A11, Aj,1, Aj,j+1, Aj,j−1, Aj,j of dimensions 1× V , V × V ,
(V − j + 1) × V ,(V − j + 1) × (V − j), (V − j + 1) × (V − j + 2) and
(V − j + 1)× (V − j + 1) respectively.

A01 = (λ, 0, . . . , 0),

A11 =


−λ− µ

. . .

−λ− µ
−µ

 ,

Aj,1 =


0 . . . 0 0
...

...
...

0 . . . 0 0
0 . . . 0 λ

 , Aj,j+1 =


λ

. . .

λ
0 . . . 0

 ,

Aj,j−1 =



µ
∑j−1

k=1 τk
...

. . .

µ
∑j−2+i

k=i τk
...

. . .

µ
∑V−1

k=V−j+1 τk


,

Aj,j =



−λ− µ−
∑j−1

k=1 τk
. . .

−λ− µ−
∑j−2+i

k=i τk
. . .

−λ− µ−
∑V−1

k=V−j+1 τk
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Figure 4.7 Transition Diagram of the Truncated R-Ticket Queue

The problem can be solved now as a QBD process; let the steady state
probabilities for the states in block Ki be pti, with i = 0, 1, . . . , V . So, gener-
ally, the steady state probabilities are described by vector pt = (pt0, . . . ,p

t
V ).

In order to obtain pt, we start the process by writing down the balance
equations, ptQt = 0, right below:

−λpt0 + µpt1e
′
V = 0 (4.12)

V∑
i=0

ptiAi,1 = 0 (4.13)

pti−1Ai−1,i + ptiAi,i + pti+1Ai+1,i, i = 2, . . . , V − 1 (4.14)

ptV−1AV−1,V + ptVAV,V = 0 (4.15)

The next phase of the process requires to define the following:

RV−1,V = −AV−1,V (AV,V )−1 (4.16)
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Ri−1,i = −Ai−1,i(Ai,i +Ri,iAi+1,i)
−1, i = 2, . . . , V − 1 (4.17)

R1,i =
i−1∏
j=1

Rj,j+1, i = 2, . . . , V (4.18)

R0,1 = −A0,1

(
A1,1 +

V∑
j=2

R1,jAj,1

)−1
(4.19)

Ri =
i−1∏
j=1

Rj,j+1 = R0,1R1,i, i = 2, . . . , V (4.20)

Then, based on (4.15) and (4.16), we get:

ptV = −ptV−1AV−1,V (AV,V )−1 = ptV−1RV−1,V (4.21)

That is, we have pti+1 = ptiRi,i+1, i ∈ {2, 3, . . . , V − 1}. Now, according to
(4.14):

pti−1Ai−1,i + pti(Ai,i +Ri,i+1Ai+1,i) = 0

pti = −pti−1Ai−1,i(Ai,i +Ri,i+1Ai+1,i)
−1

Thus, using also (4.17), we obtain pti = pti−1Ri−1,i, that can be written better
as:

pti+1 = ptiRi,i+1, i = 2, 3, . . . , V − 1 (4.22)

We can obtain from (4.22) that Ri,i+1 = (pti)
−1pti+1. Substituting this result

into (4.18), we get:

pti = pt1

i−1∏
j=1

Rj,j+1 = pt1R1,i, i = 2, 3, . . . , V − 1 (4.23)

Based on (4.13) and (4.23), we have consecutively:

pt0A0,1 + pt1A1,1 +
V∑
i=2

ptiAi,1 = 0

pt0A0,1 + pt1A1,1 +
V∑
i=2

pt1R1,iAi,1 = 0
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pt0A0,1 + pt1(A1,1 +R1,2A2,1 + . . .+R1,VAV,1) = 0

These equations, together with (4.19), lead us to obtain pt1. Hence, we have:

pt1 = −pt0A0,1

(
A1,1 +

V∑
j=2

R1,jAj,1

)−1
= pt0R0,1 (4.24)

At this point, (4.20) gives us that R1,i = R−10,1Ri and thus, (4.23) becomes

pti = pt1R
−1
0,1Ri. Substituting into the new form of (4.23) pt1 from (4.24), we

get:

pti = pt0

i−1∏
j=0

Rj,j+1 = pt0Ri, i = 2, 3, . . . , V − 1 (4.25)

