

NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

SCHOOL OF SCIENCE
DEPARTMENT OF INFORMATICS AND TELECOMMUNICATION

BSc THESIS

A parallel implementation of the tool GeoTriples using Apache
Spark

Nikolaos G. Trapalis

Supervisors: Manolis Koubarakis, Professor UoA
 George Stamoulis, Ph.D. Candidate UoA

ATHENS

October 2018

ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

Μία παράλληλη υλοποίηση του εργαλείου GeoTriples
χρησιμοποιώντας το Apache Spark

Νικόλαος Γ. Τράπαλης

Επιβλέποντες: Μανώλης Κουμπαράκης, Καθηγητής Ε.Κ.Π.Α.
Γεώργιος Σταμούλης,Υποψήφιος για Ph.D. Ε.Κ.Π.Α.

ΑΘΗΝΑ

Οκτώβριος 2018

BSc THESIS

A parallel implementation of the tool GeoTriples using Apache Spark

Nikolaos G. Trapalis

S.N.: 1115201200180

SUPERVISORS: Manolis Koubarakis, Professor UoA
George Stamoulis, Ph.D. Candidate UoA

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

Μία παράλληλη υλοποίηση του εργαλείου GeoTriples χρησιμοποιώντας το Apache Spark

Νικόλαος Γ. Τράπαλης

Α.Μ.: 1115201200180

ΕΠΙΒΛΕΠΟΝΤΕΣ: Μανώλης Κουμπαράκης, Καθηγητής Ε.Κ.Π.Α.
Γεώργιος Σταμούλης,Υποψήφιος για Ph.D. Ε.Κ.Π.Α.

ABSTRACT

A plethora of Earth Observation data that is becoming available at no charge in Europe
and the US recently reflects the strong push for more open Earth Observation data. Linked
data is a paradigm which studies how one can make data available on the Web, and
interconnect it with other data with the aim of making the value of the resulting “Web of
data” greater than the sum of its parts. Open Earth Observation data that are currently
made available by space agencies such as ESA and NASA are not following the linked
data paradigm. Therefore, Earth Observation data and other kinds of geospatial data that
are necessary for a user to satisfy her information needs can only be found in different
data silos, where each silo may contain only part of the needed data. Publishing the
content of these silos as RDF graphs, enables the development of data analytics
applications with great environmental and financial value.

GeoTriples is a semi-automated tool that allows the publication of geospatial information
into an RDF graph using the state of the art vocabularies like GeoSPARQL and
stSPARQL, but at the same time it is not tightly coupled to a specific vocabulary. In this
thesis we present a parallel implementation of the tool GeoTriples utilizing Apache Spark.
Using the MapReduce technique we provide noticable improvement in time when dealing
with large datasets.

SUBJECT AREA:Semantic Web,Data Transformation

KEYWORDS: MapReduce,Linked Data,RDF,GeoTriples,Shapefile

.

ΠΕΡΙΛΗΨΗ

Η πληθώρα γεωχωρικών δεδομένων που γίνονται διαθέσιμα δωρεάν στην Ευρώπη και τις
Η.Π.Α. δείχνει την προσπάθεια για περισσότερα ελεύθερα γεωχωρικά δεδομένα.Τα
διασυνδεδεμένα δεδομένα αποτελούν την προσπάθεια για διαθεσιμότητα δεδομένων στο
Διαδίκτυο και τη διασύνδεση αυτών με άλλα δεδομένα ,ώστε η αξία του τελικού
αποτελέσματος να είναι μεγαλύτερη από ένα απλό άθροισμα των δεδομένων που το
αποτελούν.Τα γεωχωρικά δεδομένα που έχουν γίνει διαθέσιμα από διαστημικά
πρακτορεία όπως ESA και NASA δεν ακολουθούν τη λογική των διασυνδεδεμένων
δεδομένων.Επομένως ένας χρήστης που αναζητά γεωχωρικά δεδομένα μπορεί να τα βρει
μόνο σε μεμονωμένες αποθήκες δεδομένων που μπορεί να περιέχουν ένα μέρος των
δεδομένων που χρειάζεται.Η δημοσίευση των περιεχομένων αυτών των αποθηκών σε
μορφή γράφων RDF καθιστά δυνατή την ανάπτυξη εφαρμογών ανάλυσης δεδομένων με
γιγάντια περιβαντολλογική και οικονομική αξία.

Το GeoTriples είναι ένα ημι-αυτόματο εργαλείο που επιτρέπει τη δημοσίευση γεωχωρικών
δεδομένων σε γράφους RDF χρησιμοποιώντας τα πλέον σύγχρονα λεξιλόγια όπως είναι
τα GeoSPARQL και stSPARQL , αλλά ταυτόχρονα δεν είναι δεσμευμένο σε κάποιο
συγκεκριμένο λεξιλόγιο.Σε αυτή την πτυχιακή εργασία παρουσιάζουμε μία παράλληλη
υλοποίηση του εργαλείου GeoTriples αξιοποιώντας το Apache Spark.Χρησιμοποιώντας
την τεχνική MapReduce η εφαρμογή μας προσφέρει σημαντική βελτίωση στο χρόνο
εκτέλεσης όταν λαμβάνει σαν είσοδο μεγάλα δεδομένα.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Σημασιολογικό διαδίκτυο,Μετατροπή δεδομένων

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: MapReduce,Διασυνδεδεμένα Δεδομένα,RDF,GeoTriples,Shapefile

ACKNOWLEDGMENTS

I would like to thank my supervisor Professor Manolis Koubarakis and my co-supervisor
George Stamoulis for their guidance and support.Without their help the completion of this
thesis wouldn’t have been possible.

CONTENTS

1.INTRODUCTION 10

2.BACKGROUND AND RELATED WORK 12

2.1 Apache Spark12

 2.1.1 Basic Components 12

 2.1.2 MapReduce and RDDs 12

 2.1.3 Spark vs Hadoop 15

2.2 Linked Data 16

 2.2.1 Linked Data Definition 17

 2.2.2 The Linked Data Technology Stack 18

 2.2.3 Forming the Web of Data 18

 2.2.4 The vision of the Semantic Web 18

2.3 RDF (Resource Description Framework) 19

 2.3.1 Structure 20

 2.3.2 RDF and change over time 21

 2.3.3 RDF Data Model and Linked Data 22

2.4 Geotriples 22

 2.4.1 System Architecture 23

 2.4.2 Transforming Geospatial Data into RDF graphs using GeoTriples 24

2.4.2.1 Automatic Generation of R2RML Mappings 24

2.4.2.2 Processing of R2RML mappings for producing RDF graphs 27

3.GEOTRIPLES IMPLEMENTATION WITH SPARK 27

3.1 Input Data Manipulation 27

3.2 Mapping 28

3.3 Reduction and final product 28

4.EXPERIMENT EVALUATION 28

4.1 System specifications 29

4.2 Datasets 29

4.3 Results 29

 4.3.1 Administrative divisions World(1 shapefile) 29

 4.3.2 Administrative divisions Great Britain(4 shapefiles) 30

 4.3.3 Administrative divisions Greece(4 shapefiles) 30

 4.3.4 Buildings Netherlands(1 shapefile) 31

 4.3.5 Graph Representation 31

 4.3.6 Conclusion of the experimental evaluation 33

5.CONCLUSION 34

ABBREVIATIONS - ACRONYMS 35

ANNEX Ι - APPLICATION CODE 36

REFERENCES 41

LIST OF FIGURES

Figure 1: Counting words in a document in Scala 15

Figure 2: An RDF graph with two nodes (Subject and Object)
and a triple connecting them (Predicate) 20

Figure 3: Example of RDD triples with Links 21

Figure 4: The system architecture of GeoTriples. 24

Figure 5: Part of the R2RML mapping by GeoTriples for the geo:Feature class 25

Figure 6:Part of the R2RML mapping by GeoTriples for the geo:Geometry class 26

Figure 7: The result of the division of the lakes shapefile 28

Figure 8: Result of mapping stage 29

Figure 9: Bar chart of the experiment results for the Netherlands dataset (1.8 GB) 34

Figure 10: Bar chart of the experiment results for the World dataset (1.6 GB) 35

Figure 11: Column chart of the experiment results for the small datasets 35

LIST OF TABLES

Table 1: Comparison of RDDs with distributed shared memory 13

Table 2: Comparison between Hadoop MapReduce and Apache Spark 14

Table 3: Spark/Hadoop MapReduce differences 15

Table 4: Environment specifications 30

A parallel implementation of the tool GeoTriples using Apache Spark

N. Trapalis 10

1.INTRODUCTION

Geospatial data, also known as spatial data, is information about a physical object that can
be represented by numerical values in a geographic coordinate system.The records in this
type of information set have coordinates, an address, city, postal code or zip code,
included with them. Geospatial data is all around us. Weather reports, suggested routes
on Google Maps, geotagged tweets, store locations, and airline routes are an integral part
of our daily lives and can be considered geospatial data. Geospatial data is also highly
influential in today’s business market, and businesses that incorporate geospatial data into
their analysis, reporting, and forecasting have the potential to outpace competitors through
smarter use of their data [1].

