
NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

SCHOOL OF SCIENCES
DEPARTMENT OF INFORMATICS AND TELECOMMUNICATIONS

BSc THESIS

NLP Tasks with GreekLegalBERT v2

Alexandra G. Apostolopoulou
Spyridon A. Briakos

Supervisors: Manolis Koubarakis, Professor
Despina - Athanasia Pantazi, PhD Candidate

ATHENS

DECEMBER 2021

ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

Προβλήματα Επεξεργασίας Φυσικής Γλώσσας με την
δεύτερη έκδοση του Ελληνικού Νομικού BERT μοντέλου

Αλεξάνδρα Γ. Αποστολοπούλου
Σπυρίδων Α. Μπριάκος

Επιβλέποντες: Μανόλης Κουμπαράκης, Καθηγητής
Δέσποινα - Αθανασία Πανταζή, Υποψήφια Διδάκτωρ

ΑΘΗΝΑ

ΔΕΚΕΜΒΡΙΟΣ 2021

BSc THESIS

NLP Tasks with GreekLegalBERT v2

Alexandra G. Apostolopoulou
S.N.: 1115001700005

Spyridon A. Briakos
S.N.: 1115001700101

SUPERVISORS: Manolis Koubarakis, Professor
Despina - Athanasia Pantazi, PhD Candidate

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

Προβλήματα Επεξεργασίας Φυσικής Γλώσσας με την δεύτερη έκδοση του Ελληνικού
Νομικού BERT μοντέλου

Αλεξάνδρα Γ. Αποστολοπούλου
Α.Μ.: 1115001700005

Σπυρίδων Α. Μπριάκος
Α.Μ.: 1115001700101

ΕΠΙΒΛΕΠΟΝΤΕΣ: Μανόλης Κουμπαράκης, Καθηγητής
Δέσποινα - Αθανασία Πανταζή, Υποψήφια Διδάκτωρ

ABSTRACT

In recent years, Legal Artificial Intelligence (LegalAI) has drawn increasing attention rapidly
from both AI researchers and legal professionals [29]. This is due to the fact that LegalAI
benefits the legal system for liberating legal professionals from a maze of paperwork.
LegalAI focuses on applying artificial intelligence technologies, particularly Natural Language
Processing, to benefit tasks in legal domain.

As part of this endeavor, BERT has started to be employed in legal domain, mostly in
English language, for tasks such as legal judgement prediction and violation prediction
[12], as it is well recognized for its remarkable performance in a variety of NLP tasks. As far
as we can discern, there are two uniquemodels in the Greek NLP era: the general-purpose
Greek-BERT [21] model and the specific-domain Greek-Legal-BERT-v1 [20] model. In this
thesis, we focus on the generation and representation of the second version of Greek-
Legal-BERT, namely GreekLegalBERT v2, which was provided with more Legal Data
than the first version. So, our primary goal is to increase the size of Greek NLP models.
The current thesis' next goal is to compare the three dinstict Greek NLP models, based
on BERT [15] model, between different downstream NLP tasks, notably in Named Entity
Recognition, Natural Language Inference and Multiclass Classification on Raptarchis [13]
dataset. Therefore, we consciously choose to begin our study with BERT’s Architecture
and the tasks it has been pretrained on. Having a thorough knowledge of the BERT
model, we continue with break down Greek-BERT and Greek-Legal-BERT-v1 to highlight
the distinctions between models. Then, using more Legal Data than Greek-Legal-BERT-
v1, we proceed to train our own comparable GreekLegalBERT v2 model, with aim of
maximizing its performance.

Finally, we assessed the three previously mentioned NLP models on the three previously
mentioned NLP tasks and presented the results. Precision, Recall and F1 score were the
metrics we used in our evaluation. We selected these metrics so that we could compare
them directly to previous models evaluated on the same dataset. In terms of NER, our
model achieved the greatest performance with a slight difference among the two remaining
models. As far as NLI is concerned, our model outperforms Greek-Legal-BERT-v1 in all
three categories, but it didn't manage to surpass the scores of Greek-BERT. Eventually,
in case of Multiclass Classification on Raptarchis dataset, our model surpassed in the
first two categories, namely Volume and Chapter, however in the last category, Subject,
Greek-Legal-BERT-v1 was the unique winner among all models.

SUBJECT AREA: Natural Language Processing

KEYWORDS: BERT, Named Entity Recognition, Natural Language Inference, Legal
Data, Compare Greek Models

ΠΕΡΙΛΗΨΗ

Τα τελευταία χρόνια, η Τεχνητή Νοημοσύνη με Νομικά Δεδομένα προσελκύει ολοένα και
μεγαλύτερη προσοχή τόσο από τους ερευνητές της Τεχνητής Νοημοσύνης όσο και από
τους επαγγελματίες νομικούς. Αυτό οφείλεται στο γεγονός ότι η Τεχνητή Νοημοσύνη με Νο-
μικά Δεδομένα ωφελεί το νομικό σύστημα μέσω της απελευθέρωσης των επαγγελματιών
νομικών από έναν επίπονο λαβύρινθο γραφειοκρατίας. Η Τεχνητή Νοημοσύνη με Νομικά
Δεδομένα επικεντρώνεται στην εφαρμογή τεχνολογιών τεχνητής νοημοσύνης, ιδιαίτερα
στην Επεξεργασία Φυσικής Γλώσσας, προς όφελος εργασιών σε νομικό τομέα.

Ως μέρος αυτής της προσπάθειας, το μοντέλο BERT έχει αρχίσει να χρησιμοποιείται στο
νομικό τομέα, κυρίως στην Αγγλική γλώσσα, για εργασίες όπως η πρόβλεψη νομικής κρί-
σης και η πρόβλεψη παραβίασης [12], καθώς είναι ευρεώς αναγνωρισμένο για την αξιοση-
μείωτη απόδοση του σε μια πληθώρα διεργασιών Επεξεργασίας Φυσικής Γλώσσας. Από
όσα μπορούμε να γνωρίζουμε, υπάρχουν δύο μοναδικά μοντέλα που αφορούν την Ελ-
ληνική γλώσσα: το μοντέλο Greek-BERT [21] και το μοντέλο Greek-Legal-BERT-v1 [20].
Σε αυτήν τη διατριβή, εστιάζουμε στη δημιουργία και την παρουσίαση της δεύτερης έκ-
δοσης του Greek-Legal-BERT, δηλαδή του GreekLegalBERT v2, το οποίο δημιουργεί-
ται με περισσότερα Νομικά Δεδομένα από την πρώτη έκδοση. Έτσι, πρωταρχικός μας
στόχος είναι η αύξηση του μεγέθους των Ελληνικών μοντέλων Επεξεργασίας Φυσικής
Γλώσσας. Ο επόμενος στόχος της τρέχουσας διατριβής είναι η σύγκριση των τριών Ελ-
ληνικών μοντέλων, που βασίζονται στο μοντέλο BERT [15], μεταξύ διαφόρων διεργασιών
Επεξεργασίας Φυσικής Γλώσσας, δηλαδή στην Αναγνώριση Ονοματισμένης Οντότητας,
την Εξαγωγή Φυσικής Γλώσσας και την Πολυεπίπεδη Ταξινόμηση στο σύνολο δεδομένων
Raptarchis [13]. Έπειτα, αποφασίσαμε συνειδητά να ξεκινήσουμε τη μελέτη μας για την
αρχιτεκτονική του BERT και τις θεμελιώδεις διεργασίες στις οποίες έχει προεκπαιδευτεί.
Έχοντας μια πλήρη γνώση του μοντέλου BERT, συνεχίζουμε με τη περεταίρω ανάλυση
των Greek-BERT και Greek-Legal-BERT-v1 για να επισημάνουμε τις διαφορές μεταξύ των
μοντέλων. Εν συνέχεια, χρησιμοποιώντας περισσότερα Νομικά Δεδομένα από το Greek-
Legal-BERT-v1, προχωρούμε στην εκπαίδευση του δικού μας μοντέλου GreekLegalBERT
v2, με απώτερο στόχο τη μεγιστοποίηση της απόδοσής του.

Τέλος, αξιολογούμε τα τρία προαναφερθέντα μοντέλα για τις τρεις προαναφερθείσες διερ-
γασίες Επεξεργασίας Φυσικής Γλώσσας και παρουσιάζουμε τα αποτελέσματα. Η ακρίβεια,
η ανάκληση και η βαθμολογία F1 ήταν οι μετρικές που χρησιμοποιήσαμε στην αξιολόγησή
μας. Επιλέξαμε αυτές τις μετρικές, ούτως ώστε να μπορούμε να τα συγκρίνουμε άμεσα με
προηγούμενα μοντέλα που αξιολογήθηκαν στο ίδιο σύνολο δεδομένων. Όσον αφορά το
NER, το μοντέλο μας πέτυχε τη μεγαλύτερη απόδοση με μια μικρή διαφορά μεταξύ των
δύο υπολοίπων μοντέλων. Όσον αφορά το NLI, το μοντέλο μας ξεπερνά το Greek-Legal-
BERT-v1 και στις τρεις κατηγορίες, αλλά δεν κατάφερε να ξεπεράσει τις βαθμολογίες του
Greek-BERT. Τέλος, στην περίπτωση της Πολυεπίπεδης Ταξινόμησης στο σύνολο δεδο-
μένων Raptarchis, το μοντέλο μας ξεπέρασε στις δύο πρώτες κατηγορίες, ωστόσο στην
τελευταία κατηγορία, το Greek-Legal-BERT-v1 ήταν ο μοναδικός νικητής μεταξύ όλων των
μοντέλων.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Επεξεργασία Φυσικής Γλώσσας

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: Μοντέλο BERT, Αναγνώριση Ονοματισμένων Οντοτήτων,
Συμπέρασμα Φυσικής Γλώσσας, Νομικά Δεδομένα, Σύγκριση
Ελληνικών Μοντέλων

Thanks to our parents for never losing hope in us.
Without you, we wouldn’t have made it this far.

We are extremely grateful to all.

ACKNOWLEDGEMENTS

For the completion of this Thesis, we would like to thank our supervisors, namely the
PhD candidate Despina-Athanasia Pantazi and our professor Manolis Koubarakis, for their
cooperation and their valuable contribution and guidance throughout each stage of our
thesis' planning and development. We are incredibly appreciative for the opportunity to
speak about such an intriguing and major topic.

CONTENTS

1. INTRODUCTION 14

2. BACKGROUND AND RELATED WORK 16

2.1 BERT Model . 16
2.1.1 What is BERT? . 16

2.1.1.1 B: Bi-directional . 16
2.1.1.2 ER: Encoder Representations . 17
2.1.1.3 T: Transformers . 17

2.1.2 BERT’s Architecture . 18
2.1.3 How does it work? . 19

2.1.3.1 Input . 19
2.1.3.2 Output . 20

2.1.4 Tasks that BERT has been pre-trained on . 20
2.1.4.1 Masked Language Modeling . 21
2.1.4.2 Next Sentence Prediction . 21

2.2 Comparison with other BERT Models . 22
2.2.1 Greek-BERT . 22
2.2.2 Greek-Legal-BERT-v1 . 22

3. PRETRAIN OF GREEKLEGALBERT V2 MODEL 23

3.1 Datasets and Preprocessing . 23
3.1.1 Raptarchis . 23
3.1.2 Nomothesi@ Platform . 24
3.1.3 EuroParl . 26
3.1.4 EUR-LEX . 26
3.1.5 Hellenic Parliament Sessions . 30
3.1.6 Preprocessing . 31
3.1.7 Tokenization . 32
3.1.8 Generate Vocabulary . 33

3.2 Google Cloud Setup . 33
3.2.1 Why Choose Google Cloud Platform? . 33
3.2.2 TPU Quotas . 34
3.2.3 Create Google Compute Engine (GCE) . 34
3.2.4 Create Tensorflow Records (TFRecords) . 34
3.2.5 Create Google Cloud Storage (GCS) . 35
3.2.6 Create Tensor Processing Unit (TPU) Node . 36
3.2.7 Prepare Virtual Machine (VM) Environment . 36

3.3 Model Pretraining . 37
3.3.1 Pretraining Parameters . 37
3.3.2 Pretraining Procedure . 37
3.3.3 Save model . 38

3.3.4 Upload model . 39

4. TASKS OF GREEKLEGALBERT V2 MODEL 41

4.1 Named Entity Recognition . 41
4.1.1 Dataset . 41
4.1.2 Fine Tuning . 43

4.2 Natural Language Inference . 44
4.2.1 Dataset . 45
4.2.2 Fine Tuning . 46

4.3 Multiclass Classification on Raptarchis . 48
4.3.1 Dataset . 48
4.3.2 Fine Tuning . 49

4.4 Performance on Masked Language Modeling (MLM) 49

4.5 Results . 51
4.5.1 Named Entity Recognition . 52
4.5.2 Natural Language Inference . 53
4.5.3 Multiclass Classification on Raptarchis . 53

