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ABSTRACT

Geospatial data constitutes a considerable part of Semantic Web data, but so far, its
sources lack enough links in the Linked Open Data cloud. Geospatial Interlinking aims to
cover this gap by associating geometries with established topological relations, such as
those of the Dimensionally Extended 9-Intersection Model. Various algorithms have
already been proposed in the literature for this task.
In the context of this master thesis, we develop JedAI-spatial, a novel, open-source
system that organizes the main existing algorithms according to three dimensions:

i. Space Tiling distinguishes interlinking algorithms into grid-, tree- and
partition-based, according to their approach for reducing the search space and,
thus, the computational cost of this inherently quadratic task. The former category
includes Semantic Web techniques that define a static or dynamic EquiGrid and
verify pairs of geometries whose minimum bounding rectangles intersect at least
one common cell. Tree-based algorithms encompass established main-memory
spatial join techniques from the database community, while the partition-based
category includes variations of the cornerstone of computational geometry, i.e., the
plane sweep algorithm.

ii. Budget-awareness distinguishes interlinking algorithms into budget-agnostic and
budget-aware ones. The former constitute batch techniques that produce results
only after completing their processing over the entire input data, while the latter
operate in a pay-as-you-go manner that produces results progressively - their goal
is to verify related geometries before the non-related ones.

iii. Execution mode distinguishes interlinking algorithms into serial ones, which are
carried out using a single CPU-core, and parallel ones, which leverage massive
parallelization on top of Apache Spark.

Extensive experimental evaluations were performed along these 3 dimensions, with the
experimental outcomes providing interesting insights about the relative performance of the
considered algorithms.

SUBJECT AREA: Management of Geospatial Data

KEYWORDS: Geospatial Interlinking, Massive Parallelization, Filter-Verification

Framework



ΠΕΡΙΛΗΨΗ
Τα γεωχωρικά δεδομένα αποτελούν ένα σημαντικό κομμάτι των δεδομένων του
Σημασιολογικού Ιστού (Semantic Web), αλλά μέχρι στιγμής οι πηγές του δεν περιέχουν
αρκετούς συνδέσμους στο Linked Open Data cloud. Η Διασύνδεση Γεωχωρικών
Δεδομένων (Geospatial Interlinking) έχει ως στόχο να καλύψει αυτό το κενό συνδέοντας τις
γεωμετρίες με καθιερωμένες τοπολογικές σχέσεις, όπως αυτές του Dimensionally
Extended 9-Intersection Model. Έχουν προταθεί διάφοροι αλγόριθμοι στη βιβλιογραφία για
την επίλυση αυτού του προβληματος.
Στο πλαίσιο αυτής της διπλωματικής εργασίας, αναπτύσσουμε το JedAI-spatial, ένα
καινοτόμο σύστημα ανοιχτού κώδικα, το οποίο οργανώνει τους κύριους υπάρχοντες
αλγορίθμους σύμφωνα με τρεις διαστάσεις:

i. Το Space Tiling διαφοροποιεί τους αλγόριθμους διασύνδεσης σε αυτούς που
βασίζονται σε πλέγμα (grid-based), δέντρα (tree-based) ή κατατμήσεις
(partition-based), σύμφωνα με την μέθοδο τους για τη μείωση του χώρου
αναζήτησης και συνεπώς της τετραγωνικής πολυπλοκότητας αυτού του
προβλήματος. Η πρώτη κατηγορία περιέχει τεχνικές Σημασιολογικού Ιστού, η
δεύτερη καθιερωμένες τεχνικές για χωρική διασύνδεση (spatial join) στην κύρια
μνήμη από την κοινότητα των βάσεων δεδομένων , ενώ η τρίτη περιλαμβάνει
παραλλαγές του βασικού αλγορίθμου plane-sweep της υπολογιστικής γεωμετρίας.

ii. Το Budget awareness διαχωρίζει τους αλγόριθμους διασύνδεσης σε
budget-agnostic και budget-aware. Οι μέν απαρτίζονται από batch τεχνικές, που
παράγουν αποτελέσματα μόνο μετά την επεξεργασία όλων των δεδομένων, ενώ οι
δε λειτουργούν με έναν προοδευτικό τρόπο που παράγει αποτελέσματα σταδιακά -
ο στόχος τους είναι να επικυρώσουν τις τοπολογικά συσχετιζόμενες γεωμετρίες πριν
από τις μη-συσχετιζόμενες.

iii. Η Μέθοδος Εκτέλεσης διαφοροποιεί τους αλγορίθμους σε σειριακούς, οι οποίοι
εκτελούνται χρησιμοποιώντας ένα πυρήνα (CPU core), και παράλληλους (parallel),
οι οποίοι αξιοποιούν την κατανεμημένη εκτέλεση πάνω στο Apache Spark.