“Linked Data” is the term for the collection of design principles and technologies centred
around a paradigm to publish, retrieve, reuse, and integrate data on the Web (Kuhn et al.
2014). The adoption and application of Linked Data in the geospatial community have
developed considerably in recent years [2] , as researchers and practitioners have started
tapping the wealth of existing geospatial information and making it available on the
Web.As a result, the linked open data (LOD) cloud has been rapidly populated with
geospatial data. For example, Great Britain’s national mapping agency, Ordnance Survey,
has been the first national mapping agency that has made various kinds of geospatial data
from Great Britain available as linked open data.

In general, open EO (Earth Observation) data that are currently made available by space
agencies such as ESA and NASA are not following the linked data paradigm. Therefore,
EO data and other kinds of geospatial data that are necessary for a user to satisfy her
information needs can only be found in different data silos, where each silo may contain
only part of the needed data. Publishing the content of these silos as RDF graphs, enables
the development of data analytics applications with great environmental and financial
value. With the recent emphasis on open government data in many countries, the
development of useful Web applications utilizing EO data and geospatial data in general is
just a few SPARQL queries away[3].

The open source tool GeoTriples allows for the transformation of EO data and geospatial
data in various formats, such as spatially-enabled relational databases (PostGIS and
MonetDB), ESRI shapefiles, XML documents following a given schema (hence GML
documents as well), KML documents, JSON and GeoJSON documents and CSV
documents., into RDF graphs. GeoTriples goes beyond the state of the art by extending
the R2RML mapping language to be able to deal with the specificities of geospatial data. It
is a semi-automated tool that allows for the publication of geospatial information into an
RDF graph using the state of the art vocabularies like GeoSPARQL but at the same time it
is not tightly coupled to a specific vocabulary[4].

Our goal in this thesis was to create a parallel implementation of what GeoTriples
achieves.We decided to achieve that by taking advantage of the utilities Apache Spark
offers.

Spark is a cluster computing framework, which supports applications with working sets
while providing similar scalability and fault tolerance properties to MapReduce.

The main abstraction in Spark is that of a resilient distributed dataset (RDD), which
represents a read-only collection of objects partitioned across a set of machines that can
be rebuilt if a partition is lost. Users can explicitly cache an RDD in memory across
machines and reuse it in multiple MapReduce-like parallel operations.

The parallel implementation we provide in this thesis allows the transformation of big
datasets into RDF, utilizing MapReduce. The original dataset is divided into smaller pieces

A parallel implementation of the tool GeoTriples using Apache Spark

N. Trapalis 11

according to the number of mappers we are using. Then each mapper uses GeoTriples on
the part of the dataset that is assigned to him and sends the partial RDF graph that is
produced to the reducer. When all mappers have finished their task, we merge the RDF
graphs into one output file.

A parallel implementation of the tool GeoTriples using Apache Spark

N. Trapalis 12

2.BACKGROUND AND RELATED WORK

2.1 Apache Spark

The growth of data volumes in industry and research poses tremendous opportunities, as
well as tremendous computational challenges. As data sizes have outpaced the
capabilities of single machines, users have needed new systems to scale out
computations to multiple nodes.From its humble beginnings in the AMPLab at U.C.
Berkeley in 2009, Apache Spark has become one of the key big data distributed
processing frameworks in the world. Spark can be deployed in a variety of ways, provides
native bindings for the Java, Scala, Python, and R programming languages, and supports
SQL, streaming data, machine learning, and graph processing. You’ll find it used by
banks, telecommunications companies, games companies, governments, and all of the
major tech giants such as Apple, Facebook, IBM, and Microsoft[5].

2.1.1 Basic Components

Spark can be broken down to the following components[6]:

● Resilient Distributed Datasets and the Spark Core: The Spark Core is the
foundation and provides basic I/O functionalities, task dispatching and scheduling.
RDDs are basically a collection of partitioned data. These are generally created by
referencing datasets in storages such as Cassandra, HBase et al., or by applying
transformations such as map, reduce, filter etc. on existing RDDs.

● Spark SQL: Spark SQL, a component on the Core, introduces a new data
abstraction called DataFrame, for providing support for structured data. It provides a
language to manipulate Data Frames in Java, Python or Scala.

● Spark Streaming: Spark streaming rests on the Core as well, and levera on top of
the Core which is proven to be ten times faster than Hadoop’s disk-based Apache
Mahout due to the distributed memory-based Spark architecture. It implements
common algorithms to simplify large scale machine learning pipelines, like logistic
or linear regression, decision trees or k-means clustering.

● MLlib Machine Learning Library: This is a machine learning framework on top of the
Core which is proven to be ten times faster than Hadoop’s disk-based Apache
Mahout due to the distributed memory-based Spark architecture. It implements
common algorithms to simplify large scale machine learning pipelines, like logistic
or linear regression, decision trees or k-means clustering

● E.GraphX: It is a graph-processing framework on the Core, and provides an API for
graph computation that can model the Pregel abstraction, providing an optimized
runtime.

2.1.2 MapReduce and RDDs

A new model of cluster computing has become widely popular, in which data-parallel
computations are executed on clusters of unreliable machines by systems that
automatically provide locality-aware scheduling, fault tolerance, and load balancing.
MapReduce pioneered this model, while systems like Dryad and Map-Reduce-Merge
generalized the types of data flows supported. These systems achieve their scalability and
fault tolerance by providing a programming model where the user creates acyclic data flow

A parallel implementation of the tool GeoTriples using Apache Spark

N. Trapalis 13

graphs to pass input data through a set of operators. This allows the underlying system to
manage scheduling and to react to faults without user intervention. While this data flow
programming model is useful for a large class of applications, there are applications that
cannot be expressed efficiently as acyclic data flows. One class of these applications are
the ones that reuse a working set of data across multiple parallel operations. This includes
two use cases where Hadoop users were reporting that MapReduce is deficient:

● Iterative jobs: Many common machine learning algorithms apply a function
repeatedly to the same dataset to optimize a parameter (e.g., through gradient
descent). While each iteration can be expressed as a MapReduce/Dryad job, each
job must reload the data from disk, incurring a significant performance penalty.

● Interactive analytics: Hadoop is often used to run ad-hoc exploratory queries on
large datasets, through SQL interfaces such as Pig and Hive . Ideally, a user would
be able to load a dataset of interest into memory across a number of machines and
query it repeatedly. However, with Hadoop, each query incurs significant latency
(tens of seconds) because it runs as a separate MapReduce job and reads data
from disk.

Spark supports applications with working sets while providing similar scalability and fault
tolerance properties to MapReduce. The main abstraction in Spark is that of a resilient
distributed dataset (RDD), which represents a read-only collection of objects partitioned
across a set of machines that can be rebuilt if a partition is lost. Users can explicitly cache
an RDD in memory across machines and reuse it in multiple MapReduce-like parallel
operations. RDDs achieve fault tolerance through a notion of lineage: if a partition of an
RDD is lost, the RDD has enough information about how it was derived from other RDDs
to be able to rebuild just that partition. Although RDDs are not a general shared memory
abstraction, they represent a sweet-spot between expressivity on the one hand and
scalability and reliability on the other hand, and have been found well-suited for a variety
of applications.

Spark provides a convenient language-integrated programming interface similar to
DryadLINQ in the Scala programming language .Each RDD is represented by a Scala
object. Spark lets programmers construct RDDs in four ways:

● From a file in a shared file system, such as the Hadoop Distributed File System
(HDFS). • By “parallelizing” a Scala collection (e.g., an array) in the driver program,
which means dividing it into a number of slices that will be sent to multiple nodes.

● By transforming an existing RDD. A dataset with elements of type A can be
transformed into a dataset with elements of type B using an operation called
flatMap, which passes each element through a user-provided function of type A ⇒
List[B]. 1 Other transformations can be expressed using flatMap, including map
(pass elements through a function of type A ⇒ B) and filter (pick elements matching
a predicate).

● By changing the persistence of an existing RDD. By default, RDDs are lazy and
ephemeral. That is, partitions of a dataset are materialized on demand when they
are used in a parallel operation (e.g., by passing a block of a file through a map
function), and are discarded from memory after use. However, a user can alter the
persistence of an RDD through two actions:

1.The cache action leaves the dataset lazy, but hints that it should be kept in
memory after the first time it is computed, because it will be reused.if there is not
enough memory in the cluster to cache all partitions of a dataset, Spark will
recompute them when they are used

A parallel implementation of the tool GeoTriples using Apache Spark

N. Trapalis 14

2.The save action evaluates the dataset and writes it to a distributed file system
such as HDFS.The saved version is used in future operations on it.

After the construction programmers can use these RDDs in actions, which are operations
that return a value to the application or export data to a storage system. Examples of
actions include:

● reduce: Combines dataset elements using an associative function to produce a
result at the driver program.

● collect: Sends all elements of the dataset to the driver program. For example, an
easy way to update an array in parallel is to parallelize, map and collect the array.

● foreach: Passes each element through a user provided function. This is only done
for the side effects of the function (which might be to copy data to another system or
to update a shared variable).