The final step for obtaining the steady state probabilities in truncated R-
Ticket Queue is the normalization equation:

pt0 + pt1e
′
V + . . .+ ptV e

′
1 = 1

Based on (4.25), we have:

pt0

(
1 +

V∑
i=1

Rie
′
V+1−i

)
= 1

Therefore, we obtain straightforward from the last equation and (4.25):

pt0 =
1

1 +
∑V

i=1Rie′V+1−i
(4.26)

pti =
Ri

1 +
∑V

i=1Rie′V+1−i
, i = 1, . . . , V (4.27)

Equations (4.26) and (4.27) give the steady state probabilities of the trun-
cated R-Ticket Queue. This finding also provides us with the total reneging
percentage of the truncated model, that is: 1− (1− pt0)µ/λ.

The explanation here is not complicated. When the system is in steady
state, the average number of customers in the queue increases by 1 with
every arrival at rate λ. At the same time, it decreases by 1 with both the
service rate (1 − pt0)µ and the average reneging rate. Thus, based on the
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system balance, the average reneging rate is λ− (1− pt0)µ. So, the reneging
percentage formula for the truncated R-Ticket Queue is given by:

1− (1− pt0)
µ

λ

As mentioned before, the total reneging percentage of single-server R-Ticket
Queue can be approximated by that of single-server modified R-Ticket Queue
with same parameters. Truncated R-Ticket Queue is actually the modified
one, but with a moderate number of equations so that can be solved accu-
rately. Formulas (4.26) and (4.27), in combination with the total reneging
formula can lead efficiently to computational results. We executed calcula-
tions for the same range of parameters as used in the simulation. Especially,
when the customer arrival rate λ is fixed at 1, the service rate µ is varied
from 0.5 to 2, and the reneging rate is computed as in (4.9) and (4.10), with
a γ variation of 0 to 1 and β varying from 1 to 2. We also need to select the
cutoff level V for each set of parameters, in a way that the calculated total
reneging percentage becomes stable. Indeed, the calculation results of total
reneging percentage are very close to the simulation results, as the differences
are all within ±0.00007. This indicates that the formulas (4.26) and (4.27)
are reliable.

The basic analysis for single-server R-Ticket Queue has been done. How-
ever, it is also interesting to study a generalization of this queue with many
servers. Therefore, the next section is dedicated to an extension of the queue
we analyzed, the multi-server R-Ticket Queue.

4.3 The Multi-server R-Ticket Queue

In this section, we describe the multi-server R-Ticket Queue in a quite brief
way. Firstly, we shall introduce the form of the states. We assume that there
are s servers. Thus, if L is the number of customers in the system, the state
vector n′ can be defined as following:

◦ If L ≤ s− 1, then n′ = (L);

◦ If L = s, then n′ = (n′1), where n′1− s is the number of customers who
have reneged since the last customer starts to receive service;

◦ If L > s− 1, then n′ = (n′1, . . . , n
′
L−s+1), where: n′1 − s + 1 ≥ 1 is the

ticket position of the first waiting customer, n′i, i = 2, . . . , L − s is a
positive integer which represents the ticket number difference between
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the (i− 1)th and the ith waiting customers and finally, n′L−s+1 denotes
the difference between the ticket number of the last waiting customer
and that to be issued to the next arriving customer.

We give an example for clarity; let s = 4 and n′ = (5, 3, 4) a state in the multi-
server R-Ticket Queue. Then, we can derive the subsequent information:

◦ There are 4 customers being served and 2 more customers waiting in
queue. The number of waiting customers is verified by the number of
components that the vector state has.

◦ The ticket position of the first waiting customer is 5− 4 + 1 = 2. That
means, 1 customer before her/him has reneged.

◦ The ticket number difference between the first and the second waiting
customers is 3. That is, 2 customers between them have reneged.

◦ For a new arriving customer, the ticket number difference between
her/him and the second waiting customer is 4, which means that three
customers after the second waiting customer have reneged.

The transition diagram of the multi-server R-Ticket Queue can be seen in
Figure 4.8. We observe that it is quite similar to that of the single-server
R-Ticket Queue.

We continue by defining super states for the multi-server R-Ticket Queue.
Let super state S̃L, L = 0, 1, . . . represent the collection of all states in which
there exist L customers in the system, waiting or being served. Then, when
L = {0, 1, . . . , s − 1}, the corresponding super states S̃0, S̃1, . . . , S̃L contain

only the state (L). On the other hand, S̃L with L = {s, s + 1, . . .} contains

infinite states. As an example, we can see in Figure 4.8 that super state S̃s
contains states such as (s), (s + 1), . . ., so we have an infinite amount of
states.