Στα πλαίσια της διπλωματικής πραγματοποιήθηκαν εκτενή πειράματα με τις μεθόδους και
των 3 διαστάσεων, με τα πειραματικά αποτελέσματα να παρέχουν μία ενδιαφέρουσα
εικόνα όσον αφορά τη σχετική απόδοση των αλγορίθμων.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Διαχείριση Γεωχωρικών Δεδομένων

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: Διασύνδεση Γεωχωρικών Δεδομένων, Παραλληλοποίηση, Πλαίσιο

Filter-Verification
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PREFACE

The basis of this research stemmed from the imperative need of an open-source spatial
processing tool for large-scale analysis due to the increased volume of geodata. This tool
needs to be friendly for both experienced engineers and ordinary users, as well as robust
and optimized for the needs of big data processing. Also, it has to address the different
hardware needs of its users by providing both serial and parallel processing. We tackle all
these requirements through one tool, JedAI-spatial.



JedAI-spatial: a system for 3-dimensional Geospatial Interlinking

1. INTRODUCTION

The outbreak of Internet of Things (IoT) devices, smartphones, position tracking
applications and location-based services have skyrocketed the volume of geospatial data.
According to IBM [1], 100TB of weather related data is produced everyday. Uber, an
American company providing transportation services, on May 20, 2017 hit the milestone of
5 billion rides among 76 countries [2]. Platforms such as OpenStreetMap1 provide an open
and editable map of the whole world. For these reasons, geospatial data constitute a
considerable part of Semantic Web data, but so far, its sources lack enough links in the
Linked Open Data cloud [3].
The data science community is stranded in a sea of geospatial data waiting to be
analyzed and processed. A robust and large-scale spatial analysis has been imperative
more than ever. Geospatial Interlinking aims to cover this gap by associating pairs of
geometries with established topological relations, such as those of the Dimensionally
Extended 9-Intersection Model (DE-9IM) [4]. See Figure 1 for an example.

Figure 1. Geospatial Interlinking between LineString g1 which intersects Linestring g3 and touches
Polygon g2 which contains Polygon g4.

Two are the main challenges of this task:
1. its inherently quadratic time complexity, because every pair of geometries has to be

examined, i.e., , where is the number of input geometries. This is known as𝑂(𝑛2) 𝑛
a nested loop join, a brute-force approach, where two given datasets are joined
using two nested loops.

2. the time complexity of examining a single pair of geometries is also high,
, where N is the size of the union set of their boundary points [5].𝑂(𝑁 · 𝑙𝑜𝑔𝑁)

To tame the overall high computational cost, various methods based on the
Filter-Verification have been proposed in the literature [17], [18], [19]; they reduce the time
complexity in favour of space complexity by restricting the search space to pairs of
geometries that are likely to be topologically related according to a geospatial index. This
is known as a nested loop index join.

1 https://www.openstreetmap.org

M. Papamichalopoulos 14
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JedAI-spatial: a system for 3-dimensional Geospatial Interlinking

The continuous advancement in technology and, hence, price dropping in
Random-Access Memory (RAM) modules, gave rise to a plethora of frameworks and
algorithms able to run in main memory. Moreover, on-demand cloud services like Amazon
Web Services (AWS)2 or Microsoft's Azure3 provide reliable hardware for rent and
deployment, which can run as a cluster for spatial processing. Software engineers
leverage this new standard by constructing algorithms able to run on parallel or distributed
environments. For example, Apache Hadoop4 is a distributed, fault-tolerant, map-reduce
framework implemented in Java5, for large scale processing of big data. It is now
considered deprecated, due to its disk-oriented processing, meaning that it continuously
reads and writes from disk, involving a high I/O cost. However, its ecosystem is vast and is
still used by many applications, like for example the Hadoop Distributed File System
(HDFS)6. Its successor, Apache Spark7 [8], improves all of Apache Hadoop’s flaws
introducing the Resilient Distributed Dataset structure (RDD) and operating both in main
memory and disk for faster execution.
Developers, however, are faced with the task of choosing the appropriate execution mode
(serial or parallel) and algorithms for geospatial interlinking, based on their infrastructure,
data size and data types. For example, some algorithms may be more optimal for
polylines than polygons. For some other cases where the volume of spatial data is not that
large, a serial experiment would outweigh the effort to set up and tune an Apache Spark
cluster, a task which can be time consuming. Also, Spark’s leader election for every job
may impose a noteworthy overhead for smaller datasets according to [20]. To assist
developers and practitioners in the processing of geospatial data, we conduct thorough
evaluation experiments that show the limitations and fortes of each method.

Figure 2. The solution space of Geospatial Interlinking algo-rithms that can be constructed by
JedAI-spatial.

7 https://spark.apache.org/
6 https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
5 https://www.java.com/en/
4 https://hadoop.apache.org/
3 https://azure.microsoft.com/en-us/
2 https://aws.amazon.com/
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JedAI-spatial: a system for 3-dimensional Geospatial Interlinking

In the context of this master thesis, we develop JedAI-spatial, a novel, open-source
system that organizes existing spatial join algorithms according to three dimensions, as
shown in Figure 2:

1) Space Tiling distinguishes interlinking algorithms into grid-, tree- and
partition-based, according to their approach for reducing the search space and,
thus, the computational cost of this inherently quadratic task. The former category
includes Semantic Web techniques that define a static or dynamic EquiGrid and
verify pairs of geometries whose minimum bounding rectangles intersect at least
one common cell. The tree-based category encompasses established
main-memory spatial join techniques from the database community, while the
partition-based category includes variations of the plane sweep algorithm, a
cornerstone of computational geometry.