● count: Returns the number of elements in the dataset
 Like DryadLINQ, Spark computes RDDs lazily the first time they are used in an action, so
that it can pipeline transformations.[7]

 Table 1: Comparison of RDDs with distributed shared memory

 Aspect RDDs Distr. Shared Mem.

Reads Coarse- or fine-grained Fine-grained

Writes Coarse-grained Fine-grained

Consistency Trivial (immutable) Up to app / runtime

Fault recovery Fine-grained and low-
overhead using lineage

Requires checkpoints and
program rollback

Straggler mitigation Possible using backup tasks Difficult

Work placement Automatic based on data
locality

Up to app (runtimes aim for
transparency)

Behaviour if not enough
RAM

Similar to existing data flow
systems

Poor performance
(swapping?)

To understand the benefits of RDDs as a distributed memory abstraction, we compare
them against distributed shared memory (DSM) in Table 1. In DSM systems, applications
read and write to arbitrary locations in a global address space. Note that under this
definition, we include not only traditional shared memory systems , but also other systems
where applications make fine-grained writes to shared state, including Piccolo, which
provides a shared DHT, and distributed databases. DSM is a very general abstraction, but
this generality makes it harder to implement in an efficient and fault-tolerant manner on
commodity clusters.

The main difference between RDDs and DSM is that RDDs can only be created (“written”)
through coarse-grained transformations, while DSM allows reads and writes to each
memory location. This restricts RDDs to applications that perform bulk writes, but allows
for more efficient fault tolerance. In particular, RDDs do not need to incur the overhead of
checkpointing, as they can be recovered using lineage.Furthermore, only the lost partitions

A parallel implementation of the tool GeoTriples using Apache Spark

N. Trapalis 15

of an RDD need to be recomputed upon failure, and they can be recomputed in parallel on
different nodes, without having to roll back the whole program.

A second benefit of RDDs is that their immutable nature lets a system mitigate slow nodes
(stragglers) by running backup copies of slow tasks as in MapReduce. Backup tasks would
be hard to implement with DSM, as the two copies of a task would access the same
memory locations and interfere with each other’s updates.

Finally, RDDs provide two other benefits over DSM. First, in bulk operations on RDDs, a
runtime can schedule tasks based on data locality to improve performance. Second, RDDs
degrade gracefully when there is not enough memory to store them, as long as they are
only being used in scan-based operations. Partitions that do not fit in RAM can be stored
on disk and will provide similar performance to current data-parallel systems[8].

2.1.3 Spark vs Hadoop

It’s worth pointing out that Apache Spark vs. Apache Hadoop is a bit of a misnomer. You’ll
find Spark included in most Hadoop distributions these days. But due to two big
advantages, Spark has become the framework of choice when processing big data,
overtaking the old MapReduce paradigm that brought Hadoop to prominence.

The first advantage is speed. Spark’s in-memory data engine means that it can perform
tasks up to one hundred times faster than MapReduce in certain situations, particularly
when compared with multi-stage jobs that require the writing of state back out to disk
between stages. Even Apache Spark jobs where the data cannot be completely contained
within memory tend to be around 10 times faster than their MapReduce counterpart.Table
2 demonstrates how Spark outperformed Hadoop in a sorting data experiment and set a
new world record[6].

 Table 2: Comparison between Hadoop MapReduce and Apache Spark

 Hadoop MR
Record

Spark Record Spark 1 PB

Data Size 102.5 TB 100 TB 1000 TB

Elapsed Time 72 mins 23 mins 234 mins

Cluster disk
throughput

3150 GB/s 618 GB/s 570 GB/s

Sort Rate 1.42TB/min 4.27TB/min 4.27TB/min

The second advantage is the developer-friendly Spark API. As important as Spark’s
speed-up is, one could argue that the friendliness of the Spark API is even more
important.In comparison to MapReduce and other Apache Hadoop components, the
Apache Spark API is very friendly to developers, hiding much of the complexity of a
distributed processing engine behind simple method calls. The canonical example of this is
how almost 50 lines of MapReduce code to count words in a document can be reduced to
just a few lines of Apache Spark (here shown in Scala):

A parallel implementation of the tool GeoTriples using Apache Spark

N. Trapalis 16

 Figure 1: Counting words in a document in Scala

By providing bindings to popular languages for data analysis like Python and R, as well as
the more enterprise-friendly Java and Scala, Apache Spark allows everybody from
application developers to data scientists to harness its scalability and speed in an
accessible manner [5].

Table 3 demonstrates the main differences between Spark and Hadoop [9].

 Table 3: Spark/Hadoop MapReduce differences

 Hadoop MapReduce Spark

Storage Disk only In Memory or on disk

Operations Map and Reduce Map,Reduce,Join,Sample,
etc...

Execution model Batch Batch, interactive,
streaming

Programming
environments

Java Scala, Java, R, and Python

2.2 Linked Data

We are surrounded by data – data about the performance of our locals schools, the fuel
efficiency of our cars, a multitude of products from different vendors, or the way our taxes
are spent. By helping us make better decisions, this data is playing an increasingly central
role in our lives and driving the emergence of a data economy. Increasing numbers of
individuals and organizations are contributing to this deluge by choosing to share their
data with others, including Web-native companies such as Amazon and Yahoo!,
newspapers such as The Guardian and The New York Times, public bodies such as the
UK and US governments, and research initiatives within various scientific disciplines.Third
parties, in turn, are consuming this data to build new businesses, streamline online
commerce, accelerate scientific progress, and enhance the democratic process [10].

The World Wide Web has radically altered the way we share knowledge by lowering the
barrier to publishing and accessing documents as part of a global information space.
Hypertext links allow users to traverse this information space using Web browsers, while
search engines index the documents and analyse the structure of links between them to
infer potential relevance to users' search queries (Brin & Page, 1998). This functionality
has been enabled by the generic, open and extensible nature of the Web (Jacobs &
Walsh, 2004), which is also seen as a key feature in the Web's unconstrained growth.
Despite the inarguable benefits the Web provides, until recently the same principles that
enabled the Web of documents to flourish have not been applied to data. Traditionally,
data published on the Web has been made available as raw dumps in formats such as

A parallel implementation of the tool GeoTriples using Apache Spark

N. Trapalis 17

CSV or XML, or marked up as HTML tables, sacrificing much of its structure and
semantics. In the conventional hypertext Web, the nature of the relationship between two
linked documents is implicit, as the data format, i.e. HTML, is not sufficiently expressive to
enable individual entities described in a particular document to be connected by typed
links to related entities. However, in recent years the Web has evolved from a global
information space of linked documents to one where both documents and data are linked.
Underpinning this evolution is a set of best practices for publishing and connecting
structured data on the Web known as Linked Data[11].

2.2.1 Linked Data Definition

Linked Data is about using the Web to connect related data that were not previously
linked, or using the Web to lower the barriers to linking data currently linked using other
methods. More specifically, Wikipedia defines Linked Data as “a term used to describe a
recommended best practice for exposing, sharing, and connecting pieces of data,
information, and knowledge on the Semantic Web using URIs and RDF.” Linked data uses
structured ontologies, or vocabularies, which are the explicit formal specifications
expressing relevant terms in a domain, relationships among them, and their behavior.
Software tools that discover and manipulate datasets or other information must understand
the associated vocabulary in order to make full use of them.

The result, which we will refer to as the Web of Data, may more accurately be described
as a web of things in the world, described by data on the Web.

Berners-Lee (2006) outlined a set of 'rules' for publishing data on the Web in a way that all
published data becomes part of a single global data space:

● Use URIs as names for things
● Use HTTP URIs so that people can look up those names
● When someone looks up a URI, provide useful information, using the standards

(RDF, SPARQL)
● Include links to other URIs, so that they can discover more things

These have become known as the 'Linked Data principles', and provide a basic recipe for
publishing and connecting data using the infrastructure of the Web while adhering to its
architecture and standards [11].

2.2.2 The Linked Data Technology Stack

Linked Data relies on two technologies that are fundamental to the Web: Uniform
Resource Identifiers (URIs) (Berners-Lee et al., 2005) and the HyperText Transfer
Protocol (HTTP) (Fielding et al., 1999). While Uniform Resource Locators (URLs) have
become familiar as addresses for documents and other entities that can be located on the
Web, Uniform Resource Identifiers provide a more generic means to identify any entity that
exists in the world. Where entities are identified by URIs that use the http:// scheme, these
entities can be looked up simply by dereferencing the URI over the HTTP protocol. In this
way, the HTTP protocol provides a simple yet universal mechanism for retrieving
resources that can be serialised as a stream of bytes (such as a photograph of a dog), or
retrieving descriptions of entities that cannot themselves be sent across the network in this
way (such as the dog itself). URIs and HTTP are supplemented by a technology that is
critical to the Web of Data – RDF, introduced above. Whilst HTML provides a means to
structure and link documents on the Web, RDF provides a generic, graph-based data
model with which to structure and link data that describes things in the world [11].

More about the RDF Data Model in the next section(2.3).