5. CONCLUSIONS AND FUTURE WORK 54

ABBREVIATIONS - ACRONYMS 55

REFERENCES 58

LIST OF FIGURES

2.1 Tranformers’ Architecture . 17
2.2 BERT is a trained Transformer Encoder stack 18
2.3 BERT only uses the encoder part of the original Transformer network . . . 19
2.4 BERT’s Input . 20
2.5 Predicting the word in a sequence . 21
2.6 Next Sentence Prediction . 22

3.1 Raptarchis Law’s Structure . 23
3.2 Nomothesi@ Example . 25
3.3 Nomothesi@ Document Example from 1990 25
3.4 EuroParl Example . 26
3.5 EUR-LEX Dataset Example . 27
3.6 EU Framework Directive . 27
3.7 EUROVOC Descriptor ”1085” . 28
3.8 EUROVOC Descriptor Example 1 . 29
3.9 EUROVOC Descriptor Example 2 . 29
3.10 Plenary Session Body . 30
3.11 Plenary Session Information . 31
3.12 Google Cloud . 33
3.13 Google Compute Engine . 34
3.14 TFRecord Format . 35
3.15 Google Cloud Storage . 35
3.16 TPU v3-8 at a glance . 36
3.17 Tensorflow and Anaconda . 36
3.18 Pretraining Script . 37
3.19 Pretraining Snapshot . 38
3.20 Saved files . 38
3.21 Hugging Face . 39
3.22 Model Card . 39

4.1 Example from Annotated File . 41
4.2 Example from CoNLL file . 42
4.3 GreekLegalBERT v2 Tokenizer Example . 46
4.4 GreekLegalBERT v2 Indexes Example . 46
4.5 Sentence Pair Classification . 47
4.6 BERT Inputs Example . 47
4.7 True Positives-Negatives, False Positives-Negatives 51

LIST OF TABLES

3.1 Raptarchis Sets Statistics . 24
3.2 Raptarchis Categories Statistics . 24
3.3 Information about EuroParl Dataset . 26
3.4 EUR-LEX Sets Statistics . 30
3.5 Capacities of all preprocessed datasets . 31

4.1 NER Dataset Statistics . 43
4.2 NER Fine Tuning Hyperparameters . 44
4.3 NER Fine Tuning Best Hyperparameters . 44
4.4 NLI Sentence Example . 45
4.5 NLI Dataset Statistics . 46
4.6 NLI Fine Tuning Hyperparameters . 47
4.7 NLI Fine Tuning Best Hyperparameters . 48
4.8 Capacities of remaining Raptarchis . 48
4.9 Capacities of new fine tuning Raptarchis dataset 48
4.10 Difference of Labels between Raptarchis datasets 49
4.11 Multiclass Classification on Raptarchis Fine Tuning Hyperparameters . . . 49
4.12 NER Results . 52
4.13 NLI Results . 53
4.14 Multiclass Classification on Raptarchis Results 53

PREFACE

The present thesis is part of the requirements for the acquisition of a Bachelor’s degree in
Department of Informatics and Telecommunications of National and Kapodistrian University
of Athens. The major purpose of this thesis is to train the BERT model with more legal
data than it has previously been trained with, to experiment with specific NLP tasks, and
to compare our results to those of other Greek models.

Working on this project validated our early interest in Artificial Intelligence, particularly
Natural Language Processing. It motivated us to learnmore about neural networks, making
this field even more appealing. Without this thesis, deciding on our true passions and
choosing a general field to pursue in later life would be much more difficult.

We never anticipated working with such a huge and state-of-the-art model, like BERT, so
early in our university studies. This journey was gratifying in every way. We will make every
effort to communicate our opinions and findings to you.

NLP Tasks with GreekLegalBERT v2

1. INTRODUCTION

It was three years ago, when the field of Natural Language Processing underwent a crucial
paradigm change, after the release of Google’s BERT [15], which achieved state-of-the-art
results on eleven dinstict NLP tasks. BERT used masked language modeling techniques
to introduce bidirectional contextual representations learning, which had previously been
missing in capturing the contextual representations.

In recent years, the application of NLP in legal domain has witnessed a tremendous in-
crease of interest. Many researchers and tech businesses are developing legal applica-
tions with NLP skills using deep learning techniques. Following a well-structured proced-
ure with well-defined practices in an area like law, makes it ideal for NLP applications.

Transformer [28] based language models, such as BERT, use unsupervised pretraining
approaches on huge text to learn the features of languages and the benefits of transfer
learning to swiftly adapt to downstream NLP tasks by finetuning. On the downstream
NLP task, BERT offers the benefits of transfer learning, easier finetuning, and faster com-
putation at the finetuning stage. In the pretraining procedure, BERT uses self-supervised
learning and the WordPiece embedding vocabulary, which comprises roughly 30K tokens.
This paves the way for the BERT Model to increase its performance on domain-specific
NLP tasks. This includes additional pretraining of the BERT model on the legal text by
initializing with the pretrained general BERT Model, which is said to boost performance
on domain-specific NLP tasks.

Along these lines, the present work focuses on three different tasks: Named Entity Recog-
nition (NER), which falls under the Token Classification tasks, Natural Language Inference
(NLI), which falls under the Sequence Classification tasks andMulticlass Legal Text Clas-
sification on Raptarchis.

Token-level classification entails assigning a label to each token. A part-of-speech tagger,
for example, will categorize each word as a distinct part of speech, while NER will classify
each word as a single entity (like Person, Organization, Location etc). The output will
include a label for each token (element in the sequence). Sequence classification is the
task of predicting a class label given a sequence of observations. NLI, for example, is
the task of identifying whether a hypothesis-sentence given a premise-sentence is true
(entailment), untrue (contradiction), or undecided (neutral). Multiclass Text Classification
is the process of assigning a set of predetermined categories to unstructured text, and
text classifiers can be used to organize, structure, and categorize almost anything.

All of these techniques have, of course, been used in the past. Nonetheless, compared
to more commonly spoken languages, publicly available resources for Greek NLP remain
quite scarce. The resources for deep learning in Greek Legal NLP are much more scarce.
To our knowledge, this is the first time this work has been attempted to this extent, with a
model being trained with such a large volume of legal data and a comparison of how well
it performs against these various tasks.

Our documentation is mostly made up of four explanatory chapters, which are described
below:

• In Chapter 2, we provide background material about BERT model. We discuss the
origins of the term, the model’s architecture, how exactly it operates, and we go over
the tasks that it has been pre-trained on in detail. We also present and highlight the
differences of the other two Greek BERT models with which we will be compared.

A. Apostolopoulou - S. Briakos 14

NLP Tasks with GreekLegalBERT v2

• In Chapter 3, we describe the datasets that we utilized to train our model and the
processes that we had to take to create the GreekLegalBERT v2 model. Firstly, we
will go over the preprocessing steps that all legal corpora must go through before
they can be used, as well as the vocabulary and Tensorflow records creation. After
that, we continue with the actual training of the model on Google Cloud Platform,
including all of the Google Cloud Setup in great detail.

• In Chapter 4, we present the three tasks we experiment with, NER, NLI and Multi-
class Classification in Raptarchis, as well as the fine-tuning datasets and details of
implementation. We examine our model’s performance in Masked Language Model-
ing and compare the analytic results of our model in these tasks to a general-purpose
Greek-BERT model and the initial edition of Greek-Legal-BERT.

• In Chapter 5, we expand on our findings and discuss the possibilities for further work.

A. Apostolopoulou - S. Briakos 15

NLP Tasks with GreekLegalBERT v2

2. BACKGROUND AND RELATED WORK

2.1 BERT Model

2.1.1 What is BERT?

BERT is an open source machine learning framework for Natural Language Processing
(NLP). BERT is intended to assist computers in the process of understanding the meaning
of ambiguous language in text by establishing context through the use of surrounding text.
The BERT framework was pre-trained using text fromWikipedia (2.500 million words) and
BooksCorpus [30] (800 million words) and can be fine-tuned with question and answer
datasets.

It is aimed to pre-train deep bidirectional representations from unlabeled text by condi-
tioning on both left and right context at the same time. Due to this, the pre-trained BERT
model can be fine-tuned with just one additional output layer to provide state-of-the-art
models for a variety of NLP tasks, as we accomplished.

2.1.1.1 B: Bi-directional

The majority of models are uni-directional. They can traverse over the word’s context
window from only left to right or right to left. Only in one direction, but not both at the
same time. BERT, on the other hand, is a model that is ”deeply bidirectional”. It can see
the entire sentence on either side of a word contextual language modeling and all of the
words almost at once. BERT basically gives us contextual-bidirectional embeddings [8]:

• Contextual: A word’s embeddings are not static. That means, they depend on
the context of the surrounding words. The two embeddings of the word ”bird” in a
sentence like ”One bird was flying below another bird.” will be different.

• Bi-Directional: This feature allows the model to understand the context of a word
by looking at everything around it (left and right of the word). During the training
phase, it can learn information from both the left and right sides of a token’s context.

This is essential because a word’s meaning can frequently alter as a sentence develops
[22]. Each word added augments the overall meaning of the word that the NLP algorithm
is focusing on. The more words that are present in total in each sentence or phrase, the
more ambiguous the word in focus becomes. By reading bidirectionally, BERT adjusts for
the augmented meaning by accounting for the effect of all other words in a phrase on the
focus word and reducing the left-to-right momentum that biases words towards a given
meaning as a sentence progresses.

Let’s have a look at an example to demonstrate this. This example contains two sen-
tences, both of which contain the word ”bank”:

«We went to the river bank.»

«I need to go to the bank to make a deposit.»

A. Apostolopoulou - S. Briakos 16

NLP Tasks with GreekLegalBERT v2

We will make an error in at least one of the two examples if we try to guess the nature of
the term ”bank” by merely looking at the left or right context. One solution is to consider
both the left and right contexts before making a prediction. That is precisely what BERT
achieves!

2.1.1.2 ER: Encoder Representations

The text must be encoded in a format that the model can understand. It maps an input
sequence of symbol representations to a sequence of continuous representations. It is
composed of a stack with six identical layers. Each layer is divided into two sub-layers.
A multi-head self-attention mechanism is the first layer. The second layer is a simple,
position-wise fully connected Feed-Forward Network. We employ a residual connection
around each of the two sub-layers, followed by Layer Normalization. Layer normalization’s
main feature is that it normalizes the inputs across all features. To handle a range of tasks,
our input representation can clearly represent both a single sentence and a pair of sen-
tences (e.g. Named Entity Recognition, in one token sequence in the form of transformer
representations).

2.1.1.3 T: Transformers

BERT uses “Transformers” [28] and “Masked Language Modeling”. Transformer is made
up of two different mechanisms: an encoder that reads the text input and a decoder that
produces a prediction for the task. Only the encoder mechanism is required because
BERT’s purpose is to generate a language model.

Figure 2.1: Tranformers’ Architecture

A. Apostolopoulou - S. Briakos 17

NLP Tasks with GreekLegalBERT v2

One of the major problems with Natural Language Understanding in the past has been not
being able to understand in what context a word is referring to. For instance, pronouns.
In a conversation, it’s quite simple to lose track of who’s talking about what. Even humans
find it challenging to keep track of who is being mentioned in a conversation all of the
time. Search engines behave similarly, except they have a hard time keeping track of
when you say he, they, she, us, it, and so on. As a result, Transformers’ concentration is
on pronouns and the meanings of all the words that go together to figure out who is being
talked to or what is being discussed in any particular context.

The target word cannot perceive itself because of Masked Language Modeling. The mask
is required because it stops the under-focus word from seeing itself. BERT just guesses
what the missing word is once the mask is on. It’s also a part of the fine-tuning process.

Futhermore, BERT is based on the Transformer model architecture. BERT’s model details
will be presented very soon, but in general: A Transformer works by performing a small,
constant number of steps. In each step, it applies an attention mechanism to understand
relationships between all words in a sentence, regardless of their respective position.

2.1.2 BERT’s Architecture

BERT architecture builds on top of Transformer. It is available in two unique variations:

BERT Base BERT Large

Layers – 12 Layers – 24
Hidden State – 768 Hidden State – 1024

Self Attention Heads – 12 Self Attention Heads – 16
Total Parameters – 110 Million Total Parameters – 340 Million

An important note is the fact that BERT-Base was trained on 4 cloud TPUs for 4 days
and BERT-Large was trained on 16 TPUs for 4 days. Futhermore, all of these layers are
Encoder-only blocks. Here, we should mention that we used the BERT Base model to
train our model with more data.