2) Budget-awareness distinguishes interlinking algorithms into budget-agnostic and
budget-aware ones. The former constitute batch techniques that produce results
only after completing their processing, while the latter operate in a pay-as-you-go
manner that produces results progressively - their goal is to verify the topologically
related geometries before the non-related ones.

3) Execution mode distinguishes interlinking algorithms into serial ones, which are
carried out on a single CPU-core, and parallel ones, which leverage massive
parallelization on top of Apache Spark.

Overall, the contributions of this thesis are the following:
● We describe the three-dimensional categorization of JedAI-spatial, explaining the

role of every sub-category so as to facilitate the use of its methods as well as its
extension with more methods in the future.

● We outline the functionality of every supported method, highlighting our
improvements that lead to significantly higher time efficiency.

● We perform a qualitative analysis of the supported methods, identifying the most
suitable use cases per method.

● We perform a quantitative analysis of the supported methods through extensive
experiments over large, real-world datasets. The empirical results provide useful
insights into the pros and cons of every method.

● We have publicly released the code of our system8 (in Java and Scala9) so that it
acts as a library for the state-of-the-art algorithms for Geospatial Interlinking. Our
implementation conveys improvements for each method we support, which we will
discuss in more detail in the following chapters.

The rest of the thesis is structured as follows:
● Chapter 2 (Background Knowledge) presents the preliminaries for the thorough

understanding of the thesis.
● Chapter 3 (Serial Implementations) delves into the famous algorithms for spatial

joins  that run on a single CPU core.
● Chapter 4 (Parallel Implementations) describes the Apache Spark-based

algorithms that run in parallel on a cluster.
● Chapter 5 (Experimental Results) discusses the experimental results of the

previous two sections applied on six massive real world datasets.
● Chapter 6 (Conclusions and Future Work) concludes the research conducted and

provides some useful future additions to the system.

9 https://www.scala-lang.org/
8 https://github.com/GeoLinker/GeoLinker

M. Papamichalopoulos 16
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JedAI-spatial: a system for 3-dimensional Geospatial Interlinking

2. BACKGROUND KNOWLEDGE

JedAI-spatial supports geometries that consist of interior, boundary and exterior (i.e., all
points that are not part of the interior or the boundary). These are distinguished into two
main types [18]:

● LineStrings which constitute one-dimensional geometries formed by a sequence of
points and the line segments that connect consecutive points (e.g., geometries g1
and g3 in Figure 1), and

● Polygons, which in the simple case are two-dimensional geometries formed by a
sequence of points where the first one coincides with the last one (e.g., geometries
g2 and g4 in Figure 1).

The implementations in both serial and parallel processing follow three common steps:
1. Preprocessing Phase, where the source and target data are read and prepared

for the subsequent phases.
2. Filtering Phase, which filters out the source and target geometries whose MBRs

do not intersect. The rest of the geometry pairs are called candidate pairs.
3. Verification Phase, which computes the topological relations of the candidate

pairs.
JedAI-spatial supports spatial join operations conforming to the Dimensionally Extended
9-Intersection Model (DE-9IM) [4] or Clementini Matrix, which shows the spatial relations
between two 2D-objects based on their interior (I), boundary (B) and exterior (E). DE-9IM
is an extension of the Nine-Intersection Model (9IM) or Egenhofer-Matrix considering the
dimension type of the intersection. 9IM enhanced the Four-Intersection Model (4IM),
which only considered boundary and exterior, by adding the interior. DE-9IM can be used
to answer queries such as “Find the countries that touch Greece” or “Which cities does the
Attica region contain?”.
A topological relation is described using a 3x3 intersection matrix between the interiors,
exteriors and boundaries of the two geometries, where denotes the dimension and𝑑𝑖𝑚 ∩
the intersection:

The DE-9IM has been standardized by the Open Geospatial Consortium (OGC). It
provides ten topological predicates:

1. the geometries’ interiors are identical and the boundary and exterior𝐸𝑞𝑢𝑎𝑙𝑠(𝐴,  𝐵):
of intersect neither with the boundary nor with the exterior of .𝐴 𝐵

2. the geometries have no point in common, meaning the interior and𝐷𝑖𝑠𝑗𝑜𝑖𝑛𝑡(𝐴,  𝐵):
boundary of intersect neither with the interior nor with the boundary of . The𝐴 𝐵
opposite of is the predicate.𝑑𝑖𝑠𝑗𝑜𝑖𝑛𝑡 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑠

3. the geometries have at least a point in common, thus their𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑠(𝐴,  𝐵):
interiors or boundaries are not disjoint.