A parallel implementation of the tool GeoTriples using Apache Spark

N. Trapalis 18

2.2.3 Forming the Web of Data

The RDF Vocabulary Definition Language (RDFS) (Brickley & Guha, 2004) and the Web
Ontology Language (OWL) (McGuinness & van Harmelen, 2004) provide a basis for
creating vocabularies that can be used to describe entities in the world and how they are
related. Vocabularies are collections of classes and properties. Vocabularies are
themselves expressed in RDF, using terms from RDFS and OWL, which provide varying
degrees of expressivity in modelling domains of interest. Anyone is free to publish
vocabularies to the Web of Data (Berrueta & Phipps, 2008), which in turn can be
connected by RDF triples that link classes and properties in one vocabulary to those in
another, thereby defining mappings between related vocabularies.

By employing HTTP URIs to identify resources, the HTTP protocol as retrieval mechanism,
and the RDF data model to represent resource descriptions, Linked Data directly builds on
the general architecture of the Web (Jacobs & Walsh, 2004). The Web of Data can
therefore be seen as an additional layer that is tightly interwoven with the classic
document Web and has many of the same properties:

● The Web of Data is generic and can contain any type of data.
● Anyone can publish data to the Web of Data.
● Data publishers are not constrained in choice of vocabularies with which to

represent data.
● Entities are connected by RDF links, creating a global data graph that spans data

sources and enables the discovery of new data sources.
From an application development perspective the Web of Data has the following
characteristics:

Data is strictly separated from formatting and presentational aspects [11].

● Data is self-describing. If an application consuming Linked Data encounters data
described with an unfamiliar vocabulary, the application can dereference the URIs
that identify vocabulary terms in order to find their definition.

● The use of HTTP as a standardized data access mechanism and RDF as a
standardized data model simplifies data access compared to Web APIs, which rely
on heterogeneous data models and access interfaces.

● The Web of Data is open, meaning that applications do not have to be implemented
against a fixed set of data sources, but can discover new data sources at run-time
by following RDF links.

2.2.4 The vision of the Semantic Web

It is important to understand the benefits of Linked Data in the Semantic Web. When we
think about the Web, the first issue is how to find what we are looking for. This is especially
true for data, even with an increasing number of sites acting as portals for data. The
discovery of data is a major challenge. And, once discovered, it is often difficult to know
what the data are and how to use them – how are they organized and structured? How
were they collected? What format are they in and how can they be processed? Further, for
data to be really useful in research, one may want to compare them with data from other
sources, so we need to understand how comparable different data from various sources
are. An ideal vision of using Linked Data to produce a rich browsing environment for social
science data might look something like this:

“A researcher discovers in an online journal an article about the relationship between
obesity and income in a specific geographic area. She reads the article and links to a table
with references to specific income and obesity variables from the underlying dataset, with

A parallel implementation of the tool GeoTriples using Apache Spark

N. Trapalis 19

links to full descriptions of each variable (name and label, associated question, responses,
and frequencies) in context and links to download the data and browse additional
documentation. This dataset is part of a multi-wave longitudinal study, and the user can
view these variables in other years to compare them. She is able to recreate the table
using data from other years. The researcher is also able to browse other variables in the
dataset and to explore similar variables in other datasets (“More Like This”) that might
differ slightly in terms of how the questions were posed to respondents. Let’s say the
researcher wants to know about the relationships among income, obesity, and the
proximity of fast food restaurants in the region of interest. A quick search reveals data on
fast food, and the researcher is able to understand quickly whether the analysis she wants
to perform is scientifically sound given the nature of the disparate datasets because the
data include “smart” variables that know what they can combine with. She successfully
merges the data and is presented with a visualization of the results in the form of a
complex table and a map. This happens in a secure environment to minimize disclosure
risk. The researcher can also follow links to other articles that used these data and
specifically the variables of interest. She can link to a profile of the researcher and
discover additional publications on the topic of interest from the researcher’s CV. She
might even initiate a collaboration with that researcher, producing new knowledge linked to
existing information on the Web and adding to the rich Web of linkages in her domain.”

In short, through Linked Data for the social sciences, users should be able to easily
discover the existence of data, and to determine what the data contain, how they are
structured, and how they can be used. The data should be well-documented. They should
be of known quality and provenance, and should exist in relationship to other versions of
the same dataset, so that corrections and updates can be known. If comparable/
scientifically compatible with other datasets, then that should be something that is easily
determined, and it should be possible to easily merge the data[12].

2.3 RDF (Resource Description Framework)

The World Wide Web affords unprecedented access to globally distributed information.
Metadata, or structured data about data, improves discovery of and access to such
information. The effective use of metadata among applications, however, requires
common conventions about semantics, syntax, and structure. Individual resource
description communities define the semantics, or meaning, of metadata that address their
particular needs. Syntax, the systematic arrangement of data elements for machine-
processing, facilitates the exchange and use of metadata among multiple applications.
Structure can be thought of as a formal constraint on the syntax for the consistent
representation of semantics.

The Resource Description Framework (RDF), developed under the auspices of the World
Wide Web Consortium (W3C) , is an infrastructure that enables the encoding, exchange,
and reuse of structured metadata. This infrastructure enables metadata interoperability
through the design of mechanisms that support common conventions of semantics,
syntax, and structure. RDF does not stipulate semantics for each resource description
community, but rather provides the ability for these communities to define metadata
elements as needed. RDF uses XML (eXtensible Markup Language) as a common syntax
for the exchange and processing of metadata. The XML syntax is a subset of the
international text processing standard SGML (Standard Generalized Markup Language)
specifically intended for use on the Web. The XML syntax provides vendor independence,
user extensibility, validation, human readability, and the ability to represent complex
structures. By exploiting the features of XML, RDF imposes structure that provides for the
unambiguous expression of semantics and, as such, enables consistent encoding,
exchange, and machine-processing of standardized metadata.

A parallel implementation of the tool GeoTriples using Apache Spark

N. Trapalis 20

RDF supports the use of conventions that will facilitate modular interoperability among
separate metadata element sets. These conventions include standard mechanisms for
representing semantics that are grounded in a simple, yet powerful, data model discussed
below. RDF additionally provides a means for publishing both human-readable and
machine-processable vocabularies. Vocabularies are the set of properties, or metadata
elements, defined by resource description communities. The ability to standardize the
declaration of vocabularies is anticipated to encourage the reuse and extension of
semantics among disparate information communities.RDF is designed to support
semantic modularity by creating an infrastructure that supports the combination of
distributed attribute registries. Thus, a central registry is not required. This permits
communities to declare vocabularies which may be reused, extended and/or refined to
address application or domain specific descriptive requirements [13].

2.3.1 Structure

The Resource Description Framework (RDF) is a framework for representing information
in the Web.

All RDF-based languages and specifications are linked by an abstract syntax (a data
model).The core structure of the abstract syntax is a set of triples, each consisting of a
subject, a predicate and an object.So basically a description of a resource is represented
as a number of triples. A set of such triples is called an RDF graph. An RDF graph can be
visualized as a node and directed-arc diagram, in which each triple is represented as a
node-arc-node link [14].

 Figure 2: An RDF graph with two nodes (Subject and Object) and a triple
 connecting them (Predicate)

There can be three kinds of nodes in an RDF graph: IRIs, literals, and blank nodes.To be
more specific :

● The subject is an IRI or a blank node
● The predicate is an IRI
● the object is an IRI, a literal or a blank node

Any IRI or literal denotes something in the world (the "universe of discourse"). These
things are called resources. Anything can be a resource, including physical things,
documents, abstract concepts, numbers and strings; the term is synonymous with "entity"
as it is used in the RDF Semantics specification. The resource denoted by an IRI is called
its referent, and the resource denoted by a literal is called its literal value.

Two principal types of RDF triples can be distinguished, Literal Triples and RDF Links:

1. Literal Triples have an RDF literal such as a string, number, or date as the object.
Literal triples are used to describe the properties of resources. For instance, literal
triples are used to describe the name or date of birth of a person. Literals may be
plain or typed: A plain literal is a string combined with an optional language tag. The
language tag identifies a natural language, such as English or German. A typed
literal is a string combined with a datatype URI. The datatype URI identifies the
datatype of the literal. Datatype URIs for common datatypes such as integers,
floating point numbers and dates are defined by the XML Schema datatypes

A parallel implementation of the tool GeoTriples using Apache Spark

N. Trapalis 21

specification. The first triple in the code example below is a literal triple, stating that
Big Lynx Lead Cameraman Matt Briggs has the nickname Matty.

2. RDF Links describe the relationship between two resources. RDF links consist of
three URI references. The URIs in the subject and the object position of the link
identify the related resources. The URI in the predicate position defines the type of
relationship between the resources. For instance, the second triple in Figure 2
below states that Matt Briggs knows Dave Smith. The third triple states that he
leads something identified by the URI http://biglynx.co.uk/teams/production (in this
case the Big Lynx Production Team). A useful distinction can be made between
internal and external RDF links. Internal RDF links connect resources within a
single Linked Data source. Thus, the subject and object URIs are in the same
namespace. External RDF links connect resources that are served by different
Linked Data sources. The subject and object URIs of external RDF links are in
different namespaces. External RDF links are crucial for the Web of Data as they
are the glue that connects data islands into a global, interconnected data space
[10].