Figure 2.2: BERT is a trained Transformer Encoder stack

BERT’s architecture is derived from Transformers. There are multiple stacked encoder
cells inside a BERT [17]. The encoder cells are used to read the input sentence and the

A. Apostolopoulou - S. Briakos 18

NLP Tasks with GreekLegalBERT v2

decoder cells are used to predict the output sentence inside a transformer, in a word by
word manner. However, in the case of BERT, since we only need a model that reads the
input sentence and generates some features that can be used for various NLP tasks, only
the encoder part of the transformer is utilized. As a result, BERT’s output is an embedding
rather than a textual output.

This already tells us a lot about BERT. Because it uses the encoder, it’s not meant for tasks
like text generation or translation. Although it can be trained on a variety of languages, it
is not a machine translation model in and of itself. Similarly, it can still predict words, so it
can be used as a text generating model, but that’s not what it’s optimized for.

Figure 2.3: BERT only uses the encoder part of the original Transformer network

2.1.3 How does it work?

Now that we’ve learned about BERT’s architecture, let’s look at how to utilize it to generate
output from some input text.

2.1.3.1 Input

Each input embedding is composed of three embeddings [25]:

1. Token embeddings: A pair of sentences, known as sequences, and two unique
tokens, [CLS] and [SEP], make up the input. So, in this example, for the two sen-
tences ”my cat is funny” and ”she likes jumping,” BERT converts the sequence into
tokens first (using Wordpiece Tokenization [18]), then inserts the [CLS] token in the
beginning and the [SEP] token at the beginning and end of the second sentence,
resulting in the input:

[‘[CLS]’, ‘my’, ‘cat’, ‘is’, ‘funny’, ‘[SEP]’, ‘she’, ‘likes’, ‘jumping’, ‘[SEP]’]

BERT’sWordpiece Tokenization separates words like ”jumping” into ”jump” and ”##ing.”
This is beneficial in two ways:

A. Apostolopoulou - S. Briakos 19

NLP Tasks with GreekLegalBERT v2

• It helps to reduce the size of our vocabulary since we don’t have to retain all
of the many forms of terms in our vocabulary, such as jumping, jumps, and
jumper.

• It assists us with words that are not in our vocabulary. If jumps isn’t in the
vocabulary, for example, we might still have embeddings for jumb and ##s.

2. Segment embeddings: These are used to help BERT distinguish between the dif-
ferent sentences in a single input. For words from the same sentence, the members
of this embedding vector are all the same, but the value varies if the sentence is
different. So, for the previous example, the segment embeddings will be as follows:

[0, 0, 0, 0, 0, 0, 1, 1, 1, 1]

Observe how all of the elements corresponding to the word in the first sentence
have the same element 0 while all of the elements corresponding to the word in the
second sentence have the same element 1.

3. Positional embeddings: These are the embeddings that are used to specify the
position of the words in the sequence. So we have a constant matrix with a pre-
defined pattern. The number of columns in this matrix is 768. The first row of this
matrix represents the embedding for the token [CLS], the second row represents the
embedding for the word ”my,” the third row represents the embedding for the word
”cat,” and so on.

Figure 2.4: BERT’s Input

2.1.3.2 Output

As previously stated, the input to BERT is typically a sequence of words, and the output is
a sequence of vectors. BERT base generates a 768-dimensional output internally. Finally,
we take this output and feed it into a feed-forward network such as a Dense layer and a
softmax or sigmoid as the activation function. This is something that allows us to perform
a variety of tasks based on its output.

2.1.4 Tasks that BERT has been pre-trained on

Themodel was trained on two different types of tasks: Masked Language Modeling (MLM)
and Next Sentence Prediction (NSP). Let’s take a closer look at these training approaches
and see what we can learn.

A. Apostolopoulou - S. Briakos 20

NLP Tasks with GreekLegalBERT v2

2.1.4.1 Masked Language Modeling

Language Modeling is the task of predicting the next word given a sequence of words.
Instead of predicting every next token, Masked Language Modeling masked a fraction of
input tokens at random and only those masked tokens are predicted [1].

Figure 2.5: Predicting the word in a sequence

Because the masked tokens would never be seen until fine-tuning, the masked words are
not always replaced with the masked token [MASK]. As a result, 15% of the tokens are
picked at random, and:

• 80% of the time tokens are actually replaced with the token [MASK].

• 10% of the time tokens are replaced with a random token.

• 10% of the time tokens are left unchanged.

2.1.4.2 Next Sentence Prediction

Masked Language Models are taught to recognize the connections between words. BERT
is also trained on Next Sentence Prediction, which is useful for tasks that require an under-
standing of the connection between sentences. Given a pair of sentences, it is predicted
if the second sentence is the actual next sentence of the first sentence or just a random
sentence.

BERT uses a specific [SEP] token to separate sentences, as we saw earlier. The model
is fed two input sentences at a time during training, as follows:

• 50% of the time the second sentence comes after the first one.

• 50% of the time it is a random sentence from the full corpus.

BERT must then predict whether the second sentence is random or not, based on the
assumption that the random sentence will be unrelated to the first:

A. Apostolopoulou - S. Briakos 21

NLP Tasks with GreekLegalBERT v2

Figure 2.6: Next Sentence Prediction

To determine if the second phrase is connected to the first, the entire input sequence is
passed through a Transformer-based model, the output of the [CLS] token is transformed
into a 2x1 shaped vector using a simple classification layer, and the IsNext-Label is as-
signed using softmax.

Both Masked Languange Modeling and Next Sentence Prediction are used to train the
model. This is done in order to reduce the combined loss function of the two techniques;
”better together.”

2.2 Comparison with other BERT Models

We compare our model against two other BERT models that have been pre-trained in
Greek and can comprehend them to measure how well or poorly it performs. These mod-
els are “Greek-BERT” and “Greek-Legal-BERT-v1”. The vocabulary in all of these mod-
els is uncased. We have to underline that we used the name “GreekLegalBERT v2” for
our model, as it is actually an extension of “Greek-Legal-BERT”, since we trained it with
more legal data this time.

2.2.1 Greek-BERT

Greek-BERT is amodel that has the same original BERT architecture, but it also trained on
the Greek language. It was trained on 29GB of Greek corpus. Specifically, the Greek part
of Wikipedia [4] (0.73GB, 0.08 billion tokens), the Greek part of the European Parliament
Proceedings Parallel Corpus [19] (0.38GB, 0.04 billion tokens), and the Greek part of
OSCAR [24], a clean version of Common Crawl (27GB, 2.92 billion tokens). It has also a
35.000 tokens vocabulary.

2.2.2 Greek-Legal-BERT-v1

Greek-Legal-BERT-v1 is a model following the same original BERT architecture, trained
on the Greek legal language. It was trained on 4.5 GB of Greek legal corpus. Specifically,
the entire corpus of Greek Legislation is available in Nomothesi@ [10] platform. This cor-
pus consists of numerous laws, announcements and resolutions in the Greek Language.
It has a 35.100 tokens vocabulary. Note that of the three models we use, Greek-Legal-
BERT-v1 has the smallest pre-training dataset.

A. Apostolopoulou - S. Briakos 22

NLP Tasks with GreekLegalBERT v2

3. PRETRAIN OF GREEKLEGALBERT V2 MODEL

3.1 Datasets and Preprocessing

The first step in developing an AI system is to figure out what problem it needs to address.
The availability of data will have a massive effect on how the system is is assembled and
which AI techniques are utilized. The quantity and quality of data available will have an
impact on the final product’s quality. In this way, one could argue that data availability (if
data exists) and accessibility (whether data is available) are the primary motivators for the
development of AI-based services. So, let us now describe and examine our datasets, as
well as the preprocessing we used to create a combined and cleaned dataset with an 8.6
GB capacity.

3.1.1 Raptarchis

The Raptarchis dataset, also known as RAPTARCHIS47k [13], consisting of approxim-
ately 47 thousand legal resources, is a comprehensive collection of Greek legislation dat-
ing from the founding of the Greek state in 1834 through 2015. It contains Laws, Royal and
Presidential Decrees, Regulations, and Decisions gathered from the Official Government
Gazette, which publishes Greek legislation. This collection is one of few official, publicly
accessible sources of classified Greek legislation that can be used for classification pur-
poses.

In addition, the Raptarchis dataset offers 3 hierarchical levels of thematic categorization,
which, for the purpose of the experiments, are labelled as:

• Volume, it is the first and broader level of thematic categorization. It consists of 47
different classes and is divided into Chapters.

• Chapter, it is the second level of thematic categorization. It consists of 389 different
classes and is divided into Subjects.

• Subject, it is the third, final andmore specialized level of the thematic categorization.
It consists of 2285 different classes.

Figure 3.1: Raptarchis Law’s Structure

As we can observe at Figure 3.1, a law of Raptarchis dataset encapsulates the header
column, which contains detailed info about the law, while in the articles column there is
a probability, of approximately 65%, of containing articles being associated with the law.
Each and every law has one unique value of the following categories: Volume, Chapter,
Subject. The columns title, type, year, and possibly law_id appear at the beginning of
each law in the header column. Additionally, the column leg_uri contains a link that refers
to the law (remark that only 3% of the laws have a link).

A. Apostolopoulou - S. Briakos 23

NLP Tasks with GreekLegalBERT v2

Table 3.1: Raptarchis Sets Statistics

Set No of Documents Avg. words
Train 28,536 600

Development 9,511 574
Test 9,516 595

As indicated in Table 3.1, the Raptarchis dataset is divided into three distinct sets: train,
development, and, of course, test set. We should point out that during our model’s pre-
training, we only collected the train set and left the other two out for the time being.

Table 3.2: Raptarchis Categories Statistics

Level Total Frequent Few-Shot Zero-Shot
Volume 47 47 0 0
Chapter 389 333 53 3
Subject 2285 712 1431 142

Furthermore, the Raptarchis dataset contains three categories of legal document resources
for each thematic level, based on the frequency of their labels in the training and testing
set: There are three types of shots: frequent, few, and zero. Frequent classes appear in
training documents more than 10 times. In 1 to 10 training documents, only a few shooting
courses appear. The development and/or test sets have zero shot classes, but the train-
ing set hasn’t. In the above Table 3.2, we can inspect the distribution of the three before
mentioned categories into Volume,Chapter and Subject level.

3.1.2 Nomothesi@ Platform

There has been a growing interest in making government data open and accessible to
the public during the last decade. More recently, breakthroughs in the field of NLP have
enabled the successful processing of textual data through the application of deep learning.
Legislation-related data is an essential type of government data. Legislation affects every
area of people’s lives and is always evolving, resulting in a vast network of interconnected
legal documents. As a result, it is critical for a government to provide services that make
legislation easily accessible to the general people, with the goal of informing citizens,
enabling them to defend their rights, or allowing them to use legislation as part of their
employment.

Following in the footsteps of other European countries, the Nomothesi@ project intends to
modernize the way Greek legislation is made public while also offering high-quality legal
services. There is currently no other endeavor in Greece, nor any relevant decisions made
by government institutions or administration, that considers this perspective on legislation.

Nomothesi@, a platform that makes Greek legislation available on the Web as linked
open data, was built on the basis of the aforementioned principles. Nomothesi@ gives
open access to over 12.000 pieces of legislation in a library with over 124.400 connections
and over 8.000 unique entities, such as geospatial entities, persons, organizations, and
geographic landmarks (points of interest). Therefore, we used the entire corpus of Greek
Legislation in Nomothesi@ platform, which includes various laws, announcements and
resolutions in Greek Language. An example of this dataset could be observed right below:

A. Apostolopoulou - S. Briakos 24

NLP Tasks with GreekLegalBERT v2

Figure 3.2: Nomothesi@ Example

In general, as you can see, the dataset is clean to a pretty decent level, and no special
preprocessing or character removal is required. However, we observed that the more you
go to previous years, the more the purity of the documents is affected. For example, the
image above is from 2017, while the photo below is since 1990:

Figure 3.3: Nomothesi@ Document Example from 1990

Nevertheless, this is not a general rule, as this phenomenon is not observed in many
documents and we considered that if we carry out a special treatment it would affect the
performance of the whole dataset.

A. Apostolopoulou - S. Briakos 25

NLP Tasks with GreekLegalBERT v2

3.1.3 EuroParl

Philipp Koehn’s [19] team in Edinburgh was able to collect corpus parallel text from the
European Parliament sessions in 11 languages from European Union (Danish, Dutch,
English, Finnish, French, German, Greek, Italian, Portuguese, Spanish, and Swedish).
Their collection is based on the European Parliament’s proceedings, which date back
to 1996. Their goal was to use the corpus to create over 100 machine translation sys-
tems for any language combination that could be imagined. We took advantage of the
chance to expand our Greek corpus because searching Greek raw text with a certain
domain-orientation, such as Legal Documents, is a challenging task. Despite the fact that
Koehn and his team provide datasets in a variety of languages, we are mainly interested in
the Greek part of the European Parliament Proceedings Parallel Corpus, which contains
mostly dialogues in Greek about legal and ethical issues.