4. the geometries’ boundaries intersect but their interiors do not.𝑇𝑜𝑢𝑐ℎ𝑒𝑠(𝐴,  𝐵):
5. geometries and have some interior points in common but not𝐶𝑟𝑜𝑠𝑠𝑒𝑠(𝐴,  𝐵): 𝐴 𝐵

all, while or , where amounts to 0, 1 or𝑑𝑖𝑚(𝐴) < 𝑑𝑖𝑚(𝐵) 𝑑𝑖𝑚(𝐵) < 𝑑𝑖𝑚(𝐴) 𝑑𝑖𝑚(𝑔)
2 if geometry is a point, a line segment or an area, respectively.𝑔

6. geometries and have some points in common but not all, while𝑂𝑣𝑒𝑟𝑙𝑎𝑝𝑠(𝐴,  𝐵): 𝐴 𝐵
.𝑑𝑖𝑚(𝐴) = 𝑑𝑖𝑚(𝐵)

M. Papamichalopoulos 17
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7. geometry exists inside the interior of geometry and no points of𝑊𝑖𝑡ℎ𝑖𝑛(𝐴,  𝐵): 𝐴 𝐵 𝐴
lie in the exterior of .𝐵

8. geometry is within .𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑠(𝐴,  𝐵): 𝐵 𝐴
9. every point in geometry lies in the interior or boundary of and no𝐶𝑜𝑣𝑒𝑟𝑠(𝐴,  𝐵): 𝐵 𝐴

point of lies in the exterior of .𝐵 𝐴
10. geometry covers geometry .𝐶𝑜𝑣𝑒𝑟𝑒𝑑𝐵𝑦(𝐴,  𝐵): 𝐵 𝐴

Figure 3. Dimensionally Extended 9-Intersection Model Topological Relations.

The intersection matrix of the preceding predicates is depicted in Figure 3 and Figure 4.
Each predicate is a boolean representation of the intersection matrix, where each cell may
be , and any (*). denotes the empty set and corresponds to the𝑇𝑟𝑢𝑒 (𝑇) 𝐹𝑎𝑙𝑠𝑒 (𝐹) 𝐹 𝑇
dimension of the intersection (i.e., , as explained above).𝑇 ↔  𝑑𝑖𝑚(𝐴,  𝐵) ϵ {0,  1,  2}
DE-9IM is used in state-of-the-art spatial databases such as PostGIS10, Oracle Spatial11

and in popular libraries like the Java Topology Suite (JTS)12.

12 https://github.com/locationtech/jts
11 https://www.oracle.com/database/spatial/
10 https://postgis.net/
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Figure 4. Dimensionally Extended 9-Intersection Model Spatial Predicates.

Note, though, that JedAI-spatial disregards the relation , because it provides no𝑑𝑖𝑠𝑗𝑜𝑖𝑛𝑡
positive information for the relative location of two geometries and because it is not
practical to compute it in the case of large input data. The reason is that the vast majority
of pairs pertain to this relation, which thus scales quadratically with the input size. Yet,
JedAI-spatial is based on a closed-world assumption: the lack of the relation 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑠
between two geometries implies that they satisfy the relation .𝑑𝑖𝑠𝑗𝑜𝑖𝑛𝑡

In this context, Geospatial Interlinking can be formally defined as follows [18]:

Given a source dataset , a target one , and the set of DE9IM topological relations𝑆 𝑇 𝑅
(excluding ), derive the set of links from the𝑑𝑖𝑠𝑗𝑜𝑖𝑛𝑡 𝐿

𝑅
=  {(𝑠, 𝑟, 𝑡) ⊆  𝑆 𝑥 𝑇 𝑥 𝑅:  𝑟(𝑠, 𝑡)}

Intersection Matrix of all geometry pairs.
In the preprocessing process, JedAI-spatial expects the format of its geometries in Well
Known Text (WKT), another OGC standard, which represents spatial data in a text form.
In Figure 5, there are some examples of geometries encoded in WKT.

Figure 5. Well Known Text examples.

JedAI-spatial supports a wide variety of formats, both structured and semi-structured, that
store geometries in WKT: Comma-Separated Values (CSV), Tab-Separated Values (TSV),
GeoJSON, Resource Description Framework (RDF) and JsonRDF file formats.
Apparently, finding the spatial predicates between geometries can be a tough task,
especially between MULTIPOLYGONS and MULTILINESTRINGS. A small, but complex
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island or lake may need hundreds or thousands of vertices, let alone a country like Greece
which consists of hundreds of islands and has a vast coastline. In order to simplify the
filtering process, all the geometries are approximated and bounded by the smallest
rectangle which completely contains them, called Minimum Bounding Rectangle (MBR)
[28]. MBRs are a classic technique used in R-Trees and other spatial indexes. JTS library
has integrated MBR inside the Geometry Object, which lies at the core of JedAI-spatial.
JedAI-spatial also employs a state-of-the-art technique for faster filtering, the Reference
Point Method (RPM) [9]. In the preprocessing stage, each geometry may end up in more
than one tile or data partition. As a result, the same pair of geometries might be
encountered multiple times. To avoid repeating their verification, in the filtering phase, a
pair of geometries is added to the set of candidate pairs if their reference point lies𝑟𝑓
within the tile/partition that is currently processed. More formally, the reference point 𝑟𝑓 
between two geometries, and , is defined as:𝑠 𝑡