 Figure 3: Example of RDD triples with Links

2.3.2 RDF and change over time

The RDF data model is atemporal: RDF graphs are static snapshots of
information.However, RDF graphs can express information about events and about
temporal aspects of other entities, given appropriate vocabulary terms.Since RDF graphs
are defined as mathematical sets, adding or removing triples from an RDF graph yields a
different RDF graph.

We informally use the term RDF source to refer to a persistent yet mutable source or
container of RDF graphs. An RDF source is a resource that may be said to have a state
that can change over time. A snapshot of the state can be expressed as an RDF graph.
For example, any web document that has an RDF-bearing representation may be
considered an RDF source. Like all resources, RDF sources may be named with IRIs and
therefore described in other RDF graphs [14] .

Intuitively speaking, changes in the universe of discourse can be reflected in the following
ways:

● An IRI, once minted, should never change its intended referent. (See URI
persistence [WEBARCH].)

● Literals, by design, are constants and never change their value.
● A relationship that holds between two resources at one time may not hold at

another time.
● RDF sources may change their state over time. That is, they may provide different

RDF graphs at different times.
● Some RDF sources may, however, be immutable snapshots of another RDF

source, archiving its state at some point in time.

A parallel implementation of the tool GeoTriples using Apache Spark

N. Trapalis 22

2.3.3 RDF Data Model and Linked Data

The main benefits of using the RDF data model in a Linked Data context are that:

● By using HTTP URIs as globally unique identifiers for data items as well as for
vocabulary terms, the RDF data model is inherently designed for being used at
global scale and enables anybody to refer to anything.

● Clients can look up any URI in an RDF graph over the Web to retrieve additional
information. Thus each RDF triple is part of the global Web of Data and each RDF
triple can be used as a starting point to explore this data space.

● The data model enables you to set RDF links between data from different sources.
● Information from different sources can easily be combined by merging the two sets

of triples into a single graph.
● RDF allows you to represent information that is expressed using different schemata

in a single graph, meaning that you can mix terms for different vocabularies to
represent data.

● Combined with schema languages such as RDF-Schema and OWL , the data
model allows the use of as much or as little structure as desired, meaning that
tightly structured data as well as semi-structured data can be represented.

Besides the features mentioned above, the RDF Recommendation also specifies a range
of other features which have not achieved widespread adoption in the Linked Data
community. In order to make it easier for clients to consume data, it is recommended to
use only the subset of the RDF data model described above. In particular, the following
features should be avoided in a Linked Data context [10].

● RDF reification should be avoided, as reified statements are rather cumbersome to
query with the SPARQL query language . Instead of using reification to publish
metadata about individual RDF statements, meta-information should instead be
attached to the Web document containing the relevant triples.

● RDF collections and RDF containers are also problematic if the data needs to be
queried with SPARQL. Therefore, in cases where the relative ordering of items in a
set is not significant, the use of multiple triples with the same predicate is
recommended.

● The scope of blank nodes is limited to the document in which they appear, meaning
it is not possible to create RDF links to them from external documents, reducing the
potential for interlinking between different Linked Data sources. In addition, it
becomes much more difficult to merge data from different sources when blank
nodes are used, as there is no URI to serve as a common key. Therefore, all
resources in a data set should be named using URI references.

2.4 Geotriples

In the last few years there has been significant effort on publishing EO(Earth Observation)
and geospatial data sources as linked open data. However, the problem of publishing
geospatial data sources into RDF graphs using a generic and extensible framework has
received little attention as it has only recently emerged.

Geospatial data in general and EO data in particular, can come in vector or raster form
and are usually accompanied by metadata. Vector data, available in formats such as ESRI
shapefiles, KML, and GeoJSON documents, can be accessed either directly or via Web
Services such as the OGC Web Feature Service or the query language of a geospatial
DBMS. Raster data, available in formats such as GeoTIFF, Network Common Data Form
(netCDF), Hierarchical Data Format (HDF), can be accessed either directly or via Web
Services such as the OGC Web Coverage Processing Service (WCS) or the query
language of an array DBMS, e.g., the array-query language SciQL4 . Metadata about EO

A parallel implementation of the tool GeoTriples using Apache Spark

N. Trapalis 23

data are encoded in various formats ranging from custom XML schemas to domain
specific standards like the OGC GML Application schema for EO products and the OGC
Metadata Profile of Observations and Measurements.

Automating the process of publishing linked geospatial data has not been addressed yet.
For example, in the wildfire monitoring and management application that was developed in
TELEIOS, custom Python scripts were used for publishing all necessary data as linked
data. For this reason, the tool GeoTriples was designed and implemented in the context of
the EU FP7 project LEO5 . GeoTriples allows the transformation of geospatial data stored
in spatially-enabled relational databases and raw files. It is implemented as an extension
to the D2RQ platform and goes beyond the state of the art by extending the R2RML
mapping language to deal with the specificities of geospatial data. GeoTriples uses
GeoSPARQL as the target vocabulary but the user is free to use any vocabulary he finds
appropriate [3].

2.4.1 System Architecture

The system architecture of GeoTriples is depicted in Figure. 1.The input data for
GeoTriples can be geospatial data and metadata stored in ESRI Shapefiles, XML, GML,
KML, JSON, GeoJSON and CSV documents or spatially-enabled relational databases
(e.g., PostGIS and MonetDB). GeoTriples has a connector that is responsible for providing
an abstraction layer that allows the rest of the components to transparently access the
input data. GeoTriples comprises three main components: the mapping generator, the
mapping processor and the stSPARQL/GeoSPARQL evaluator.

The mapping generator is given as input a data source and creates automatically an
R2RML/RML mapping document, depending on the type of the input. The generated
mapping is enriched with subject and predicate–object maps, taking into account all
transformations that are needed to produce an RDF graph that is compliant with the
GeoSPARQL vocabulary. Afterwards, the user may edit the generated mapping document
to make it comply with his/her requirements (e.g., use a different vocabulary). We point out
that the ability of GeoTriples to use different vocabularies is a useful feature since even
standardized vocabularies such as the one of GeoSPARQL can be dropped, modified or
extended in the future.

The mapping processor may use either the generated mapping document or one created
by the user from scratch. Based on the triples map definitions in the mapping file, the
component generates the final RDF graph which can be manifested in any of the popular
RDF syntaxes such as Turtle, RDF/XML, Notation3 or N-Triples. The mapping processor
has been implemented in two ways. The first implementation runs on a single processor,
while the second runs in a distributed manner using the Apache Hadoop framework.

The stSPARQL/GeoSPARQL evaluator is a component that evaluates an
stSPARQL/GeoSPARQL query over a relational database given an R2RML mapping. The
evaluator is a thin layer that integrates GeoTriples with the OBDA engine Ontop-spatial . It
supports the evaluation of stSPARQL/GeoSPARQL queries over virtual RDF graphs
defined through R2RML mappings to a geospatial relational database [15] .

A parallel implementation of the tool GeoTriples using Apache Spark

N. Trapalis 24

 Figure 4: The system architecture of GeoTriples.

2.4.2 Transforming Geospatial Data into RDF graphs using GeoTriples

In this section the main functionality of GeoTriples is presented.It can be broken down in
two main parts. First part is the automatic production of extended R2RML mappings that
take into account the spatial dimension of the input data.Following in the second part is
demonstrated how these mappings are processed subsequently by GeoTriples in order to
generate an RDF graph.

2.4.2.1 Automatic Generation of R2RML Mappings

Much work has been done recently on extending RDF to represent and query geospatial
information. The most mature results of this work are the data model stRDF and the query
language stSPARQL and the OGC standard GeoSPARQL. GeoSPARQL is an OGC
standard for the representation and querying of geospatial linked data. GeoSPARQL
defines much of what is required for such a query language by providing vocabulary
(classes, properties, and functions) that can be used in RDF graphs and SPARQL queries
to represent and query geospatial data. The top level classes defined in GeoSPARQL are
geo:SpatialObject that has as instances everything that can have a spatial representation
and geo:Feature that represents all features and is the superclass of all classes of features
that the users might want to define. To represent geometric objects, the class
geo:Geometry is introduced by GeoSPARQL. Additional vocabulary is also defined by
GeoSPARQL for asserting and querying information about geometries.