Table 3.3: Information about EuroParl Dataset

Language Days Chapters Speaker Turns Sentences Words
Greek (el) 398 3.712 66.928 746.834 27.772.533

The data that makes up the corpus was extracted from the website of the European Parlia-
ment and then prepared for linguistic research. After sentence splitting and tokenization
the sentences were aligned across languages. As shown in the above Table 3.3, the
Greek data, which are merged Parliamentary reports, were recorded for more than a year
and finally end up reaching approximately 30 million words.

Figure 3.4: EuroParl Example

AParliamentary report that is submitted to a vote is normally preceded by a debate in which
the Commission, representatives from political organizations, and Members of Parliament
all have a say. Speaking time is typically limited due to the large number of Members who
have requested to speak. A short piece of a random Greek Parliamentary report can be
seen in the Figure 3.4 above.

3.1.4 EUR-LEX

EUR-LEX [2] provides online access to European Union (EU) legal documents that is both
official and comprehensive. It is updated daily and is available in all of the EU’s 24 official
languages. We downloaded the EURLEX57K Dataset, containing 57 thousand Greek EU
legislative documents from the EUR-LEX portal, tagged with approximately 4.3 thousand
labels , or broadly known as concepts, from the European Vocabulary [3] (EUROVOC),
which is formatted as follows:

A. Apostolopoulou - S. Briakos 26

NLP Tasks with GreekLegalBERT v2

Figure 3.5: EUR-LEX Dataset Example

Let’s take a look at the different columns one by one:

• celex-id:
A CELEX number is a unique identifier for a document. A CELEX number has dif-
ferent parts, which vary slightly depending on the type of document. The most likely
scenario is to have the four parts listed below: Sector, Year, Document type, Docu-
ment number.

Figure 3.6: EU Framework Directive

– Sector: EUR-LEX documents are divided into 12 categories:

1 Treaties
2 International agreements
3 Legal acts
4 Complementary legislation
5 Preparatory documents
6 EU case-law
7 National transposition
8 References to national case-law concerning EU law
9 Parliamentary questions
0 Consolidated texts
C Other documents published in the Official Journal C series
E EFTA documents

However, in our dataset, the 57.000 documents start with the number 3 for
identifier, indicating that we are only dealing with Legal Acts.

– Year: Year is frequently used to indicate when a document was adopted.
– Document Type: A descriptor is assigned to each document type. Given the
fact that we only have documents with Legal Acts, the following are the types
of documents we will encounter:

L Directives
R Regulations
D Decisions

A. Apostolopoulou - S. Briakos 27

NLP Tasks with GreekLegalBERT v2

– Document Number: Most CELEX numbers end in 4 digits. These reflect dif-
ferent types of information, such as:

Official number - e.g. 32017R2394: a sequential number showing when the
document was published in the Official Journal. It is assigned by the Publica-
tions Office.
Internal number - e.g. 52018PC0033: assigned by the author of the docu-
ment, here the Commission (PC).
Date of publication - e.g. 32012A0424(01): the month and day of publication
in the Official Journal. It is followed by a sequential number in brackets, as
other similar CELEX numbers might have been published on the same day.

• url:
URL column corresponds to the unique URL of each individual document. For this
reason, we opted not to include it in the final txt file because it adds no useful inform-
ation.

• type:
Because our dataset only contains Legal Acts, the file type can take one of three
values: Decision, Regulation, and Directive.

• concepts:
We may deduce from a quick search that the numbers in the concepts column cor-
respond to EUROVOC descriptions. EUROVOC is a multilingual, multidisciplinary
thesaurus that covers the EU’s activities. It includes terms in 23 EU languages (Bul-
garian, Croatian, Czech, Danish, Dutch, English, Estonian, Finnish, French, Ger-
man, Greek, Hungarian, Italian, Latvian, Lithuanian, Maltese, Polish, Portuguese,
Romanian, Slovak, Slovenian, Spanish, and Swedish), as well as three candidate
EU accession: (македонcки (mk), shqip (sq), and cрски) (sr). It provides keywords
arranged into 21 domains and 127 sub-domains for describing the content of EUR-
LEX documents. It can also be used to sort documents contained in EUR-LEX.

Let’s take a look at an example from one of our dataset’s documents. The list of
its concepts is the following: [’1085’, ’155’, ’5541’, ’775’, ’889’, ’985’].

Descriptor ”1085” corresponds to keyword “Γαλλία”.

Figure 3.7: EUROVOC Descriptor ”1085”

If we examine the document more closely, we will find that the word ”Γαλλία” appears
multiple times, as well as cognate words such as ”γαλλική”, ”γαλλικώv”, and so on.

A. Apostolopoulou - S. Briakos 28

NLP Tasks with GreekLegalBERT v2

Figure 3.8: EUROVOC Descriptor Example 1

Descriptor ”155” corresponds to keyword “ναυπηγικές κατασκευές”:

Figure 3.9: EUROVOC Descriptor Example 2

However, we do not know if replacing the descriptor with the keyword would help
the model learn better. As above, adding the term ”ναυπηγικές κατασκευές” once
again, while it has been mentioned approximately fourty times in the text, we do not
think that it will be provide any further important information. Undoubtedly, if it is not
performed frequently enough (e.g. once to three times), another repetition may be
beneficial. For this reason, we opted to maintain this information, because in cases
that a word is not repeated often it can help it, while in cases that it is repeated quite

A. Apostolopoulou - S. Briakos 29

NLP Tasks with GreekLegalBERT v2

often it would not mind another reference. Despite the fact that EUROVOC contains
over 7 thousand concepts, the majority of them are rarely used in practice.

• text:
This column contains the body of each EUR-LEX document’s text.

Table 3.4: EUR-LEX Sets Statistics

Sets No of Documents Size
Train 45.000 441.5 MB

Development 6.000 53.6 MB
Test 6.000 54.6 MB

As indicated in Table 3.4, the EUR-LEX dataset is divided into three distinct sets:
train, development, and, of course, test set. We should point out that during our
model’s pretraining, we only collected the train set and left the other two out for the
time being.

3.1.5 Hellenic Parliament Sessions

In this section, we tried to collect all the available minutes of the plenary sessions of the
Greek or Hellenic Parliament, from 3 July 1989 to 24 August 2021, including all types and
extent of speeches. In all these years the format of files was changing uninterruptedly,
from .docx to .doc format or from .txt file with different encodings. We achieve to grab
each every session with a custom web-crawler and store them all as text files.

Figure 3.10: Plenary Session Body

The Greek Parliament’s sessions [5] are accessible to the public; they are typically held
on a daily basis and the entire minutes of the plenary debates are published. So dur-
ing a simple plenary session, members of Parliament make a stand, converse and often
the Speaker of the Parliament with its own initiative interrupts in order to give the floor
wherever he believes. All this chattering between members of Parliament is documented,
as displayed in Figure 3.10, by an official team with excellent ability of stenography.

A. Apostolopoulou - S. Briakos 30

NLP Tasks with GreekLegalBERT v2

Figure 3.11: Plenary Session Information

We should also highlight that at the start of a conventional plenary session of the Greek
Parliament, crucial information is captured, such as the date of the session and the topics
that will be discussed, as seen in Figure 3.11.

3.1.6 Preprocessing

Altogether our five in total datasets structure a large merged corpora of total capacity
8.6GB, as illustrated in the below table.

Table 3.5: Capacities of all preprocessed datasets

Dataset Files Capacity
Raptarchis Train Set 28.541 0.22GB
Nomothesi@ Platform 97.928 4.9GB
EuroParl 1 0.39GB
Eur Lex Train Set 45.000 0.41GB
Hellenic Parliament Sessions 5.430 2.7GB
Total 176.900 8.6GB

The upcoming decision we had to make was which method of preprocessing we would
apply on our combined dataset. So we did follow a specific strategy described below.

UTF-8 Format: Ensure several times that every file in our merged dataset is encoded in
UTF-8 format, and that any file with a different encoding is converted properly.

Tokenization: Split each sentence into words using the most popular delimiter, which is
none other than space, in order to apply to a word by word manner our next functions.

Normalization: In respect of the removal of punctuation, we decided to remove only
Greek diacritics, such as accents and dieresis. This is due to the fact that the datasets
(such as EurLEX, Nomothesia, and Hellenic Parliament Sessions) are fairly clean and free
of noise. Besides that, there have been instances where the removal of certain punctu-
ations may harm performance in some tasks. For instance, the name of a law might be
”2019/75.” The information regarding the law would be lost if the punctuation mark ’/’ is
removed. Another example is a date, such as ”20/09/1999” or ”09.11.2013,” which will be
just a series of digits with no meaning.

Merge Files: Merge each of our datasets’ files so that each file has exactly 100.000 lines,
each of which is made up of 250 words.

A. Apostolopoulou - S. Briakos 31

NLP Tasks with GreekLegalBERT v2

3.1.7 Tokenization

Before we proceed any further, it would be appropriate to explain tokenization of a corpus.
Tokenization is the process of breaking down a phrase, sentence, paragraph, or one or
more text documents into smaller components. A token is the name given to each of these
smaller components. These tokens can now be any type of word, subword, or character.
Different algorithms perform tokenization in various ways, however the example below will
give a more accurate sense of the differences between those three.

Consider the following simple phrase:

”Let us learn tokenization.”

A word-based tokenization algorithm will break the sentence into words.

[”Let”, ”us”, ”learn”, ”tokenization.”]

Initially, the risk of missing words in the training data is a significant issue with word-based
tokenization algorithms. The model won’t recognize variants of words that weren’t part of
the data on which it was trained if we use word tokens. So, if the model detected ”foot” and
”ball” in the training data but ”football” in the final text, the model will be unable to detect
the word and will treat it with the unknown token. Secondly, punctuation poses a different
issue; ”let” or ”let’s” will require individual tokens, which is an inefficient approach. This will
demand a huge vocabulary in order to guarantee that we have every possible variation of
the word.

A character-based tokenization algorithm will break the sentence into characters.

[“L”, “e”, “t”, “u”, “s”, “l”, “e”, “a”, “r”, “n”, “t”, “o”, “k”, “e”, “n”, ”i”, ”z”, ”a”, ”t”, ”i”, ”o”, ”n”, ”.”]

Character-based algorithms interpret each character as a token, and more tokens imply
more input computations to process each token, which indicates more compute resources
are needed. Instead of 5 word-based tokens, you may need to parse 30 tokens for a 5-
word phrase. Moreover, working with characters may lead to erroneous word spellings.
Learning with characters is also like learning with no semantics since they have no inherent
meaning.

A subword-based tokenization algorithm will break the sentence into subwords.

[”Let”, ”us”, ”learn”, ”token”, ”##ization.”]

Subword-based algorithms deliver the ideal balance of character and word-level hybrid
representations, allowing it to handle enormous corpora. To put it another way, such al-
goritmhs aiming for a tokenization technique that can deal with an infinite possible vocab-
ulary using a finite set of known words. Plus, that subwords retain the semantic features
of the token i.e. information per token.

WordPiece [18], Byte-Pair Encoding, Unigram, and SentencePiece are some of the most
famous subword-based tokenization strategies. In our scenario, we’ll concentrate at the
WordPiece algorithm because it’s widely utilized in language models like BERT. Its tech-
nique is to initialize the vocabulary with individual characters in the language, then iter-
atively add the most frequent combinations of symbols to the vocabulary. The language
model is then re-trained on the new vocabulary, and the process is repeated until the
target vocabulary size is reached.

A. Apostolopoulou - S. Briakos 32

NLP Tasks with GreekLegalBERT v2

3.1.8 Generate Vocabulary

After all of this data preprocessing, we’ve come to a moment where we have 28 distinct
files of raw Greek legal text. However, because this input is incompatible with the BERT
model’s input, we must go to the following steps.

Generate Vocabulary: As previously stated, in order to succeed in our vocabulary gen-
eration, we will use the BERTWordPieceTokenizer from the library of ”tokenizers.” This
tokenizer will be trained with a single and fairly giant text file containing all of our data-
sets’ corpora, resulting in a vocabulary with a predetermined vocabulary size of 35.000.
This vocabulary will be extremely crucial in our pre-training and fine-tuning procedures. It
consists of all possible characters found by the tokenizer all across the corpus, as well as
some special tokens, subwords, and, of course, full words.

Encode Files: The transformation from words to ids, or numbers, is the last and most vital
task in our preprocessing. In this manner, we will first encode each and every sentence
with our BERTWordPieceTokenizer from words to ids, and then add the characteristic
[CLS] and [SEP] tokens in the beginning and end of the sentence, respectively. As a
consequence, we now have 28 unique files containing encoded raw Greek legal text,
which is more than comprehensible from the BERT model.