𝑟𝑓 =  (𝑚𝑎𝑥(𝑠. 𝑥
𝑚𝑖𝑛

,   𝑡. 𝑥
𝑚𝑖𝑛

),  𝑚𝑖𝑛(𝑠. 𝑦
𝑚𝑎𝑥

,   𝑡. 𝑦
𝑚𝑎𝑥

))

Example 1: The following two geometries, a linestring (blue) and a polygon (red), have
been placed in four tiles or partitions that intersect their MBRs. Bear in mind that each
tile/partition typically constitutes an independent processing unit. To avoid verifying their
relations more than once, each tile/partition calculates the reference point of the
geometries and adds them to the set of candidate pairs if and only if the reference point
lies within the extent of the tile/partition that is currently processed. In Figure 6, the
reference point is located inside tile/partition and, thus, only this partition verifies the𝑃0
pair, whereas the rest do not.

Figure 6. Reference Point Method.
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3. SERIAL IMPLEMENTATIONS

This section comprises established sequential, spatial join algorithms which run in main
memory based on the analysis by Sowell et al. [6]. In this work, each experiment consists
of steps called ticks. Ticks are primarily used for simulations on moving data that have two
phases: (i) a query phase, which performs spatial queries, and (ii) an update phase, which
conducts updates in the data, like a change in velocity, in order to continue to the next tick.
The spatial join techniques are partitioned into four categories depending on the indexing
approach (Static or Moving points) and on the join approach (Index Nested Loops or
Specialized):

● Static Index: an index is built over static points at the beginning of the experiment
and is not destroyed or updated by new geometries in other ticks.

● Moving Index: an index which accommodates moving points preserving their
velocity and is updated when a point’s velocity changes.

● Nested Loop Join: a spatial join approach which queries each target geometry on
the spatial index.

● Specialized: the techniques that cannot be classified as nested loop join
techniques, since they use a more sophisticated spatial join method.

JedAI-Spatial pertains to static data and employs most of the algorithms implemented in
[6], namely: Plane Sweep [10], Partitioned Based Spatial-Merge Join (PBSM) [11], R-Tree
[12], CR-Tree [13].
Additional established algorithms have been implemented: Strip Sweep and Strip STR
Sweep, Quad Tree [14], based on the implementation by the JTS library, as well as
RADON [17] and GIA.nt [18] along with their static variants.
Following is a table organizing the algorithms implemented by JedAI-spatial in two
categories, according to their join approach:

Table 1. Serial Implementations categorized by  their spatial join approach.

Nested Loop Join Specialized

R-Tree, CR-Tree, Quad Tree, RADON,
Static RADON, GIA.nt, Static GIA.nt

Plane Sweep, Strip Sweep, Strip STR
Sweep, PBSM

All the algorithms have been implemented in Java, which allows JedAI-spatial to be
integrated into a web application or a Maven13/Gradle14 dependency so that novice
practitioners can run experiments without any programming background and software
engineers can use it as a dependency in their own projects.
In the following, we delve into the Filtering step of the serialized algorithms, as they all
share the same Preprocessing and Verification step. The latter is based on JTS’s method
relate, which receives as input a pair of geometries and returns as output their
Intersection Matrix through an optimized implementation.

3.1. Plane Sweep

The Plane sweep(sweepline) algorithms [10] have been prevalent regarding spatial joins.
In general, such algorithms sort the geometries in ascending order of their lower boundary
on the or axis and then move a vertical or horizontal sweepline across the space.𝑥 𝑦

14 https://gradle.org/
13 https://maven.apache.org/
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Plane-sweeping variants utilize a dynamic data structure, called sweep structure, in order
to save the active geometries, whose MBR intersects the sweepline in its current position.
As a rule, the memory overhead of such methods includes only the space of the sweep
structure, which never overcomes the size , an observation known as the𝑂( 𝑁)
square-root rule in the literature [15]. In more detail, given a dataset containing real-life𝑁 
rectangles, the ones intersected by the sweepline at any given moment, are at most

.𝑂( 𝑁)

Plane sweeping algorithms are usually treated as building blocks for more sophisticated
methods like the Scalable Sweeping-Based Spatial Join (SSSJ) [10] and Partition Based
Spatial-Merge (PBSM) [11]. The overall performance of these methods is greatly
influenced by the corresponding plane sweeping algorithm that acts as an internal
procedure.
Arge et al. [10] present variants of the Generic Plane Sweep and Forward Plane Sweep
algorithms depending on their sweep structures. JedAI-Spatial employs two of those
variants, the Algorithm List_Sweep and Algorithm Striped_Sweep.