Given a spatially-enabled database or a raw file that contains geometric information,
GeoTriples generates an R2RML mapping document. Let us take for example the Natura

A parallel implementation of the tool GeoTriples using Apache Spark

N. Trapalis 25

2000 dataset of Germany that contains information about protected areas in Germany and
is distributed in the form of an ESRI shapefile. More details on this dataset can be found in
Section 4. Conceptually, each geometric object stored in the ESRI shapefile should be an
instance of the class geo:Geometry, and all non-geometric attributes that characterize
each geometry are thematic attributes of the corresponding feature. Following this
modeling approach, we generate an instance of the class geo:Feature and an instance of
the class geo:Geometry for each geometric object stored in the ESRI shapefile. Geometric
and non-geometric attributes that appear at the ESRI shapefile are assigned accordingly
to the appropriate instances. Part of the R2RML mapping that is generated automatically
by GeoTriples to represent the features stored in the Natura 2000 ESRI shapefile is the
following:

 Figure 5: Part of the R2RML mapping by GeoTriples for the geo:Feature class

This mapping document contains a triples map that describes how instances of the class
geo:Feature are constructed. All thematic information that is stored in the ESRI shapefile is
assigned to the generated feature and a link between the feature and its geometry is also
generated. However, the notion of a primary key is not defined for ESRI shapefiles. Each
ESRI shapefile though is accompanied by a relational table in dBASE format that stores
information about the geometries, so we define as a unique identifier for each geometric
object the respective row identifier in the dBASE table. In the example above we represent
this information as an extra attribute with name ’gid’.

Part of the R2RML mapping that is generated automatically by GeoTriples to represent the
geometries stored in the Natura 2000 ESRI shapefile is the following:

A parallel implementation of the tool GeoTriples using Apache Spark

N. Trapalis 26

Figure 6: Part of the R2RML mapping by GeoTriples for the geo:Geometry class

This mapping document contains a triples map that describes how instances of the class
geo:Geometry are constructed. All geometric information that is stored in the ESRI
shapefile is assigned to the generated geometry. In addition, object maps define that
geospatial functions like geof:dimension are applied to the serialization of each geometric
object in order to produce the values that will appear at the object part of the
corresponding triple.

Notice that in the above example we extended the definition of an object map by allowing it
to be the RDF term obtained by applying a transformation on the source data. Each
transformation defines the SPARQL built-in function or the SPARQL extension function to
be invoked, using as an argument the sequence of RDF terms that are produced by the
respective term maps [3].

2.4.2.2 Processing of R2RML mappings for producing RDF graphs

R2RML mappings usually consist of two triples maps; one for handling thematic
information and one for geospatial information. The triples map that handles thematic
information defines a logical table that contains the thematic attributes and a unique
identifier for the generated instances. The latter could be either the primary key of the table
in case the input data is a relational database or a row number in the dBASE table of an
ESRI shapefile. Combined with a URI template, the unique identifier is used to produce the
URI that serve as subjects of the produced triples. The predicate object maps are also
processed accordingly in order to define RDF properties the value of which originate from
the value of the column of the thematic logical table.

The triples map that handles the geospatial information of the input data source, defines a
logical table with unique identifier similar to the thematic one. However, according to the
type of the data source, the definition of this logical table may vary. For instance, in the
case of a relational database, it is defined by providing an appropriate SQL query that
uses spatial functions provided by spatially enabled relational backend (e.g. utilize the
function ST_Dimension). If the input source is an ESRI shapefile, then GeoTriples will
perform such transformations on the fly by evaluating the SPARQL extension function
using the JTS Topology Suite [3].

A parallel implementation of the tool GeoTriples using Apache Spark

N. Trapalis 27

 3.GEOTRIPLES IMPLEMENTATION WITH SPARK

In this chapter we’re going to explain each step of our application.It’s main point can be
boiled down to the following: Instead of using GeoTriples to transform a shapefile to RDF
we divide the file into smaller parts.Each part is then used as input to GeoTriples so that
the transformation process is done in parallel, utilizing Apache Spark’s Map
function.Finally a reduction is applied so that the smaller RDF files which were produced
by GeoTriples merge into the final RDF representation of our initial shapefile.

This parallel implementation of the GeoTriples tool, shows promising results in terms of
performance.Chapter 4 goes into more detail about the pros of our implementation and the
edge it offers when it comes to time complexity.

The following is a description of our approach in each step of the application.

3.1 Input Data Manipulation

At first the user is prompted to choose the number of pieces in which his file will be broken
into.If the user doesn’t have a preference, a default value is instead used.Then the user
has to pick the file he wants to use as input.Currently our application only supports
shapefiles.Using the name of the original shapefile as basis and adding a suffix (“partx”
where x is an Integer) to ensure uniqueness , a number of new files (pieces) are
created.This number is equal to the number of pieces in which the shapefile will be broken
into and each new file/piece will be a part of the original.E.g. if the user chooses as input
the file “Lakes.shp” and decides to break it into 3 pieces ,3 new files will be created named
“Lakespart0.shp”,“Lakespart1.shp” and “Lakespart2.shp” respectively.Likewise for the rest
of the shapefile the .dbf .fix .prj .shx files will be created with the appropriate suffix.The
new files are in the same directory as the original input shapefile.Figure 1. illustrates the
result of our example.

 Figure 7: The result of the division of the lakes shapefile

Utilizing the geotools library we then acquire the features of the input shapefile and split
them amongst the pieces.So if the shapefile has 300 features and the user decides to split
it to 5 pieces , each piece will end up containing 60 features.The first piece will include the
first 60 features(1-60),the second the next 60 (61-120) and so on.Finally we create the
“paths” array that includes the path of each piece.

A parallel implementation of the tool GeoTriples using Apache Spark

N. Trapalis 28

This concludes the division step of our application.We have successfully split the initial
shapefile into smaller pieces which will be crucial for the steps to follow.

3.2 Mapping

In this step we take advantage of the utilities Apache Spark offers.We use Spark’s
parallelize function passing the “paths” array as an argument, creating an RDD.On this
RDD we perform the Spark map operation.Doing so we are able to manipulate each piece
in parallel , through a function of our own making.

The input for this function is a path from the “paths” array.In the function we use the
GeoTriples tool on the piece(shapefile) that is located in the given path.To be more
specific , at first we invoke the GeoTriples “generate_mapping” function passing the
shapefile path.This function creates a .ttl file which we then pass to the GeoTriples
“dump_rdf” function.This function performs the necessary transformations and returns the
result in the form of a .nt file.This .nt file is the RDF representation of the given
shapefile/piece.Since the function is performed on each piece in parallel we end up with a
lot of .nt files which we need to merge to get the final result.This is achieved through the
Spark reduce function and is described in the next section.

Figure 1. illustrates the result of the mapping stage in the Lakes example we used
beforehand.The .ttl files won’t be used any further but they were vital to the dump_rdf
GeoTriples function.

 Figure 8: Result of mapping stage

3.3 Reduction and final product

The last step of our application involves the forming of the final .nt file that is the RDF
transformation of the original input shapefile.

In the previous step we mapped each part and ended up with many smaller .nt files.Since
order does not matter in RDF files we can utilize the Spark Reduce function.This function
receives as input pairs of .nt files originating from the array that was the Map stage
output.We then append the second file of the pair to the first.That first file is returned and
used as the first file of the next pair as well and so on and so forth.

When the reduction concludes we have successfully merged all the .nt files to a single
one.We then proceed to copy that file to the final one whose name is the initial shapefile
name with the suffix “RDF”.E.g. in our previous example where we used the file
“Lakes.shp” as input the final output would be stored in “LakesRDF.nt”.

A parallel implementation of the tool GeoTriples using Apache Spark

N. Trapalis 29

4.EXPERIMENT EVALUATION

4.1 System specifications

In order to compare our implementation to the original GeoTriples application we ran an
extended series of experiments , using a variety of datasets as input.The specifications of
the system that our program was ran on are the following:
 Table 4: Environment specifications

CPU Intel(R) Core(™) i7-6700K CPU @4.00GHz 4.00 GHz

GPU NVIDIA GeForce GTX 1060 6GB

RAM 16.0 GB

O.S. Windows 8.1

IDE Eclipse

4.2 Datasets

As far as the datasets are concerned , we utilized a plethora of inputs with variations on
size and origination.They are listed below.

● One shapefile with administrative divisions from all over the world.The most generic

dataset that was used with a size of 1.6 Gigabytes.

● Four different shapefiles with administrative divisions from Great Britain.Each one

has an approximate size of 7 Megabytes.

● Four different shapefiles with administrative divisions from Greece.Each one has an

average size of 8 Megabytes.

● Finally 1 shapefile with buildings from Netherlands.The biggest dataset that we

used with a size of 1.8 Gigabytes.

4.3 Results

Utilizing the GeoTriples tool we measured the time it took to transform each shapefile to
RDF.We then repeated the process for our implementation experimenting with the amount
of mappers used.To be more specific each shapefile was tested 3 times for 2,4 and 8
mappers respectively.Extra mappers mean the initial shapefile will be separated into extra
parts before the actual transformation.The tables below illustrate the results.