3.2 Google Cloud Setup

Now that we’ve illustrated our datasets, it’s necessary to break down our Google Cloud
Setup one step at a time.

3.2.1 Why Choose Google Cloud Platform?

Google Cloud Platform (GCP) works similarly to the majority of popular public cloud pro-
viders. It offers virtual machines and hardware, which are housed in a regional data center.
After that, the regions are separated into distinct zones where data is stored. This enables
resources to be preserved close to the customer’s location. Failures and latency are also
avoided. In addition, there are global, regional and zonal resources, which are gonna
meet every customer’s needs.

Figure 3.12: Google Cloud

A. Apostolopoulou - S. Briakos 33

NLP Tasks with GreekLegalBERT v2

3.2.2 TPU Quotas

In order to attract ambitious researchers and students, Google is giving to each Google
Account $300 in Google Cloud credits for free. Those free credits will assist anyone who
is interested in learning more about GCP and completing an assessment.

Furthermore, Google, in collaboration with HuggingFace, offers the Tensorflow Research
Cloud Program (TFRC). If a student, a researcher, or a Deep Learning enthusiast doesn’t
have that much money to spare, TFRC is a godsend. TFRC helps people speed their
research by providing free Cloud TPU access, notably by providing them with incredibly
powerful hardware for a month at no cost.

3.2.3 Create Google Compute Engine (GCE)

The Virtual Machine (VM) idea was established to enable portability within the data cen-
ter; cloud services like Google Compute Engine (GCE) employ the same format, add a
self-provisioning deployment mechanism, and charge users for the resources these VMs
consume. Thus, our VM instance will decrease the gap between us and our TPU Node.

Every VM family has predefined machine designs with a certain vCPU to RAM ratio to suit
a wide range of workload requirements. We can get away with a low-spec VM instance
because our training will be performed on the TPU and does not require a compute or
memory optimized unit. So, for our purposes, we built a low-spec VM instance with Debian
GNU/Linux 10 that runs on the N2 series, which is part of the ’General Purpose’ machine
family. Our VM also has two virtual CPUs and eight gigabytes of RAM, and the disk size
of ten gigabytes was more than enough. Our VM’s setup was, inferentially, one of the
cheapest that anyone could construct.

Figure 3.13: Google Compute Engine

3.2.4 Create Tensorflow Records (TFRecords)

Because we are working with huge datasets, storing our data in a binary file format can
have a great influence on the performance of our import pipeline and, as a result, our
model’s training time. Binary data takes up less disk space, takes less time to copy, and
can be read from disk considerably faster. However, the TFRecord [16] file format’s ef-
ficiency isn’t its only asset. It is optimized for usage with Tensorflow in a range of ways,
including making it simple to combine various datasets and integrating effortlessly with the
library’s data import and preprocessing functionality.

A. Apostolopoulou - S. Briakos 34

NLP Tasks with GreekLegalBERT v2

Figure 3.14: TFRecord Format

The create-pretraining-data.py script, which we obtained from BERT’s official code, con-
verts data to TFRecord format with ease. To reduce computational waste from padding,
the formerly mentioned script will concatenate segments until they reach the maximum se-
quence length, which was proposed by Devlin as 512. The script ran for a couple of hours
for our data conversion, and we ended up with 56 TFRecords with a total capacity of 26
GB from an initial 8.6 GB dataset of 56 files. We can justify tripling this capacity because,
as shown in the above figure, a TFRecord holds a plethora of additional information such
as input ids, input mask, segment ids, next sentence labels, and, of course, the positions,
ids, and weights of masked language modeling.

3.2.5 Create Google Cloud Storage (GCS)

We had to choose one of the following storage types for our bucket when constructing
it in GCS: Standard -which can be either Regional or Multi-Regional-, Nearline, or Cold-
line. The most common approach, that we also opted, is Standard, which allowed us to
store our bucket in a single Google Cloud Region or across multiple Regions. Because
it provides high-performance and high-availability storage, this is valuable in a variety of
applications.

Figure 3.15: Google Cloud Storage

After this procedure we established the directories data/ andmodel/ in our bucket. It took
us a week to upload our 56 Tensorflow Records (the entire model’s input dataset) to the
first folder, which had a total capacity of 26GB. The second folder contains our model’s
vocabulary as well as the configuration file, which is essential for our model’s training.
Note that during training, our model’s checkpoints will be stored every 20.000 steps, or
roughly every 3 hours, in that exact folder.

A. Apostolopoulou - S. Briakos 35

NLP Tasks with GreekLegalBERT v2

3.2.6 Create Tensor Processing Unit (TPU) Node

TFRC kindly invited us to utilize different TPUs for our model’s pretraining procedure in
our situation. In order to achieve the greatest potential performance, we chose the most
powerful TPU among our options. We use a single on-demand TPU v3-8 for pretraining
of our GreekLegalBERT v2 model. To avoid latency issues and reduce Google’s Ser-
vice costs, we set our TPU in the europe west4-a area, which means it was located in
Netherlands.

Figure 3.16: TPU v3-8 at a glance

The TPU v3-8 type defines a TPU node with 8 TPU v3 cores and 128 GiB of total TPU
memory. In terms of performance, it can handle 420 teraflops, which is quite outstanding.

3.2.7 Prepare Virtual Machine (VM) Environment

In order to train our model, we had to first set up some basic libraries. So we installed the
entire version of Anaconda, which is a very useful program that can literally save a lot
of time by combining all of the typical packages used in scientific computing into a single
package without having to worry about loading them all separately with their dependen-
cies. Python 2.7.1 was installed via Anaconda, and we also installed TensorFlow GPU
1.15 and CUDA 10.0. Finally, we cloned official BERT’s code from Github in order to
execute our python script, which will train our model.

Figure 3.17: Tensorflow and Anaconda

A. Apostolopoulou - S. Briakos 36

NLP Tasks with GreekLegalBERT v2

3.3 Model Pretraining

We were more than prepared to begin our model pretraining procedure once we had veri-
fied that everything in our GCP worked like clockwork.

3.3.1 Pretraining Parameters

Figure 3.18: Pretraining Script

A brief section of our Python script is also shown in the above figure, with the goal of
running our model on a single TPU. Here, we could further double-check that all of the
parameters that BERT requires have been correctly defined. We set our model to run for
1 million training steps, similar to Devlin [15], with batches of 256 sequences of length 512
and a learning rate of 1e-4. We even followed BERT’s advice and set the maximum pre-
dictions to 75 and the probability of masked language modeling to 0.15. We also defined
paths to our bucket’s folders in GCS and, of course, to our model’s vocabulary in additional
to these hyperparams.

3.3.2 Pretraining Procedure

Firstly, we have to highlight that in order to run every single time our script, we had to
connect with Google Cloud Console via ssh to our VM and ensure that our VM’s and
TPU’s state was nothing but healty and running. Moreover, consider that every 20.000
steps, a checkpoint of our model is stored to our bucket, ensuring that we are constantly
updating the state of our model.

A. Apostolopoulou - S. Briakos 37

NLP Tasks with GreekLegalBERT v2

Figure 3.19: Pretraining Snapshot

Easily, from the above figure, we drive home the point that our TPU v3-8 was capable of
completing 116 steps in just a single minute. As a result, we can claim that our entire
training procedure will last 6 days of nonstop running. However, we must underline a
key observation, which is that Google disconnects our VM every 12 hours, and these
disconnections unambiguously slowed our training method, inferentially delaying model
training to the point where our precise model training took 10 days.

3.3.3 Save model

So we’ve reached the point where BERT pretraining with our legal data is complete, and
our GreekLegalBERT v2 is ready to take on downstream tasks. But before moving on, we
need to be accurate and careful, in order to save our model properly.

Figure 3.20: Saved files

Initially, we started by retrieving our BERT configuration file and vocabulary from our
bucket, both of which are critical for our ongoing tasks. Apart from those files, we had to
obtain our latest model’s checkpoint, which has obviously as extension, as indicated in
the above figure, the final step of pretraining, which is equal to 1 million.

PyTorch is an open source machine learning library that specializes in tensor computa-
tions, automatic differentiation, and GPU acceleration. PyTorch is one of the most popular
deep learning libraries as a result of these factors, competing alongside Keras and Tensor-
Flow for the title of ”most utilized” deep learning package.

A. Apostolopoulou - S. Briakos 38

NLP Tasks with GreekLegalBERT v2

Finally, we must highlight that, since we’ll be using Pytorch instead of Tensorflow in our
fine tuning later, we developed a very useful script that takes the previously mentioned
files as input and converts a model from Tensorflow to Pytorch.

3.3.4 Upload model

Hugging Face is a noteworthy open community that has rapidly evolved into an attractive
hub for pre-trained deep learning models, particularly for NLP. They are constructing the
world’s largest collection of models, datasets, and metrics on the Hugging Face Hub in
order to democratize and progress AI for everyone.

Figure 3.21: Hugging Face

As a result, anyone can publish their model on Hugging Face Hub and make it available
to everyone. This upload was meant to make our job more convenient for us. Each time
we perform one of our upcoming fine tuning tasks, we will need to load a distinct BERT
model. As a result, we can obtain our model in a single line from the moment we upload
it to Hugging Face Hub.

Figure 3.22: Model Card

Except of the configuration file, the vocabulary and our pytorch model we needed to up-
load a simple file, called special tokens map with extension .json, which contained the 4
characteristic tokens that only BERT understands (SEP,UNK,CLS,PAD).

It should be mentioned that Greek-Bert was already published to Hugging Face Hub, and
that we followed the same ”uploading” method with the Greek-Legal-BERT-v1 model.

A. Apostolopoulou - S. Briakos 39

NLP Tasks with GreekLegalBERT v2

from transformers import AutoModel

Greek_Legal_BERT_v1_model = AutoModel.from_pretrained(
'alexaapo/greek_legal_bert_v1')

Greek_Legal_BERT_v2_model = AutoModel.from_pretrained(
'alexaapo/greek_legal_bert_v2')

Greek_BERT_model = AutoModel.from_pretrained(
'nlpaueb/bert-base-greek-uncased-v1')

And subsequently, we can from now on load whichever model painless and let our down-
stream tasks begin!

A. Apostolopoulou - S. Briakos 40

NLP Tasks with GreekLegalBERT v2

4. TASKS OF GREEKLEGALBERT V2 MODEL

4.1 Named Entity Recognition

NER, short for, Named Entity Recognition is a standard Natural Language Processing
problem which deals with information extraction. The primary objective is to locate and
classify named entities in text into predefined categories such as the names of persons,
organizations, locations, events, expressions of times, quantities, monetary values, per-
centages, etc. Here is a example, where a model identified 4 different entities in a single
sentence!

«OustedWeWork founder Adam Neumann lists his Manhattan penthouse for $37.5
million.»

Organization Person Location Monetary Value

4.1.1 Dataset

Our dataset [9] was provided by Nomothesi@ Platform [10]. So this current dataset con-
tains totally 254 text and annotated files. However, this isn’t the suitable input format for
our NER task, therefore we’ll must go through a transformation process to get the neces-
sary format, which is CoNLL (Computational Natural Language Learning).

Figure 4.1: Example from Annotated File

More specifically, we first should extract only the information that we care from each an-
notated file, namely the entity type, the second word, and the last phrase denoting that
these exact words are associated to our previously specified entity, and save it in CSV
files.

Text File + Annotated File => CoNLL File

According to IOB-format, we managed to generate our new files with CoNLL format. We
read word by word each text file and its corresponding CSV file, in order to match each
word with a single entity, and record a word and its entity in each line every time with the
following strategy:

A. Apostolopoulou - S. Briakos 41

NLP Tasks with GreekLegalBERT v2

• O, the word doesn’t match with any entity.

• I-SomeEntity, the wordmatch with SomeEntity and it is located inside of the sentence
(not at the beginning).

• B-SomeEntity, the word match with SomeEntity and it is located at the beginning of
the sentence.

Figure 4.2: Example from CoNLL file

So on the leftside Figure we have adduced a small
portion of a final CoNLL file. As we can observe
each line, indeed, contains one unique word of a
sentence and its entity type.

BERT does not expect a single unique word and its
entity as input; instead, it expects a sentence com-
posed of discrete words and a corresponding se-
quence of labels, which in our scenario are our en-
tities. As an outcome, our NER dataset parser will
differentiate sentences with an extra newline char-
acter in the forward.

In regards of our entities, we must declare that there
are a total of eight. We’ve underlined them carefully
below:

• Legal References

• Organization

• Public Documentations

• Person

• GeoPolitical Entity

• Location Unknown

• Location National

• Facility

Consider that because of the IOB format, each of
our above entities will have different kinds of entities:
I-SomeEntity and B-SomeEntity, besides the special
O entity. As a result, our final model for NER task
will be composed of our BERT model with a dropout
layer on top of it, as well as an additional linear layer
that outputs vectors with dimension size equal to our
total entities, which is 17.