We denote as ps(S̃L), L = 0, 1, . . . the steady state probability for each
super state in the multi-server R-Ticket Queue. In the following, we represent
two propositions which are similar to 4.1.1 and 4.1.2. Then, we show the way
that the steady state probabilities of the multi-server R-Ticket Queue can be
derived.
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Figure 4.8 Transition Diagram for Multi-server R-Ticket Queue
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Proposition 4.3.1. For a multi-server R-Ticket Queue, there exists an in-
teger m ≥ s, such that:

◦ If 0 ≤ n′ ≤ s− 1, we have:

ps(S̃L) ≥
∏n′

k=1
λ
kµ

1 +
∑s

j=1

(∏j
k=1

λ
kµ

)
+
(∏s

k=1
λ
kµ

)
·
∑∞

j=s+1

(∏j−s
k=1

λ

sµ+
∑k
d=1 τd

)
◦ If s ≤ n′ ≤ m, then:

ps(S̃L) ≥

∏n′

k=1
λ
kµ
·
(∏n−s

k=1
λ

sµ+
∑k
d=1 τd

)
1 +

∑s
j=1

(∏j
k=1

λ
kµ

)
+
(∏s

k=1
λ
kµ

)
·
∑∞

j=s+1

(∏j−s
k=1

λ

sµ+
∑k
d=1 τd

)
◦ If n′ > m, we have:

ps(S̃L) ≤

∏n′

k=1
λ
kµ
·
(∏n−s

k=1
λ

sµ+
∑k
d=1 τd

)
1 +

∑s
j=1

(∏j
k=1

λ
kµ

)
+
(∏s

k=1
λ
kµ

)
·
∑∞

j=s+1

(∏j−s
k=1

λ

sµ+
∑k
d=1 τd

)
Proof. We will present a brief version of the proof, as it is quite similar to
that in Proposition 4.1.1. Firstly, consider the corresponding to the multi-
server R-Ticket Queue physical queue; that is, a normal queue with reneging
customers and s servers. We assume that n stands for the state that there
exist n customers in the system, waiting or being served. Moreover, we
denote as pmp(n) the steady state probability of state n in the multi-server
physical queue. From the state balance, we get:

λpmp(n) = (n+ 1)µpmp(n+ 1), n = 0, . . . , s− 2

λpmp(n) =

(
sµ+

n−s+1∑
d=1

τd

)
pmp(n+ 1), x = s− 1, s, . . .

Using the normalization equation,
∑∞

n=0 p
mp(n) = 1, we can compute the

steady probabilities for all states, in the same manner as before.
Following the same thoughts as in Proposition 4.1.1, from the balance of

states and super states, and the fact that τ1 ≤ τ2 ≤ . . ., we obtain for the
multi-server R-Ticket Queue the following equations:

96



λps(S̃n) = (n+ 1)µps(S̃n+1), n = 0, . . . , s− 2

λps(S̃n) ≥

(
sµ+

n−s+1∑
d=1

τd

)
ps(S̃n+1), n = s− 1, s, . . .

With a very similar deduction as seen in the proof of Proposition 4.1.1, we
can obtain the lower and upper bounds for each state or super state in the
multi-server R-Ticket Queue.

Proposition 4.3.2. For multi-server R-Ticket Queues,(∏s
k=1

λ
kµ
·
(

1 +
(
1− sµ

λ

))
·
∑∞

j=s+1

(∏j−s
k=1

λ

sµ+
∑k
d=1

τd

))
1 +

∑s
j=1

(∏j
k=1

λ
kµ

)
+

(∏s
k=1

λ
kµ

)
·
∑∞

j=s+1

(∏j−s
k=1

λ
sµ+

∑τd
d=1

) (4.28)

is a lower bound for its total reneging percentage. The bound is tight when
all τd are same, or when λ/µ approaches zero or infinity.

Proof. As expected, this is a straightforward consequence from Proposition
4.3.2. When the multi-server R-Ticket Queue system is in steady state, the
average number of customers in the queue increases by 1 with any arriving
customer at rate λ, and decreases by 1 with both the average service rate and
the average reneging rate. As there are s servers in the system, the average
service rate is given by:

µps(S̃1) + 2µps(S̃2) + . . .+ sµps(S̃s) + sµ
(
ps(S̃s+1) + ps(S̃s+2) + . . .