4.3.1 Administrative divisions World(1 shapefile)

Table 5: Geotriples - administrative divisions World(1.6 GB)

Time (in seconds) 548.415

Table 6: Our implementation - administrative divisions World(1.6 GB)

Mappers 2 4 8

Time (in seconds) 407.025 385.554 417.145

A parallel implementation of the tool GeoTriples using Apache Spark

N. Trapalis 30

4.3.2 Administrative divisions Great Britain(4 shapefiles)

Table 7: Geotriples - administrative divisions Great Britain(7 MB)

Shapefile(#) 0 1 2 3

Time(in seconds) 2.282 2.148 2.152 2.33

 Table 8: Our implementation with 2 mappers - administrative divisions

 Great Britain(7 MB)

Shapefile(#) 0 1 2 3

Time(in seconds) 2.416 2.156 2.065 2.456

 Table 9: Our implementation with 4 mappers - administrative divisions

 Great Britain(7 MB)

Shapefile(#) 0 1 2 3

Time(in seconds) 2.85 2.246 2.184 2.673

 Table 10: Our implementation with 8 mappers - administrative divisions

 Greece(8 MB)

Shapefile(#) 0 1 2 3

Time(in seconds) 3.23 2.677 2.319 2.758

4.3.3 Administrative divisions Greece(4 shapefiles)

 Table 11: Geotriples - administrative divisions Greece(8 MB)

Shapefile(#) 0 1 2 3

Time(in seconds) 2.327 2.418 2.328 4.071

 Table 12: Our implementation with 2 mappers - administrative divisions

 Greece(8 MB)

Shapefile(#) 0 1 2 3

Time(in seconds) 3.246 2.448 2.083 2.847

 Table 13: Our implementation with 4 mappers - administrative divisions

 Greece(8 MB)

Shapefile(#) 0 1 2 3

Time(in seconds) 2.897 2.354 2.032 2.907

 Table 14: Our implementation with 8 mappers - administrative divisions Greece(8 MB)

A parallel implementation of the tool GeoTriples using Apache Spark

N. Trapalis 31

Shapefile(#) 0 1 2 3

Time(in seconds) 3.526 2.291 2.589 3.15

4.3.4 Buildings Netherlands(1 shapefile)

 Table 15: Geotriples - buildings Netherlands(1.8 GB)

Time (in seconds) 11418.635

 Table 16: Our implementation - buildings Netherlands(1.8 GB)

Mappers 8

Time (in seconds) 5827.49

4.3.5 Graph Representation

Figure 9: Bar chart of the experiment results for the Netherlands dataset (1.8 GB)

A parallel implementation of the tool GeoTriples using Apache Spark

N. Trapalis 32

Figure 10: Bar chart of the experiment results for the World dataset (1.6 GB)

Figure 11: Column chart of the experiment results for the small datasets

A parallel implementation of the tool GeoTriples using Apache Spark

N. Trapalis 33

4.3.6 Conclusion of the experimental evaluation

Our experiments show that the implementation we introduced in this thesis works really
well when the input shapefile size is significant, since the overhead time that Apache
SPARK introduces is minor compared to the completion time.

As shown in Figure 11, when the input shapefile size is small there is no benefit in using
mapreduce. That is because the completion time of the program is comparable to the
overhead in mapreduce and the time for preparation of the data. Though we can see that if
we use only two mappers in our implementation, the time results are almost the same with
the original implementation of GeoTriples.

While in small datasets we show that the increase in number of mappers only introduces
overhead, that is not the case in big datasets. In Figure 10, we can see that moving to four
mappers gives us the best results, while increasing the number to eight slows down the
results. Picking the appropriate size for our job can radically change the performance.
Increasing the number of tasks increases the framework overhead, but increases load
balancing and lowers the cost of failures. In this case we see that four mappers offer the
best results.

A parallel implementation of the tool GeoTriples using Apache Spark

N. Trapalis 34

5.CONCLUSION

In this thesis we created a parallel implementation of the GeoTriples tool and ran
experiments comparing our implementation with the original one.The results showcase
that our implementation is especially effective when the input shapefile is of a significant
size(eg. some gigabytes).In that case the time required for the operation to finish is (at
best) half compared to the original Geotriples application.For smaller files GeoTriples
performs better than our implementation.

We look forward to improving our application in the near future , so that it allows different
input formats and displays even better results in terms of time complexity.

A parallel implementation of the tool GeoTriples using Apache Spark

N. Trapalis 35

ABBREVIATIONS - ACRONYMS

DSM Distributed Shared Memory

EO Earth Observation

RDD Resilient Distributed Datasets

RDF Resource Description Framework

URI Uniform Resource Identifier

W3C World Wide Web Consortium

ΕΚΠΑ Εθνικό και Καποδιστριακό Πανεπιστήµιο Αθηνών

A parallel implementation of the tool GeoTriples using Apache Spark

N. Trapalis 36

ANNEX Ι - APPLICATION CODE

public class geotriples

{

 public static class programParametres

 {

 public static Integer cores_num = 4;

 public static Integer defaultPieces = 2;

 public static Integer ramGb = 4;

 public static String getAvailableRam()

 {

 return ramGb.toString() + "g";

 }

 }

 public static void main(String[] args) throws Exception

 {

 SimpleFeatureSource featureSource;

 Integer pieces = null;

 String cores_num = programParametres.cores_num.toString();

 SparkConf conf = new

SparkConf().setAppName("ShapefileRDDTest").setMaster("local[2]")

 .set("spark.executor.cores", cores_num)

 .set("spark.executor.memory",

programParametres.getAvailableRam());

 JavaSparkContext sc = new JavaSparkContext(conf);//open the Spark

connection

 JFrame frame = new JFrame("InputDialog Example #1");

 //User picks in how many pieces he wants the shapefile to be broken if

no input is given a default value is used

 String userPreference = JOptionPane.showInputDialog(frame, "In how many

pieces do you want to break the shapefile?");

 pieces = userPreference != null

 ? Integer.parseInt(userPreference)

 : programParametres.defaultPieces;

 File sourceFile = JFileDataStoreChooser.showOpenFile("shp", null);

 if (sourceFile == null)

 {

 return;

 }

 String saveDirectory = sourceFile.getParent();// the directory of the

file

 saveDirectory=saveDirectory.replace("\\","/");

 String file_name = sourceFile.getName();//the name of the file

 file_name = FilenameUtils.removeExtension(file_name);

 FileDataStore store = FileDataStoreFinder.getDataStore(sourceFile);

 featureSource = store.getFeatureSource();

 //get the features of the given shapefile

 SimpleFeatureCollection featureCollection = featureSource.getFeatures();

 SimpleFeatureType schema = featureSource.getSchema();

A parallel implementation of the tool GeoTriples using Apache Spark

N. Trapalis 37

 Integer remainingFeatures = featureCollection.size() % pieces;//in case

the remainder is not 0 the last piece will get the rest of the features

 Integer attrPerPiece = featureCollection.size() / pieces;//calculate how

many features each piece of the original will get

 List<String> paths = new LinkedList<String>();//the paths of the pieces

 //iteration over each piece, so that each piece gets it's fair of

features from the original shapefile

 long tStart = System.currentTimeMillis();

 for (int currentPiece = 0; currentPiece < pieces; currentPiece++) {

 String brokenFileName = file_name + "part" + currentPiece +

".shp";//creating the new files/pieces by adding partX to the original name

where X Integer

 //System.out.println(brokenFileName);

 paths.add(saveDirectory + "//" + brokenFileName);

 File file = new File(saveDirectory, brokenFileName);

 if (file.equals(sourceFile)) {

 JOptionPane.showMessageDialog(null, "Cannot replace " + file);

 return;

 }

 CoordinateReferenceSystem dataCRS =

schema.getCoordinateReferenceSystem();

 DataStoreFactorySpi factory = new ShapefileDataStoreFactory();

 Map<String, Serializable> create = new HashMap<>();

 create.put("url", file.toURI().toURL());

 create.put("create spatial index", Boolean.TRUE);

 DataStore dataStore = factory.createNewDataStore(create);

 dataStore.createSchema(schema);

 String createdName = dataStore.getTypeNames()[0];

 Transaction transaction = new DefaultTransaction("Reproject");

 try (

 FeatureWriter<SimpleFeatureType, SimpleFeature> writer =

dataStore.getFeatureWriterAppend(createdName,

 transaction);

 SimpleFeatureIterator iterator =

featureCollection.features()

)

 {

 Integer attr_file_start = currentPiece * attrPerPiece; //the

first feature each piece will get

 Integer attr_per_file = (currentPiece == pieces - 1) //how many

features it will get

 ? attrPerPiece + remainingFeatures

 : attrPerPiece;

 IteratorMove(attr_file_start , iterator); //move at the

right position of the file depending on which piece you're at

 WriteGeometryFilebyIterator(iterator , attr_per_file , writer

);//write the features to the piece

 transaction.commit();

 //JOptionPane.showMessageDialog(null, "Export to shapefile

complete");

 }

 catch (Exception problem)

A parallel implementation of the tool GeoTriples using Apache Spark

N. Trapalis 38

 {

 problem.printStackTrace();

 transaction.rollback();

 JOptionPane.showMessageDialog(null, "Export to shapefile

failed");

 }

 finally

 {

 transaction.close();

 }

 }

 HashMap<Integer, String> hashMap = new HashMap<Integer, String>();

 JavaRDD<String> rdd = sc.parallelize(paths);//parallelize on paths

 //use the map function for each piece (each piece represented by it's

path)

 JavaRDD<String> log_values = rdd.map((Function<String,String>) x ->

 {

 String [] parts=x.split(".shp");