A. Apostolopoulou - S. Briakos 42

NLP Tasks with GreekLegalBERT v2

Table 4.1: NER Dataset Statistics

Dataset Files Txt Format
(words)

Ann Format
(words)

CoNLL Format
(words)

Train 162 (64%) 409.831 23.723 450.149
Validation 45 (18%) 108.081 5.478 118.032

Test 47 (18%) 103.546 5.089 112.546
Total 254 (100%) 621.458 34.290 680.727

To thoroughly inspect our dataset, we display the above table. Please keep in mind that
our entire dataset is roughly 10MB in terms of capacity and that it has already been splitted
into sets. Someone would argue that the quantity of words in CoNLL and text files must
be equal, however consider that in CoNLL files when a sentence ends, we insert a new
line character to discriminate sentences, justifying the difference in this way.

Our NER dataset isn’t quite ready yet, so we’ll have to step back a bit before we start
fine-tuning our models. This minor imperfection is due to a few sentences that have an
unusually large number of words while also containing information such as numerical data
or words from the English language. As a result, it’s clear why our models generate se-
quences with more words than BERT’s maximum input sequence length of 512 during
tokenization. To mitigate this issue, we manually split each sentence into chunks, which
we then feed as input into our models. Because of BERT’s limitation, we decided to keep
the chunked information instead of discarding them.

At the last stage of NER dataset’s preprocessing, we’ve reached a common roadblock
when utilizing pre-trained models for token-level classification: many of the tokens in the
corpus aren’t included in our model’s vocabulary. The Twitter handle @huggingface, for
example, would be broken into the tokens [’@’, ’hugging’, ’##face’] utilizing BERT’s token-
izer. This is a challenge for us because each token has precisely one tag. We’ll end up
with a mismatch between our tokens and our labels if the tokenizer splits a token into many
sub-tokens.

One way to overcome this issue is to only train on the tag labels for the first subtoken
of a split token. We can do this in Transformers by setting the labels we wish to ignore
to -1. In the example above, if the label for @HuggingFace is 3 (indexing B-corporation),
we would set the labels of [’@’, ’hugging’, ’##face’] to [3, -1, -1].

4.1.2 Fine Tuning

We were able to retrieve and use the bulk of the Greek-BERT code [11], which is written
totally in PyTorch, although we had to make a few significant adjustments to meet our
requirements for our ongoing fine tuning [23].

During fine tuning for each model, we will experiment with the hyperparameters specified
above:

A. Apostolopoulou - S. Briakos 43

NLP Tasks with GreekLegalBERT v2

Table 4.2: NER Fine Tuning Hyperparameters

Hyperparameter Value
Learning Rate (Adam) {2e-5, 3e-5, 5e-5}
Dropout Probability {0, 0.1, 0.2}

Gradient Accumulation Steps {2, 4}
Batch Size 8

Devlin [15] and its team highly urge experimenting with the learning rate values, com-
bined with Adam optimizer, that we choosed for fine tuning procedure. However, they
recommended that dropout probability be kept at 0.1 at all circumstances, but we opted to
experiment a little more in that area. Furthermore, they recommend a batch size of 16 or
32, but due to a lack of computing power, notably memory restrictions, we always choose
batch size of 8 and experiment with gradient accumulation steps of 2 or 4.

But how does this strategy address the issue of inconsistency? We can imitate a greater
batch size by accumulating gradients. So, in our example, if we wish to use 32 sequences
in a single batch, but our hardware only permits us to use 8, our hardware will collapse. In
such circumstance, we can use 8-sequence batches and update weights every 4 batches.
If we accumulate the gradients from each batch in between, the results will be nearly
identical to those obtained by setting the batch size to 32.

Finally, we have in our hands the optimal hyperparameters for each model and thus we
can evaluate all models on the test set.

Table 4.3: NER Fine Tuning Best Hyperparameters

Model Macro-F1
Score

Learning
Rate

Dropout
Probability

Gradient
Accumulation

Steps
Batch Size

Greek-Legal-BERT-v1 0.71 2e-05 0.1 4 8
GreekLegalBERT v2 0.73 2e-05 0.1 4 8

Greek-BERT 0.74 3e-05 0.2 4 8

Early stopping was being used in each experiment based on the macro-F1 score, which
implies that if validation loss decreased from epoch to epoch, training was stopped im-
mediately. After 18 experiments for each model, we were able to identify the optimal
hyperparameters for each model in a greedy manner based on the macro-F1 score, as
shown in the table above.

4.2 Natural Language Inference

Natural Language Inference (NLI) is a task in NLP where we are given two sentences
namely Premise and Hypothesis. In this task we are supposed to make a prediction
whether the given Hypothesis is True, False or Neutral associated with the Premise.
For True we call it Entailment, for False Contradiction and Neutral we use it when it is not
related or not determined well.

A. Apostolopoulou - S. Briakos 44

NLP Tasks with GreekLegalBERT v2

Table 4.4: NLI Sentence Example

Label Premise Hypothesis

Entailment Και είπε, Μαμά, έφτασα στο σπίτι. Είπε στην μαμά του ότι είχε πάει σπίτι.
Contradiction Και είπε, Μαμά, έφτασα στο σπίτι. Δεν είπε ούτε λέξη.

Neutral Και είπε, Μαμά, έφτασα στο σπίτι. Τηλεφώνησε στην μαμά του μόλις το σχολικό λεωφορείο τον άφησε.

4.2.1 Dataset

For the train dataset of fine-tuning we used the Multi-Genre Natural Language Infer-
ence (MultiNLI) [27] corpus, which is a crowd-sourced collection of 393 thousand sen-
tence pairs annotated with textual entailment information. This dataset is also used for
fine-tuning the Greek-BERT model. The pairs are translated into 14 languages and of
course we used only the Greek pairs of them. However, the bad news is that the pairs are
automatically (machine)-translated from English to other languages. For this reason, we
can easily doubt the quality of this dataset and we can support the fact that this may harm
the performance of the model.

The good news is that in Greek-BERT paper [21], they mentioned that they tested the
Greek-BERT model with two different training sets:

• Get only the high-quality pairs, approximately 10% of full training set

• Get the full training dataset, including many noising pairs

However, they eventually noticed that the performance using the entire training set was
better than the performance training only on the high-quality training subset. So the initial
assumption of noisy data could harm the performance, turned out false. In fact, they
attributed this phenomenon to the fact that noise may be acting as a regularizer, improving
the generalization ability of the model. So we decide that is a good choice to use the whole
training set in fine-tuning.

For development and test dataset we used the Cross-Lingual Natural Language Infer-
ence Corpus (XNLI) [14], which contains:

• 5.000 test pairs

• 2.500 development pairs

for the MultiNLI corpus. They are translated manually by professional translators in order
to ensure that the context of the original text is the same as the translated one, with no
unnecessary additions or significant cuts that misrepresent the original meaning.

Another issue that concerned us is that we trained our model in stricted Legal data, which
is a very specific domain and we are going to test it in data of general domain. XNLI con-
tains sentences of various content, such as face-to-face conversations, letters, telephone
speeches, reports, fictions etc. Under those circumstances, we consider logic the fact that
our model will not have a good performance in this task with this dataset. It could be more
interesting if we could test it in a specific-domain dataset (based mainly on legal data), but
there isn’t such a dataset available yet.

Consequently, we make an initial prediction of a not-so-satisfactory performance of our
model. Nevertheless, it is still a challenge to see if our assumption is right or not. Above
they are specified the total dataset statistics:

A. Apostolopoulou - S. Briakos 45

NLP Tasks with GreekLegalBERT v2

Table 4.5: NLI Dataset Statistics

Dataset Pairs Ratio Capacity
Training (MultiNLI) 392.702 98.13% 141,8 ΜΒ
Development (XNLI) 2.490 0.62% 848,5 KB
Test (XNLI) 5.010 1,25% 1,7 MB
Total 400.202 100% 144,4 MB

4.2.2 Fine Tuning

For implementing NLI, we used a vocabulary and token-index mapping in order to let the
model understand our inputs. The whole vocabulary size is 35.000. Let us adduce an
example to comprehend how GreekLegalBert v2 tokenizer works:

Figure 4.3: GreekLegalBERT v2 Tokenizer Example

In such a form, tokens can be easily converted to index:

Figure 4.4: GreekLegalBERT v2 Indexes Example

We also need to give input to the Legal BERT in the same format in which BERT has been
pre-trained. BERT uses two special tokens denoted as [CLS] and [SEP], as previously
stated. For example:

• Premise: Και είπε, Μαμά, έφτασα στο σπίτι.

• Hypothesis: Δεν είπε ούτε λέξη.

• Input Format: [CLS] Και είπε, Μαμά, έφτασα στο σπίτι. [SEP] Δεν είπε ούτε λέξη.
[SEP]

A. Apostolopoulou - S. Briakos 46

NLP Tasks with GreekLegalBERT v2

Figure 4.5: Sentence Pair Classification

While the sequences have a short sequence length in general, we determined that 512 is
the best value for maximum sequence length after many testing. In particular, 75% of the
dataset has sequences of less than 30 words in total, with only 12 sentences exceeding
256 words. The following three inputs are also required:

• Tokens index is our major input, which contains indices of the sequence tokens.

• Attention mask helps the model to figure out the useful tokens and padding that is
done during batch preparation. Attention mask is basically a sequence of 1’s with
the same length as input tokens.

• Token type ids assist the model in determining which token belongs to which sen-
tence. For tokens of the first sentence in input, token type ids contain 0 and for
second sentence tokens, it contains 1.

Figure 4.6: BERT Inputs Example

We did also download and utilized the bulk of the Greek-BERT code [5], as we did with
NER. We experimented with the hyperparameters listed above during fine tuning for each
model:

Table 4.6: NLI Fine Tuning Hyperparameters

Hyperparameter Value
Learning Rate (Adam) {2e-5, 3e-5, 5e-5}
Dropout Probability {0, 0.1, 0.2}

Gradient Accumulation Steps {2, 4}
Batch Size 8

A. Apostolopoulou - S. Briakos 47

NLP Tasks with GreekLegalBERT v2

After 18 experiments for eachmodel, we were able to identify the optimal hyperparameters
for each model in a greedy manner based on the macro-F1 score, as shown in the table
below:

Table 4.7: NLI Fine Tuning Best Hyperparameters

Model Macro-F1
Score

Learning
Rate

Dropout
Probability

Gradient
Accumulation

Steps
Batch Size

Greek-Legal-BERT-v1 0.65 3e-05 0.1 2 8
GreekLegalBERT v2 0.70 2e-05 0 4 8

Greek-BERT 0.73 2e-05 0 4 8

4.3 Multiclass Classification on Raptarchis

To prevent misinterpretation, we must clarify that only the Raptarchis dataset’s train set
was provided to our model’s pretraining process in this task, as we previously described
in Section 3.1.

4.3.1 Dataset

We believe we can concatenate the development and test sets and break them again into
train, development, and test sets since we have previously utilized the train set during pre-
training of GreekLegalBERT v2 model. We’ll have all the datasets we ought to fine-tune
our model and produce the desired predictions this way.

Table 4.8: Capacities of remaining Raptarchis

Dataset Items Capacity
Development 9.512 73 MB

Test 9.516 76 MB
Total 19.028 149 MB

We re-split the old development and test sets as follows:

Table 4.9: Capacities of new fine tuning Raptarchis dataset

Dataset Items Ratio Capacity
Train 15.222 80% 119 MB

Development 1.903 10% 15 MB
Test 1.903 10% 15 MB
Total 19.028 100% 149 MB

As far as we can discern, we can only experiment with the all labels category with this new
split up. Because we used the Raptarchis Dataset as the initial training set for GreekLeg-
alBERT v2 pretraining, it’s understandable that we won’t have all of the labels for each
category. Let’s take a closer look at the table below:

A. Apostolopoulou - S. Briakos 48

NLP Tasks with GreekLegalBERT v2

Table 4.10: Difference of Labels between Raptarchis datasets

Set Volume
Labels

Chapter
Labels

Subject
Labels

Original Raptarchis 47 389 2285
New Resplit Raptarchis 47 383 1970

To summarize, we are going to experiment with 100% of Volume labels, with 98% of
Chapter labels and with 86% of Subjects labels compared to initial Raptarchis dataset.
For each category, we can now proceed to three discrete multiclass classification tasks.

4.3.2 Fine Tuning

Based on Vamvourellis [26] thesis, we are going to experiment with his suggested pre-
defined hyperparameters, which are specified above:

Table 4.11: Multiclass Classification on Raptarchis Fine Tuning Hyperparameters

Hyperparameter Value
Learning Rate (Adam) 2e-5
Dropout Probability 0.1

Max Sequence Length 512
Batch Size 8

Epochs for Volume: 5
Epochs for Chapter: 9
Epochs for Subject: 16

We were capable of obtaining scores from each category classification for each model
after a series of experiments with multiple seed values. Each epoch in every classification
task lasts 10 minutes, therefore classifying all categories for our three discrete models
required a total of 14 hours.