)
Hence, the total reneging percentage is given by:

λ−
∑s

n=1(nµp
s(S̃n))− sµ

∑∞
n=s+1(p

s(S̃n))

λ

Using Proposition 4.3.1 and deriving some computations, we have the lower
bound shown in (4.28). The tightness of the bound can be easily verified.

At this point, we search for the steady probabilities of states n′ in the
multi-server R-Ticket Queue. Let ps(n′) denote this probability for every
state n′. We begin with the states (0),. . . ,(s-2). As seen in Figure 4.8, they
are the states in the dashed box. The derivation of their steady probabilities
goes as follows;
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◦ From the balance of state (0) we get: λps(0) = µps(1)

◦ The balance of state (1) gives: λps(0) + 2µps(2) = (λ+ µ)ps(1)

◦ The two previous equations give: λps(1) = 2µps(2)

With very similar procedures, we assume the balance of (2),(3),. . . , and
therefore, we obtain:

ps(k) · λ = ps(k + 1) · (k + 1)µ, k = 0, . . . , s− 2 (4.29)

We derive an interesting consequence from (4.29); that is, if we discard the
states (0),. . . ,(s− 2), the remaining system is still in balance. An even more
appealing observation is that, if we look carefully both figures 4.2 and 4.8, we
can see that there is a bijective mapping between multi-server system state
n′ = (n′1, . . . , n

′
L) outside the dashed box in Figure 4.8 and the single-server

system n = (n1, . . . , nL) = (n′1−s+1, n′2, . . . , n
′
L) in Figure 4.2. Undoubtedly,

if we cover the dashed box in Figure 4.8, the diagram looks identical to that of
Figure 4.2. Thus, this bijective mapping gives us the opportunity to derive
the steady state probabilities of the multi-server R-Ticket Queue directly
from those of the single-server R-Ticket Queue.

For this purpose, we denote as p∗(n) the steady state probabilities of state
n of the single-server R-Ticket Queue with service rate sµ. Additionally, for
all the states outside the dashed box in Figure 4.8, we define:

ps(n′1, n
′
2, . . . , n

′
L) = ξ · p∗(n′1 − s+ 1, n′2, . . . , n

′
L), (4.30)

where 0 < ξ < 1. That is, the total probability of these states is ξ. As
a consequence, the total probability of the states inside the dashed box in
Figure 4.8 is 1− ξ. Thus, equation (4.29) gives:

ps(k) = ps(s−1) · (s− 1)!

k!
·
(
µ

λ

)s−1−k
= ξp∗(0) · (s− 1)!

k!
·
(
µ

λ

)s−1−k
, (4.31)

k = 0, . . . , s− 2

Therefore, we get from (4.31):

s−2∑
k=0

ps(k) = ξp∗(0) · (s− 1)! ·
s−2∑
k=0

[
1

k!
·
(
µ

λ

)s−1−k]
= 1− ξ (4.32)

98



Equation (4.32) provides us with the value of ξ, that is finally given by:

ξ =
1

1 + p∗(0) · (s− 1)! ·
∑s−2

k=0

[
1
k!
·
(
µ
λ

)s−1−k] (4.33)

At this point, we introduce the next proposition, which gives the steady state
probabilities and the total reneging percentage of the multi-server R-Ticket
Queue.

Proposition 4.3.3. The steady state probabilities of the multi-server R-
Ticket Queue can be derived directly using the formulas (4.30), (4.31) and
(4.33). Moreover, its total reneging percentage is given by:

ξ
(
1−

(
1− p∗(0)

)
sµ/λ

)
=

1−
(
1− p∗(0)

)
sµ/λ

1 + p∗(0) · (s− 1)! ·
∑s−2

k=0

[
1
k!
·
(
µ
λ

)s−1−k] (4.34)

Recall that p∗(0) is the steady probability of state (0) in the single-server
R-Ticket Queue with rate sµ; hence, it can be derived too.

Proof. We have already analyzed the derivation of equations (4.30), (4.31)
and (4.33). We shall present the computations that lead to the total reneging
percentage of the multi-server R-Ticket Queue.