 String y=FilenameUtils.removeExtension(x);

 String gen_out=y+"gen.ttl";

 String dump_out=y+"dump.nt";

 //create a new file to use as the output of the generate_mapping

GeoTriples function

 BufferedWriter gen_file =

Files.newBufferedWriter(Paths.get(gen_out),

 StandardCharsets.UTF_8);

 //create a new file to use as the output of the dump_rdf

GeoTriples function

 BufferedWriter dump_file =

Files.newBufferedWriter(Paths.get(dump_out),

 StandardCharsets.UTF_8);

 //arguments for the GeoTriples functions

 String[] my_args= {"generate_mapping","-o",gen_out,"-b",

"http://testdata.gr/",x };

 String[] my_args2= {"dump_rdf","-sh",x,"-o",dump_out,"-b",

"http://testdata.gr/",gen_out};

 List <String> res=new ArrayList<String>() ;

 //initialize the GeoTriples Command line and call the functions

by passing the right arguments

 new GeoTriplesCMD();

 GeoTriplesCMD.main(my_args);

 GeoTriplesCMD.main(my_args2);

 return dump_out;//result RDF for the piece

 });

 //reduce all the RDF pieces into the final one, order does not matter

 String val=log_values.reduce((a,b)->

 {

 //append one RDF to the other and so on for all the pieces

 try {

 BufferedWriter out = new BufferedWriter(new FileWriter(a, true));

 BufferedReader in = new BufferedReader(new FileReader(b));

 String str;

A parallel implementation of the tool GeoTriples using Apache Spark

N. Trapalis 39

 while ((str = in.readLine()) != null) {

 out.write(str);

 out.newLine();

 }

 in.close();

 out.close();

 return a;

 }

 catch (IOException e) {

 //System.out.println(e.getMessage());

 return a;

 }});

 //antigrafoume to teliko arxeio ston teliko proorismo tou me to onoma

tou arxikou shapefile kai suffix RDF

 BufferedWriter final_file =

Files.newBufferedWriter(Paths.get(saveDirectory+"/"+file_name+"RDF.nt"),

 StandardCharsets.UTF_8);

 BufferedReader in = new BufferedReader(new FileReader(val));

 String str;

 while ((str = in.readLine()) != null) {

 final_file.write(str);

 final_file.newLine();

 }

 in.close();

 final_file.close();

 sc.close(); //close the Spark connection

 }

 //Other functions

 //Iterates through a feature collection

 private static void IteratorMove (Integer moveLength ,

SimpleFeatureIterator iterator)

 {

 Integer iteratorInt = 0;

 while ((iterator.hasNext()) && (iteratorInt < moveLength)) {

 iterator.next();

 iteratorInt++;

 }

 }

 //Copies features from one shapefile to another

 private static void WriteGeometryFilebyIterator (SimpleFeatureIterator

iterator , Integer attrPerFile ,

FeatureWriter<SimpleFeatureType, SimpleFeature> writer)

 throws Exception

 {

A parallel implementation of the tool GeoTriples using Apache Spark

N. Trapalis 40

 try

 {

 Integer fileStart = 0;

 while ((iterator.hasNext()) && (fileStart < attrPerFile)) {

 fileStart++;

 SimpleFeature feature = iterator.next();

 SimpleFeature copy = writer.next();

 copy.setAttributes(feature.getAttributes());

 Geometry geometry = (Geometry) feature.getDefaultGeometry();

 copy.setDefaultGeometry(geometry);

 writer.write();

 }

 iterator.close();

 writer.close();

 }

 catch (Exception ex)

 {

 iterator.close();

 writer.close();

 throw new Exception(ex.getMessage());

 }

 }

}

A parallel implementation of the tool GeoTriples using Apache Spark

N. Trapalis 41

REFERENCES

[1] Jamie Fishman, ”What is geospatial data—and why should businesses care about it?,November 23,

2015”;https://blog.westmonroepartners.com/what-is-geospatial-data-and-why-should-businesses-care-
about-it/

[2] Weiming Huang,Ali Mansourian,Lars Harrie, “Geospatial data integration and visualisation using Linked
Data”, AGILE 4th PhD school,At Leeds,UK, April 2018

[3] Kostis Kyzirakos,Ioannis Vlachopoulos,Dimitrianos Savva,Stefan Manegold and Manolis Koubarakis,
“GeoTriples: a Tool for Publishing Geospatial Data as RDF Graphs Using R2RML Mappings”, 6th
International Workshop on the Foundations, Technologies and Applications of the Geospatial Web, in
conjunction with ISWC 2014. Riva del Garda, Trentino, Italy, October 19-23, 2014

[4] Kostis Kyzirakos,Ioannis Vlachopoulos,Dimitrianos Savva,Stefan Manegold and Manolis Koubarakis,
“GeoTriples: a Tool for Publishing Geospatial Data as RDF Graphs Using R2RML Mappings”, In the
Proceedings of the ISWC 2014 Posters & Demonstrations Track, pp 393-396. Riva del Garda, Trentino,
Italy, October 21th, 2014

[5] Ian Pointer, “What is Apache Spark? The big data analytics platform explained”, Nov 13 2017;
https://www.infoworld.com/article/3236869/analytics/what-is-apache-spark-the-big-data-analytics-
platform-explained.html

[6] Abhishek Bhattacharya and Shefali Bhatnagar, Big Data and Apache Spark: A Review, International
Journal of Engineering Research & Science (IJOER), vol. 2, Issue-5 May 2016

[7] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker and Ion Stoica, “Spark: Cluster
Computing with Working Sets”, HotCloud 2010, 2010

[8] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy McCauley,
Michael J. Franklin, Scott Shenker and Ion Stoica, “Resilient Distributed Datasets: A Fault-Tolerant
Abstraction for In-Memory Cluster Computing”, nsdi’12, San Jose, CA, April 25-27, 2012

[9] Berkeley University of California, Introduction to Big Data with Apache Spark, 2015; https://prod-
edxapp.edx-
cdn.org/assets/courseware/v1/5a4e424feeb7b41d68219669833b6000/c4x/BerkeleyX/CS100.1x/asset/W
eek2Lec3.pdf

[10] Tom Heath and Christian Bizer, Linked Data: Evolving the Web Into a Global Data Space, Synthesis
Lectures on the Semantic Web: Theory and Technology, 1:1, 1-136. Morgan & Claypool Publishers,
2011

[11] Christian Bizer,Tom Heath and Tim Berners, “Linked Data - The Story So Far”, 2009;
http://tomheath.com/papers/bizer-heath-berners-lee-ijswis-linked-data.pdf

[12] Arofan Gregory and Mary Vardigan , “The Web of Linked Data: Realizing the Potential for the Social
Sciences”, 2010; http://odaf.org/papers/201010_Gregory_Arofan_186.pdf

[13] Eric Miller, An Introduction to the Resource Description Framework, D-Lib Magazine, May 1998
[14] Richard Cyganiak,David Wood,Markus Lanthaler, RDF Concepts and Abstract Syntax, World Wide Web

Consortium (W3C) recommendation ,25 February 2014;
https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/

[15] Kostis Kyzirakos,Ioannis Vlachopoulos,Dimitrianos Savva,Stefan Manegold and Manolis Koubarakis,
“GeoTriples: Transforming geospatial data into RDF graphs using R2RML and RML mappings”, Journal
of Web Semantics, 11 September 2018;
https://www.sciencedirect.com/science/article/pii/S1570826818300428?dgcid=rss_sd_all

https://blog.westmonroepartners.com/what-is-geospatial-data-and-why-should-businesses-care-about-it/
https://blog.westmonroepartners.com/what-is-geospatial-data-and-why-should-businesses-care-about-it/
https://www.infoworld.com/article/3236869/analytics/what-is-apache-spark-the-big-data-analytics-platform-explained.html
https://www.infoworld.com/article/3236869/analytics/what-is-apache-spark-the-big-data-analytics-platform-explained.html
https://prod-edxapp.edx-cdn.org/assets/courseware/v1/5a4e424feeb7b41d68219669833b6000/c4x/BerkeleyX/CS100.1x/asset/Week2Lec3.pdf
https://prod-edxapp.edx-cdn.org/assets/courseware/v1/5a4e424feeb7b41d68219669833b6000/c4x/BerkeleyX/CS100.1x/asset/Week2Lec3.pdf
https://prod-edxapp.edx-cdn.org/assets/courseware/v1/5a4e424feeb7b41d68219669833b6000/c4x/BerkeleyX/CS100.1x/asset/Week2Lec3.pdf
https://prod-edxapp.edx-cdn.org/assets/courseware/v1/5a4e424feeb7b41d68219669833b6000/c4x/BerkeleyX/CS100.1x/asset/Week2Lec3.pdf
http://tomheath.com/papers/bizer-heath-berners-lee-ijswis-linked-data.pdf
http://odaf.org/papers/201010_Gregory_Arofan_186.pdf
https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
https://www.sciencedirect.com/science/article/pii/S1570826818300428?dgcid=rss_sd_all