4.4 Performance on Masked Language Modeling (MLM)

During pretraining, themodel was trained with two different tasks: Masked LanguageMod-
eling (MLM) and Next Sentence Prediction (NSP), both of which were thoroughly detailed
in Chapter 2. So, just before we demonstrate our models’ performance on our down-
stream tasks, now seems to be the time to cross-check our model’s performance in MLM
by examining the examples below.

A. Apostolopoulou - S. Briakos 49

NLP Tasks with GreekLegalBERT v2

————————————————– Example 1—————————————————-

Input text: Ο [MASK] προσανατολισμός της νέας φαρμακευτικής πολιτικής διατρέχει το
σύνολο των επί μέρους διατάξεων του νόμου.

Model’s Answer 1: γενικος

Model’s Answer 2: βασικος

Model’s Answer 3: αλλος

Correct Answer: κοινωνικός
————————————————— Example 2—————————————————

Input text: Η [MASK] ενός ταμείου που διευκολύνει την κίνηση του πετρελαίου σ’ όλη τη
χώρα.

Model’s Answer 1: λειτουργια

Model’s Answer 2: διοικηση

Model’s Answer 3: δημιουργια
Correct Answer: δημιουργία
————————————————— Example 3—————————————————

Input text: Οι κανόνες [MASK] των δεδομένωνπροσωπικού χαρακτήρα διέπουν σημαντικές
πτυχές του τρόπου αλληλεπίδρασης των επιγραμμικών υπηρεσιών με τους χρήστες.

Model’s Answer 1: προστασιας
Model’s Answer 2: επεξεργασιας

Model’s Answer 3: διαχειρισης

Correct Answer: προστασίας
————————————————— Example 4—————————————————

Input text: Πρέπει, λοιπόν, να προωθήσουμε και να [MASK] με τεράστιες προσπάθειες
αυτή την εκπαιδευτική πολιτική.

Model’s Answer 1: προωθησουμε

Model’s Answer 2: εφαρμοσουμε

Model’s Answer 3: στηριξουμε

Correct Answer: εδραιώσουμε
————————————————— Example 5—————————————————

Input text: Nα διασφαλίσουμε ότι έχουμε περισσότερες ευρωπαϊκές ευθύνες εδώ και να
εφαρμόσουμε περισσότερες κοινές [MASK] .
Model’s Answer 1: δρασεις
Model’s Answer 2: θεσεις

Model’s Answer 3: αποφασεις

Correct Answer: δράσεις
——

A. Apostolopoulou - S. Briakos 50

NLP Tasks with GreekLegalBERT v2

In the previous examples, we demonstrate 5 consecutive instances in which we feed our
model a specific input text and provide the three answers that the model believes are close
to the correct answer. We attempted to have a wide range of inputs in terms of MASK’s
position inside the input sentence (at the start, middle, or end), as well as force our model
to predict various parts of speech words, such as nouns, verbs, and adjectives.

In particular, in Examples 3 and 5, our GreekLegalBERT v2 confidently predicted the
correct as its first answer, whereas in Example 2, he predicted the correct as its third
answer. However, our model was unable to predict the desired word in the remaining
cases. This observation does not seem to be so discouraging, mainly due to the fact that
GreekLegalBERT v2 predicted several words that could clearly be expressed in a Greek
well-structured phrase in both of the ”wrong” Examples. As a result, the model performed
admirably in terms of semantics.

4.5 Results

Before we proceed any further, it’s essential to highlight a few key strategies that were
used in each of our 3 distinct tasks.

• So, in order to represent the forthcoming outcomes for each task, we must give spe-
cial credits to our supervisors, who let us to utilize a single GPU of type GeForce
RTX 2080 Ti, which belongs to AI team of Department of Informatics and Telecom-
munications of University of Athens. This pre-declared infrastructure enabled us
to actually accelerate our fine tuning experiments without any network constraints,
resulting in a more than safe and consistent environment in which we run all BERT
models.

• Moreover, we applied another similar technique in all of our tasks, which was early
stopping. It’s the process of retaining information about train and validation data as
a model is learning. Specifically we keep a record of the loss function on the valida-
tion data, and stopping rather than going through all the epochs when we detect no
improvement on the validation set.

• Ultimately, we’ll go over the metrics that were used to evaluate all our models. Ini-
tially through a very simple table we will give a rough sense about True Positives,
True Negatives, False Positives, False Negatives.

Figure 4.7: True Positives-Negatives, False Positives-Negatives

A. Apostolopoulou - S. Briakos 51

NLP Tasks with GreekLegalBERT v2

Once we understand these four parameters then we can calculate Precision, Recall
and F1 score.

Precision = True positive
True positive + False Positive

Recall = True positive
True positive + False negative

F1 = 2 ∗ Precision + Recall
Precision ∗ Recall

4.5.1 Named Entity Recognition

These scores were computed per token, using an evaluation per entity technique that en-
ables for a more precise assessment of each model’s performance and finally represent
micro, macro and average scores. The final results, which are the average of 5 identical
model executions, are described in the table below, with the standard deviation as a per-
centage marked by the numbers in parentheses:

Table 4.12: NER Results

Entity
Type

Greek-BERT Greek-Legal-BERT-v1 GreekLegalBERT v2
Precision Recall F1 Score Precision Recall F1 Score Precision Recall F1 Score

FACILITY 0.24 (6%) 0.22 (7%) 0.23 (6%) 0.20 (3%) 0.20 (4%) 0.20 (3%) 0.27 (1%) 0.27 (1%) 0.27 (0%)
GPE 0.68 (2%) 0.74 (1%) 0.71 (1%) 0.69 (2%) 0.72 (2%) 0.71 (2%) 0.69 (1%) 0.73 (0%) 0.71 (1%)

LEG-REFS 0.80 (2%) 0.83 (0%) 0.81 (1%) 0.79 (0%) 0.82 (1%) 0.81 (1%) 0.79 (1%) 0.82 (0%) 0.81 (1%)
LOCATION-NAT 0.79 (11%) 0.78 (4%) 0.78 (7%) 0.78 (6%) 0.60 (6%) 0.67 (4%) 0.83 (4%) 0.53 (2%) 0.65 (3%)
LOCATION-UNK 0.52 (2%) 0.61 (1%) 0.56 (2%) 0.54 (4%) 0.62 (3%) 0.58 (4%) 0.57 (2%) 0.64 (3%) 0.61 (2%)

ORG 0.63 (2%) 0.76 (2%) 0.69 (2%) 0.66 (1%) 0.76 (2%) 0.71 (1%) 0.66 (1%) 0.78 (0%) 0.71 (1%)
PERSON 0.80 (2%) 0.81 (1%) 0.80 (1%) 0.80 (3%) 0.82 (3%) 0.81 (3%) 0.79 (1%) 0.81 (0%) 0.80 (0%)

PUBLIC-DOCS 0.68 (4%) 0.73 (11%) 0.70 (7%) 0.68 (2%) 0.73 (3%) 0.70 (1%) 0.69 (1%) 0.75 (1%) 0.71 (1%)

Micro AVG 0.69 0.76 0.72 0.70 0.75 0.73 0.70 0.76 0.73
Macro AVG 0.64 0.68 0.66 0.64 0.66 0.65 0.66 0.67 0.66

Weighted AVG 0.69 0.76 0.72 0.70 0.75 0.72 0.70 0.76 0.73

So we’ve finally reached a point where the outcomes of our models are more than ready.
We have already highlighted the strongest F1 score in each entity type in order to distin-
guish the winner model. We can clearly see all three models achieve equal scores in terms
of GeoPolitical and Legal References entities. In terms of the Organization Entity, there is
also a tie between the Greek-Legal-BERT models. Moreover, Greek-BERT outperformed
in the Location-Nationality entity. Finally, our model is the only victor in all remaining
entities except Person’s, where Greek-Legal-BERT-v1 slightly outperforms. Overall, our
model wins with a 0.1 difference compared between the two remaining models, receiving
a weighted average F1 Score of 0.73. With this final result, we may be able to justify
why our new Greek-Legal-BERT version outperformed, due to the increase in input Legal
dataset size from 4.5GB to 8.6GB.

A. Apostolopoulou - S. Briakos 52

NLP Tasks with GreekLegalBERT v2

4.5.2 Natural Language Inference

These scores were computed per class, using an evaluation per class technique that en-
ables for a more clear measurement of each model’s performance and finally represent
F1 accuracy macro and average scores. The final results, which are the average of 5
identical model executions, are described in the table below, with the standard deviation
as a percentage marked by the numbers in parentheses:

Table 4.13: NLI Results

Class Greek-Legal-BERT-v1 GreekLegalBERT v2 Greek-BERT
Precision Recall F1 score Precision Recall F1 score Precision Recall F1 score

ENTAILMENT 0.59 (1%) 0.69 (3%) 0.63 (1%) 0.62 (1%) 0.76 (2%) 0.68 (1%) 0.67 (3%) 0.74 (4%) 0.70 (1%)
CONTRADICTION 0.67 (4%) 0.68 (4%) 0.67 (1%) 0.71 (1%) 0.72 (3%) 0.71 (1%) 0.71 (2%) 0.78 (2%) 0.74 (1%)

NEUTRAL 0.73 (2%) 0.58 (2%) 0.64 (1%) 0.78 (1%) 0.59 (2%) 0.67 (1%) 0.82 (2%) 0.64 (4%) 0.72 (2%)

Accuracy 0.65 0.69 0.72
Macro AVG 0.66 0.65 0.65 0.70 0.69 0.69 0.74 0.72 0.72

Weighted AVG 0.66 0.65 0.65 0.70 0.69 0.69 0.74 0.72 0.72

As we can see, our initial predictions for the performance of our model, as well as the
other models, have been verified. From the beginning, the comparison was a little unjust.
Greek-BERT model outperforms for all classes and it has the best weighted average F1
of 0.72%. This is justified by the fact that we tested general content data in a general
purpose model. Nevertheless, our initial goal, to overcome the scores of the first Greek
Legal model achieved, as our model surpassed it individually in all three classes, but also
as a weighted average F1, after catching 0.69% score against 0.65%. As previously said,
if a Greek legal dataset for the NLI task existed, it would be more interesting to see if our
model performs better with data similar to those used to train it. However, we believe that
if such a dataset ever exists, it will outperform even the Greek-Model score, since even
now the disparity in scores isn’t really large.

4.5.3 Multiclass Classification on Raptarchis

Finally we adduce carefully our last task’s results, which are based on Precision, Recall
and F1 score.

Table 4.14: Multiclass Classification on Raptarchis Results

Model Volume Category Chapter Category Subject Category
Precision Recall F1 Score Precision Recall F1 Score Precision Recall F1 Score

Greek-BERT 84.50 84.50 84.50 76.83 76.83 76.83 72.83 72.83 72.83
Greek-Legal-BERT-v1 85.50 85.50 85.50 79.51 79.51 79.51 75.51 75.51 75.51
GreekLegalBERT v2 87.76 87.76 87.76 81.40 81.40 81.40 74.93 74.93 74.93

The results of this task are considerably simpler than those of the previous tasks, which
is justified because we documented the same value in Precision, Recall, and F1 score in
each experiment of each model for each category. Furthermore, scores are fairly evident
because we have an unambiguous victor in each category, notably our model for the
Volume and Chapter categories and the first version of Greek-Legal-BERT for the Subject
category.

A. Apostolopoulou - S. Briakos 53

NLP Tasks with GreekLegalBERT v2

5. CONCLUSIONS AND FUTURE WORK

At the beginning of this thesis, we studied the architecture of the BERT model and see
how exactly it works. We also explored five distinct Greek legal datasets that we used to
train our model.

Then we started working on our own BERTmodel, which was based on Greek Legal Data.
We walked you through all of the preparatory procedures, from file pre-processing to cre-
ating Vocabulary and TensorFlow Records, until we were ready to train our model. We
demonstrated how theGoogle Cloud Platform helped us train for 10 days straight. To solid-
ify our endeavor, we tested, evaluated and compared our model test against Greek-BERT
and Greek-Legal-BERT-v1 on three separate tasks: NER, NLI, and Multiclass Classifica-
tion on Raptarchis.

Our first goal was to improve on the outcomes of the earlier edition of Greek-Legal-BERT
and compare it to GreekBERT, a general-purpose heavy-trained model. In any case, we
accomplished our initial target, since we defeated the Greek-Legal-BERT-v1 in all three
tasks. In terms of Greek-BERT, our model outperforms it in two of three tasks in general,
with the exception of NLI, which is logical given the fact that we tested with a dataset of
general data in a stricted-legal domain model.