Therefore, when the system is in steady state, the average number of
customers in the queue increases by one with each arrival at rate λ. On
the other hand, it decreases by 1 at rate kµ with probability ps(k), where
k = 1, . . . , s− 1, at rate sµ with probability ξ− ps(s− 1), and at the average
reneging rate. Hence, the total reneging percentage is derived as:

λ−
∑s−1

k=1

(
kµ · ps(k)

)
− sµ ·

(
ξ − ps(s− 1)

)
λ

=
λ−

∑s−1
k=1

(
λ · ps(k − 1)

)
− sµ ·

(
ξ − ξ · p∗(0)

)
λ

=
λ− λ · (1− ξ)− sµ · (ξ − ξ · p∗(0))

λ

= ξ

(
1− (1− p∗(0)) · sµ

λ

)
,

where the first equation is based on formulas (4.30) and (4.31), and the
second one has been derived by formula (4.33).
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We conclude this section with some more details about the results we
obtained for the multi-server R-Ticket Queue. At first, note that the total
reneging percentage lower bound given by Proposition 4.3.2 is compatible
with that of single server R-Ticket Queue in Proposition 4.1.2. That is
because the later is a special case of the former with s = 1 and ξ = 1.

We should also highlight that we cannot obtain an accurate value of
p∗(0), as it is approximated by the total reneging percentage of the modified
R-Ticket Queue. So, if we use this approximated value in equation (4.33),
the total reneging percentage of the multi-server R-Ticket Queue will also be
an approximated result.

By carrying out some experiments, we can see that generally, the multi-
server total reneging percentage formula leads to approximated results with
reasonable errors. Specifically, we apply the formula (4.33) with both true
total reneging percentage and approximated total reneging percentage at
e = 5% error. In Figure 4.9 below, we can see the relative errors for cases of
s = 10 and s = 50 (the upper and lower surfaces respectively).

Figure 4.9 Relative Errors of Total Reneging Percentages
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We observe in Figure 4.9 that the relative error is smaller when s is higher
and µ is lower, for given total service rate sµ. Moreover, the approximation
is better with higher true total reneging percentages.

The analysis of the multi-server R-Ticket Queue has been completed. The
next section concludes our findings with a brief and interesting discussion
about how we can use the obtained results for our advantage.

4.4 Total Reneging Percentage Improvement

In this chapter, we have studied the R-Ticket Queue model, a Markovian
model of Ticket Queue with reneging customers. Additionally, we developed
an approximation procedure to obtain numerically the steady state prob-
abilities and calculate the total reneging percentage. The approximation
procedure turned out to be largely efficient on an extensive set of numerical
examples. Therefore, through this procedure, we are able to estimate the
actual queue length for a ticket position, and thus potentially we can reduce
the total reneging percentage by offering more information to the customers
upon arrival.

For this purpose, we can calculate the expected queue length when an
arriving customer observes a ticket position of dA. We assume that nA is the
number of customers who are actually in the queue, being served or waiting,
except of the newly arrived customer at that time. Apparently, we have
nA ≤ dA and when dA = 0, then nA = 0. Same goes when dA = 1, where
nA = 1. For dA ≥ 1, we can compute the conditional expected queue length
E[nA|dA] as follows:

E[nA|dA] =

dA∑
k=1

[k · P (nA = k|dA)] =

∑dA
k=1[k · P (nA = k, dA)]

P (dA)

E[nA|dA] =

∑dA
k=1[k · P (k, dA − k)]∑dA
k=1 P (k, dA − k)

(4.35)

Note that P (nA = k, dA) is the probability that there are k customers already
in the queue, given the fact that a customer upon her/his arrival observes
ticket position equal to dA. Furthermore, P (k, dA − k) is the probability of
the state with 1 customer in service, k − 1 customers waiting in queue and
dA − k reneging customers with their tickets still counted in the queue. We
can easily comprehend that these two probabilities are equal.
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Generally, we observe that E[nA|dA] is smaller than dA, because some of
the customers may have reneged and hence, it reflects with more accuracy
the real queue length. So, there is the idea to provide the customers with
this information upon their arrival; this action could make them discount the
actual queue length by a proportion of E[nA|dA]/dA. If we assume as well
that the discounting is kept through their stay in the queue, the immediate
reneging rate will be adjusted to τ[d·E(nA|dA)/dA] when later the ticket position
changes to d. We refer to the resulting queue as the R-Ticket-Plus Queue,
that is a queue where the customers conscientiously discount the queue length
as indicated by the ticket position d, and the discounting factor is given upon
arrival.