3.1.1. Algorithm List_Sweep

Algorithm List_Sweep is initialized using two linked-list sweep structures, one for each
input dataset, in order to save the active geometries in main memory. Both datasets are
sorted on their lower boundary of the x-axis using quick-sort. The following methods are
used:

● Insert: inserts a geometry into the linked list.
● Delete: deletes the expired geometries from the list. Expired are the geometries

whose is less than the given as a parameter to the function.𝑥
𝑚𝑎𝑥

𝑥
𝑚𝑖𝑛

● Query: finds the intersection between the geometry given as a parameter and the
geometries of the list.

● Remove: removes the geometry completely from the starting set so that the loop
can continue. In the actual code, the geometry counter is increased by one,
because the geometries are saved in an array data structure.

Figure 7. Algorithm List_Sweep.
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The general idea is to find the intersections between the MBRs of the source and target
geometries that are intersected by the same sweepline. To be more precise, to find the
intersections between rectangles whose is ahead of the sweepline.𝑥

𝑚𝑎𝑥

Example 2. The algorithm provided in Figure 7 is illustrated in Figure 8. The list for the
source and target geometries are and , respectively. Initially, the sweepline𝐿𝑠 𝐿𝑡
encounters the MBR of geometry , appends to list and continues with the next𝑎 𝑎 𝐿𝑠
iteration since is empty. Then, the sweepline comes across ’s MBR. It appends to𝐿𝑡 𝑐 𝑐 𝐿𝑡
and checks if its MBR intersects with that of . It does not, so it proceeds with the next𝑎
iteration. In the third iteration, the sweepline encounters geometry . It appends it to list𝑏 𝐿𝑠
and removes the expired geometries from list . Since , is removed from𝐿𝑡 𝑐. 𝑥

𝑚𝑎𝑥
< 𝑏. 𝑥

𝑚𝑖𝑛
𝑐

the list, which remains empty. At the fourth and last iteration, the sweepline reaches the
target geometry , which is inserted into list . All expired geometries are removed from𝑑 𝐿𝑡

, hence is removed. The one left is the source geometry , which is checked if it𝐿𝑠 𝑎 𝑏
intersects with . Since their MBRs intersect, their DE-9IM relations are verified by𝑐
computing their Intersection Matrix.

Figure 8. Algorithm List_Sweep Visually.

3.1.2. Algorithm Striped_Sweep

This algorithm is an extension of the Algorithm List_Sweep. Rather than having one List
structure, the datasets are divided into equal-width strips, where each strip uses one𝑛
List-Sweep Structure.
The length of each strip is key to the performance of the technique. In [10], the length of
the strips was calculated experimentally. However, in JedAI-spatial, each strip’s width is
equal to the average width of the source geometries ( ). This does not require𝑡ℎ𝑒𝑡𝑎𝑋
experimenting in order to find the optimal width, which changes from dataset to dataset,
and dwindles worst case scenarios, such as when a geometry expands to a large number
of strips imposing a lot of overhead in the verification process. Our approach provides a
much safer and robust configuration, as verified by preliminary experiments.
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Figure 9. Algorithm Striped_Sweep.

In the algorithm above, the Insert, Delete and Query methods are modified to call
the underlying List Sweep methods on the strips that the geometry is probed. For
example, if there are 16 strips and the geometry spans from the 1st strip to the 3rd one,
then an insert would be invoked on the List Sweep structures 0-2.
In the code repository, for both variants of the Plane Sweep algorithm, only one List
Sweep and Strip Sweep structure is used for better memory performance.

3.2. Partitioned Based Spatial-Merge Join (PBSM)

This algorithm [11] splits the given geometries into a manually defined number of
orthogonal partitions and applies Plane Sweep inside every partition. Filtering defines the
partitions, assigns every geometry to all partitions that intersect its MBR and sorts all
geometries per partition in ascending . Verification goes through the partitions and in𝑥

𝑚𝑖𝑛
each of them, it sweeps a horizontal line , computing the Intersection Matrix for each pair𝑙
of geometries that simultaneously intersect and overlap on the y-axis. To avoid repeated𝑙
verifications of the same geometry pairs across different partitions, it uses the reference
point technique, verifying every candidate pair only in the partition that contains the top left
corner of their intersection (see Figure 6).
Similar to Plane Sweep, JedAI-spatial combines PBSM with a List Sweep or with a Striped
Sweep data structure.
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3.3. Strip Sweep

This algorithm is a custom implementation inspired by the Algorithm Striped_Sweep. It
calculates the number of strips in an identical way (i.e., average width of the source
geometries), but avoids sorting both datasets on their lower boundary of x-axis. The
reason is that Strip Sweep indexes only the source dataset, dividing it into strips, and then
probes each target geometry on the corresponding strips. The target geometries are read
from the disk, one by one, thus minimizing the memory requirements. As a result, Strip
Sweep is able to process much larger datasets than Plane Sweep using the same
infrastructure.
In more detail, the Strip Sweep algorithm works as follows:

Figure 10. Strip Sweep Algorithm.