For the future, except for Legal Data, we intend to pre-train BERT-based models for earlier
forms of Greek, particularly classical Greek, for which large datasets are available [6] [7].
This could potentially lead to improved NLP tools for classical studies and not only.

A. Apostolopoulou - S. Briakos 54

NLP Tasks with GreekLegalBERT v2

ABBREVIATIONS - ACRONYMS

AI Artificial Intelligence

BERT Bidirectional Encoder Representations from Transformers

LegalAI Legal Artificial Intelligence

VM Virtual Machine

NLP Natural Language Processing

EU European Union

GCP Google Cloud Program

GCE Google Compute Engine

GCS Google CLoud Storage

TPU Tensor Processing Unit

CPU Central Processing Unit

RAM Random Access Memory

TFRC Tensorflow Research Cloud

MLM Masked-Language Modeling

NER Named Entity Recognition

NLI Natural Language Inference

NSP Next Sentence Prediction

TFRecord Tensorflow Record

IOB Inside – Outside – Beggining

GPE GeoPolitical Entity

LEG-REFS Legal References

LOCATION-NAT Location-National

LOCATION-UNK Location-Unknown

ORG Organization

PUBLIC-DOCS Public-Documents

AVG Average

SSH Secure Shell

UTF-8 Unicode Transformation Format 8 bit

CoNLL Computational Natural Language Learning

A. Apostolopoulou - S. Briakos 55

NLP Tasks with GreekLegalBERT v2

CSV Comma Separated Values

KB Kilo Bytes

MB Mega Bytes

GB Giga Bytes

URL Uniform Resource Locators

MultiNLI Multi-Genre Natural Language Inference

XNLI Cross-Lingual Natural Language Inference Corpus

A. Apostolopoulou - S. Briakos 56

NLP Tasks with GreekLegalBERT v2

REFERENCES

[1] BERT Explained: A Complete Guide with Theory and Tutorial. https://towardsml.com/2019/09/17/
bert-explained-a-complete-guide-with-theory-and-tutorial/.

[2] EurLEX. https://eur-lex.europa.eu/homepage.html.

[3] EuroVoc. https://op.europa.eu/en/web/eu-vocabularies.

[4] Greek Wikipedia. https://dumps.wikimedia.org/elwiki/.

[5] Hellenic Parliament Sessions. https://www.hellenicparliament.gr/Praktika/
Synedriaseis-Olomeleias.

[6] Perseus Digital Library. https://www.perseus.tufts.edu/hopper/.

[7] Thesaurus Linguae Graecae. http://stephanus.tlg.uci.edu/.

[8] Rahul Agarwal. Explaining BERT Simply Using Sketches, 2021. https://mlwhiz.medium.com/
explaining-bert-simply-using-sketches-ba30f6f0c8cb.

[9] Iosif Angelidis, Ilias Chalkidis, and Manolis Koubarakis. Named Entity Recognition, Linking and Genera-
tion for Greek Legislation, 2018. http://cgi.di.uoa.gr/~koubarak/publications/2018/jurix2018.
pdf.

[10] Iosif Angelidis, Ilias Chalkidis, Charalampos Nikolaou, Panagiotis Soursos, and Manolis Koubarakis.
Nomothesia: A Linked Data Platform for Greek Legislation, 2018. http://legislation.di.uoa.gr/.

[11] Ilias Chalkidis. GREEK-BERT Code, 2020. https://github.com/nlpaueb/greek-bert.

[12] Ilias Chalkidis, Ion Androutsopoulos, and Nikolaos Aletras. Neural Legal Judgment Prediction in Eng-
lish, 2019. https://arxiv.org/pdf/1906.02059.pdf.

[13] Papaloukas Christos. Greek Legal Code, 2021. https://huggingface.co/datasets/greek_legal_
code.

[14] Alexis Conneau, Ruty Rinott, Guillaume Lample, Adina Williams, Samuel R. Bowman, Holger
Schwenk, and Veselin Stoyanov. XNLI: Evaluating Cross-lingual Sentence Representations, 2018.
https://cims.nyu.edu/~sbowman/xnli/.

[15] Jacob Devlin, Ming-Wei Changm, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of Deep Bi-
directional Transformers for Language Understanding, 2018. https://arxiv.org/pdf/1810.04805v1.
pdf.

[16] Thomas Gamauf. Tensorflow Records? What they are and how to use them, 2018. https://medium.
com/mostly-ai/tensorflow-records-what-they-are-and-how-to-use-them-c46bc4bbb564.

[17] Cathal Horan. 10 Things You Need to Know About BERT and the Transformer Ar-
chitecture That Are Reshaping the AI Landscape, 2021. https://neptune.ai/blog/
bert-and-the-transformer-architecture-reshaping-the-ai-landscape.

[18] Chetna Khanna. WordPiece: Subword-based tokenization algorithm, 2018. https://
towardsdatascience.com/wordpiece-subword-based-tokenization-algorithm-1fbd14394ed7.

[19] Philipp Koehn. Europarl: A Parallel Corpus for Statistical Machine Translation, 2005. https:
//homepages.inf.ed.ac.uk/pkoehn/publications/europarl-mtsummit05.pdf.

[20] Athinaios Konstaninos. Named Entity Recognition using a Novel Linguistic Model for Greek Legal
Corpora based on BERT model, 2020. https://pergamos.lib.uoa.gr/uoa/dl/object/2927727.

[21] John Koutsikakis, Ilias Chalkidis, Prodromos Malakasiotis, and Ion Androutsopoulos. GREEK-BERT:
The Greeks visiting Sesame Street, 2020. https://arxiv.org/pdf/2008.12014.pdf.

[22] Ben Lutkevich. BERT language model, 2020. https://searchenterpriseai.techtarget.com/
definition/BERT-language-model.

[23] Chris McCormick. BERT Fine-Tuning Tutorial with PyTorch, 2019. https://mccormickml.com/2019/
07/22/BERT-fine-tuning/#4-train-our-classification-model.

A. Apostolopoulou - S. Briakos 57

https://towardsml.com/2019/09/17/bert-explained-a-complete-guide-with-theory-and-tutorial/
https://towardsml.com/2019/09/17/bert-explained-a-complete-guide-with-theory-and-tutorial/
https://eur-lex.europa.eu/homepage.html
https://op.europa.eu/en/web/eu-vocabularies
https://dumps.wikimedia.org/elwiki/
https://www.hellenicparliament.gr/Praktika/Synedriaseis-Olomeleias
https://www.hellenicparliament.gr/Praktika/Synedriaseis-Olomeleias
https://www.perseus.tufts.edu/hopper/
http://stephanus.tlg.uci.edu/
https://mlwhiz.medium.com/explaining-bert-simply-using-sketches-ba30f6f0c8cb
https://mlwhiz.medium.com/explaining-bert-simply-using-sketches-ba30f6f0c8cb
http://cgi.di.uoa.gr/~koubarak/publications/2018/jurix2018.pdf
http://cgi.di.uoa.gr/~koubarak/publications/2018/jurix2018.pdf
http://legislation.di.uoa.gr/
https://github.com/nlpaueb/greek-bert
https://arxiv.org/pdf/1906.02059.pdf
https://huggingface.co/datasets/greek_legal_code
https://huggingface.co/datasets/greek_legal_code
https://cims.nyu.edu/~sbowman/xnli/
https://arxiv.org/pdf/1810.04805v1.pdf
https://arxiv.org/pdf/1810.04805v1.pdf
https://medium.com/mostly-ai/tensorflow-records-what-they-are-and-how-to-use-them-c46bc4bbb564
https://medium.com/mostly-ai/tensorflow-records-what-they-are-and-how-to-use-them-c46bc4bbb564
https://neptune.ai/blog/bert-and-the-transformer-architecture-reshaping-the-ai-landscape
https://neptune.ai/blog/bert-and-the-transformer-architecture-reshaping-the-ai-landscape
https://towardsdatascience.com/wordpiece-subword-based-tokenization-algorithm-1fbd14394ed7
https://towardsdatascience.com/wordpiece-subword-based-tokenization-algorithm-1fbd14394ed7
https://homepages.inf.ed.ac.uk/pkoehn/publications/europarl-mtsummit05.pdf
https://homepages.inf.ed.ac.uk/pkoehn/publications/europarl-mtsummit05.pdf
https://pergamos.lib.uoa.gr/uoa/dl/object/2927727
https://arxiv.org/pdf/2008.12014.pdf
https://searchenterpriseai.techtarget.com/definition/BERT-language-model
https://searchenterpriseai.techtarget.com/definition/BERT-language-model
https://mccormickml.com/2019/07/22/BERT-fine-tuning/#4-train-our-classification-model
https://mccormickml.com/2019/07/22/BERT-fine-tuning/#4-train-our-classification-model

NLP Tasks with GreekLegalBERT v2

[24] Pedro Javier Ortiz Suárez, Benoît Sagot, and Laurent Romary. OSCAR, 2019. https://
oscar-corpus.com/.

[25] Sarthak Vajpayee. Understanding BERT — (Bidirectional Encoder Rep-
resentations from Transformers), 2020. https://towardsdatascience.com/
understanding-bert-bidirectional-encoder-representations-from-transformers-45ee6cd51eef.

[26] Efstratios Vamvourellis. Comp-BERT-ition: Which BERT model is better for Greek legal text classific-
ation?, 2021. https://pergamos.lib.uoa.gr/uoa/dl/frontend/el/browse/2960898.

[27] Adina Williams, Nikita Nangia, and Samuel Bowman. A Broad-Coverage Challenge Corpus for Sen-
tence Understanding through Inference), 2018. https://aclanthology.org/N18-1101/.

[28] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander M. Rush. Transformers: State-of-the-Art Natural Language Processing,
2020. https://arxiv.org/pdf/1910.03771.pdf.

[29] Haoxi Zhong, Chaojun Xiao, Cunchao Tu, Tianyang Zhang, Zhiyuan Liu, and Maosong Sun. How Does
NLP Benefit Legal System: A Summary of Legal Artificial Intelligence, 2020. https://arxiv.org/pdf/
2004.12158.pdf.

[30] Yukun Zhu, Ryan Kiros, Richard Zemel, Ruslan Salakhutdinov, Raquel Urtasun, Antonio Torralba, and
Sanja Fidler. Aligning Books and Movies: Towards Story-like Visual Explanations by Watching Movies
and Reading Books, 2015. https://arxiv.org/pdf/1506.06724.pdf.

A. Apostolopoulou - S. Briakos 58

https://oscar-corpus.com/
https://oscar-corpus.com/
https://towardsdatascience.com/understanding-bert-bidirectional-encoder-representations-from-transformers-45ee6cd51eef
https://towardsdatascience.com/understanding-bert-bidirectional-encoder-representations-from-transformers-45ee6cd51eef
https://pergamos.lib.uoa.gr/uoa/dl/frontend/el/browse/2960898
https://aclanthology.org/N18-1101/
https://arxiv.org/pdf/1910.03771.pdf
https://arxiv.org/pdf/2004.12158.pdf
https://arxiv.org/pdf/2004.12158.pdf
https://arxiv.org/pdf/1506.06724.pdf

	CONTENTS
	INTRODUCTION
	BACKGROUND AND RELATED WORK
	BERT Model
	What is BERT?
	B: Bi-directional
	ER: Encoder Representations
	T: Transformers

	BERT's Architecture
	How does it work?
	Input
	Output

	Tasks that BERT has been pre-trained on
	Masked Language Modeling
	Next Sentence Prediction

	Comparison with other BERT Models
	Greek-BERT
	Greek-Legal-BERT-v1

	PRETRAIN OF GREEKLEGALBERT V2 MODEL
	Datasets and Preprocessing
	Raptarchis
	Nomothesi@ Platform
	EuroParl
	EUR-LEX
	Hellenic Parliament Sessions
	Preprocessing
	Tokenization
	Generate Vocabulary

	Google Cloud Setup
	Why Choose Google Cloud Platform?
	TPU Quotas
	Create Google Compute Engine (GCE)
	Create Tensorflow Records (TFRecords)
	Create Google Cloud Storage (GCS)
	Create Tensor Processing Unit (TPU) Node
	Prepare Virtual Machine (VM) Environment

	Model Pretraining
	Pretraining Parameters
	Pretraining Procedure
	Save model
	Upload model

	TASKS OF GREEKLEGALBERT V2 MODEL
	Named Entity Recognition
	Dataset
	Fine Tuning

	Natural Language Inference
	Dataset
	Fine Tuning

	Multiclass Classification on Raptarchis
	Dataset
	Fine Tuning

	Performance on Masked Language Modeling (MLM)
	Results
	Named Entity Recognition
	Natural Language Inference
	Multiclass Classification on Raptarchis

	CONCLUSIONS AND FUTURE WORK
	ABBREVIATIONS - ACRONYMS
	REFERENCES