For the R-Ticket-Plus Queue, we compute the total reneging percentage
as in Section 4.1. It actually turns out much smaller than the R-Ticket
Queue, but still larger than the corresponding physical queue. So, provid-
ing information on E[nA|dA], helps us to reduce the difference of the total
reneging percentage between th R-Ticket Queue and the physical one.

Figure 4.10 Total Reneging Percentage Differences

We supplement the intuitive arguments with numerical examples, using the
same set of parameters as before. The simulation shows that the reduction
can be as high as 65%, which is an impressive result. In Figure 4.10 we can
see the differences in total reneging percentage between the R-Ticket Queue
and the corresponding physical (upper surface) and between the R-Ticket-
Plus Queue and the physical one (lower surface). It is clear that the latter
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have smaller differences than the former. That is, the R-Ticket-Plus Queue
always improves R-Ticket Queue in terms of the total reneging percentage,
and we can say that generally, performs very close to the physical queue
with reneging customers. Finally, it is important that the improvement over
the R-Ticket Queue is mostly pronounced when its performance is the worst
relative to the physical queue; this makes the R-Ticket Queue a really good
modification for improvement.

In summary, providing the customers upon arrival with E[nA|dA] seems an
efficient idea that may reduce the total reneging percentage by 65%. However,
there are so many open problems in Ticket Queues yet, that this analysis and
the modification idea are only a starting point for more exploration in this
kind of queues.
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Chapter 5

Conclusion

Throughout this work, we gained insights about Ticket Queues that are ac-
tually very interesting; we studied two different models of Ticket Queues,
one with balking and the other with reneging customers. We developed
the Markovian representation of these models, we introduced methods to
find their steady state probabilities and showed efficient evaluation tools for
useful service performance measures. This analysis led to suggestions for
improvement, as the obtained results can help management to predict cus-
tomers’ behavior quite accurately; and hence provide them with information
that can reduce either the balking or the reneging percentage.

We should highlight that this work is an analysis of fundamental Ticket
Queue models and is merely one quite informative and useful starting point
for even more exploration in this topic. In fact, these Markov models can
definitely serve as the starting points, from which we could study more gen-
eral or complex systems. For example, a project which could be studied is a
Ticket Queue with both balking and reneging customers, or customers that
are not strategically homogeneous. As mentioned in the beginning, a recent
work of Hanukov, Anily and Yechiali (2019), shows an appealing, really com-
plex system where we have strategic and non-strategic customers. The latter,
called as regular customers, appear to be those who join the queue whatever
their ticket position is, while strategic customers follow a double threshold
strategy. Imagine we have two thresholds, m and n, where m < n. Then, we
let d be the ticket position, so that a strategic customer joins if d ≤ m. While
m < d < n, a strategic customer becomes an orbit customer; that is, s/he
takes the ticket and leaves temporarily the system in order to run some other
errands and then return, hoping s/he would not lost her/his position in the
queue. Finally, when d ≥ n, the customer balks. Such complex and difficult
Ticket Queue systems have been researched according to the primal work
that is presented here, and there are plenty of options that can be explored
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in the future.
We should also mention that in this work we assumed as a basic reason of

balking or reneging the expected delay of a customer in the system. Thus, a
customer makes a decision by estimating the time s/he needs to wait in order
to be served. However, in reality, a customer’s decision may depend on other
attributes than her/his anticipated delay. Understanding the customers’ psy-
chology when waiting in a queue is a substantial tool for improvement. Even
though researches are made for customers’ psychology in physical queues,
their behavior may differ when dealing with a Ticket Queue. So, it is impor-
tant to understand deeper the customers’ behavior in Ticket Queue systems
to develop better models that truly reflect their needs and make them more
satisfied. This benefits the management as well. Consequently, with different
reasons of customers’ dissatisfaction, we should develop efficient methods to
estimate different performance measures and follow other ways to commu-
nicate this information to the customers. For example, some companies use
handhold electronic devices to communicate with their customers. There are
plenty of ways and policies that a company can apply to achieve the goal of
improvement.

As the time goes by, Ticket Queues are systems that we are dealing with
more and more in everyday life. As a consequence, it is a subject of growing
interest, and we expect a big amount of additional works to be developed in
the future.
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