Example 3. The functionality of the above algorithm is depicted in the following figures.
Firstly, the source dataset is indexed in equal width strips as seen in Figure 11. Then each
geometry in the target dataset is read and mapped to the appropriate strips, as shown in
Figure 12. All geometries within those strips are considered as candidates and are verified
if their MBRs intersect, in Figure 13 and in Figure 14, respectively.
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Figure 11. Strip Sweep: Partitioning the source dataset in strips.

Figure 12. Strip Sweep: Find the strips intersecting the MBR of the target geometry.
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Figure 13. Strip Sweep: Add all the source geometries from the strips into the set of candidates.

Figure 14. Strip Sweep: Verify the candidate geometries that have intersecting MBRs.
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3.4. Strip Sort-Tile-Recursive (STR) Sweep

Considering all the geometries within the strip as candidates, imposes a significant
amount of overhead. Taking into account a scenario, where a target geometry expands to
half the strips, about half the geometries of the source dataset are regarded as
candidates. This is better than using a cartesian join between the source and the target
dataset, but still involves many irrelevant candidate geometries. Hence, instead of saving
the geometries of each strip in a hashmap, we introduce an STR-Tree, which allows for
low access time: probing into an STR-Tree has an average search complexity of

where is the number of entries of each node. Depending on the dataset, such𝑂(𝑙𝑜𝑔
𝑀

𝑛), 𝑀
a tree can result in very fast filtering time, almost , if its height is very small. This is𝑂(1)
the case with our implementation, which maintains a separate STR-Tree for each strip.
The STR-Tree implementation is provided by JTS and it is an R-Tree packing method
based on the approach by Leutenegger et al. [16].
As mentioned, the only difference between Strip Sweep and Strip STR Sweep is the way
the geometries are filtered: instead of considering all source geometries in the intersecting
strips as candidates, this algorithm filters out those not overlapping with the target
geometry on the vertical axis. This approach is illustrated in the following figures: after
indexing the source geometries in Figure 15, the rest of the process is the same, as seen
in Figure 16, Figure 17 and Figure 18, except that Figure 17 considers the y-axis to filter
out the irrelevant source geometries.

Figure 15. Strip STR Sweep: Partitioning the source dataset in strips indexed with an STR-Tree.
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Figure 16. Strip STR Sweep: Find the strips intersecting the MBR of the target geometry.

Figure 17. Strip STR Sweep: Filter the candidates in each strip using the respective STR-Tree.
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Figure 18. Strip STR Sweep: Verify the candidate geometries that have intersecting  MBRs.

3.5. R-Tree Join

One of the most important spatial indexes is the R-Tree [12]. R-Tree was introduced by
Antonin Guttman as a dynamic mechanism to index and retrieve spatial entities in a
geodata database. It belongs to the family of height-balancing trees like the B-Tree. It is
widely used in spatial databases, where each leaf node points to records on the disk.
Non-leaf nodes contain pointers to child nodes and an MBR that encloses the span of all
the MBRs in the child nodes.

The basic idea of the R-Tree is to recursively cluster geometries using an MBR to𝑀
envelope the area they expand. When inserting a new record to the spatial index, the
record starts from the root and recursively chooses the subtree whose envelope needs the
least expansion to include it, until it finds a leaf node with available space. In case it is
added to a full leaf of entries, the node needs to be split into two leaf nodes that contain𝑀

entries, in total. In the event of two leaf nodes not being able to fit in their parent𝑀 + 1
node after the split, this operation may be propagated to their parent nodes resulting in an
overall expansion,
Guttman provides two algorithms for splitting a node, a Quadratic-Cost Algorithm and a
Linear-Cost Algorithm. JedAI-spatial uses the former one, where it picks the two largest
geometries in order to initialize the two new nodes created after the split. Then, it assigns
each remaining geometry to the node whose MBR expands the least after the insertion.
On average, the searching process for a particular record on the R-Tree has a complexity
of where is the maximum number of entries that fit in one node (i.e., node𝑂(𝑙𝑜𝑔

𝑀
𝑛), 𝑀

utilization). Starting from the root, a target MBR is following recursively the children
sub-trees which intersect its MBR until the leaf nodes are reached. The disk accesses for
this task, are equal to the height of the tree plus one for retrieving the leaf records from the
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disk, hence . The smaller the height of the tree, the lower the disk access𝑂(𝑙𝑜𝑔(ℎ + 1))
times.
Example 4. A simple R-Tree is illustrated in Figure 19 along with its memory
representation in Figure 20.

Figure 19. An example of R-Tree space indexing.

Figure 20. The R-Tree data structure.

JedAI-Spatial utilizes the R-Tree in order to index only the source dataset, so as to
minimize the memory requirements. In the filtering step, each target geometry, which is
read from the disk on the fly, is queried on the R-Tree Spatial Index to locate all possible
candidates. These candidates are thereupon verified as long as their MBRs intersect with
the target geometry’s MBR.
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Figure 21. R-Tree Spatial Join Algorithm.

Example 5. This algorithm is illustrated step-by-step in Figure 22 - Figure 25. Firstly, the
source dataset is indexed using the R-Tree as a spatial index (Figure 22). Then, the
current target geometry is queried on the R-Tree in Figure 23. All the leaf nodes whose
parent’s MBR intersects with that of the target geometry are regarded as candidates
(Figure 24). Finally, the MBRs of all candidate source geometries are checked to ensure
that they intersect with the MBR of the target geometry. If they are, their relations are
verified (Figure 25).

Figure 22. R-Tree: Indexing the source dataset.
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Figure 23. R-Tree:  Find the nodes the target geometry resides in.

Figure 24. R-Tree: Each geometry belonging to the selected nodes is a candidate.
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Figure 25. R-Tree: Ensure that for each source candidate, its MBR intersects with the MBR of the
target geometry.

3.6. Cache-Conscious R-Tree (CR-Tree) Join

Technology is becoming prevalent and commercial, resulting in continuing price dropping
and an overall growth in specifications of tech related gear. Thus, memory is not only
getting cheaper but also faster and larger.
Cache-Conscious R-Tree (CR-Tree) introduced by [13] aims to leverage the L1 and L2
cache memory so as to have faster access times. Its basic operations (insert, search,
delete) are identical with that of R-Tree; the only difference is that a new technique is
proposed for reducing the size of MBRs and hence, cache-misses, called Quantized
Relative Representation of MBR (QRMBR). This technique is the result of transforming
the children's MBRs based on their parent’s MBR relative position, known as Relative
MBR (RMBR). This process is illustrated in Figure 26.

The QRMBR technique is based on the following formula, where is the original MBR,𝐶 𝑙
the quantization level and the reference MBR:𝐼 
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Example 6. Taking , its RMBR’s lower left corner is and top right corner .𝑅
1

(3,  7) (10,  15)
This results from subtracting ’s original lower left corner with the lower𝑅

1
(43153,  27087)

left corner of , . The same applies to their top right corners. For a𝑅
0

(43150,  27080)
QRMBR with a quantization level of , using the above formula, ’s envelope is𝑙 = 16 𝑅

1
defined as: .𝑄𝑅𝑀𝐵𝑅

1
=  (𝑥𝑚𝑖𝑛,  𝑦𝑚𝑖𝑛,  𝑥𝑚𝑎𝑥,  𝑦𝑚𝑎𝑥) =  (1. 5,  3,  5,  7. 5) = (1, 3, 5, 8)

Figure 26. The QRMBR method.

This approach significantly compresses the size of the MBRs which take up most of the
space of an R-Tree structure. According to the authors, a CR-Tree is wider and smaller
compared to an R-Tree, increasing the performance and occupying about 60% less
memory. The overall overhead of compressing the MBRs is less than the overhead
inflicted by cache-misses.
The algorithm is similar to the one in R-Tree Spatial Join in Figure 21, with the only
difference that the spatial index used is the CR-Tree.

3.7. Quad Tree Join

The last spatial join sequential method implemented under the scope of this thesis is the
Quad Tree Spatial Join. Quad Tree [14] is another state-of-the-art spatial index for storing
and retrieving geodata. It is regarded as an enhanced version of a binary tree specialized
to care for 2-dimensional data. Each node’s out-degree is equal to four, meaning it can
have up to four children. As a result, the children of a node divide the space into four
quadrants: NorthEast (NE), NorthWest (NW), SouthEast (SE) and SouthWest (SW). See
Figure 27 for an example. The insertion complexity is , where n the data size.𝑂(𝑙𝑜𝑔𝑛)
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The Quad Tree implementation used for the spatial indexing in the experiments is the one
by JTS. Every cell has a maximum capacity . When is reached, the corresponding cell𝑀 𝑀
is split into four new ones, its children. The insertion algorithm is similar to binary trees.
When inserting a new entry in the spatial index, starting from the root, the geometry
recursively chooses the quadrant/subtree which covers its MBR, until it reaches a leaf
node, whereby it is saved.

Figure 27. The division of space using a Quad Tree. Starting from root A, the space is divided into
four quadrants B, C, D and E. Each quadrant now can be divided even further to another four

quadrants.

The Quad Tree Spatial Join algorithm is a lot similar to the previous tree-based algorithms,
the R-Tree and CR-Tree Spatial Join. The source dataset is indexed using a Quad Tree
and every geometry of the target dataset is probed on the Quad Tree. The whole process
is outlined in Figure 21.

3.8. Grid-based Algorithms

They index the input geometries by dividing the Earth's surface into cells of the same
dimensions. The index is called EquiGrid and its cells tiles. Every geometry is placed into
the tiles that intersect its MBR. JedAI-spatial conveys 4 state-of-the-art algorithms of this
type, which differ in the definition and use of the EquiGrid during Filtering and Verification.
RADON [17]. Filtering loads both input datasets into main memory and defines an
EquiGrid index by setting the horizontal and vertical dimensions of its tiles equal to the
average across all geometries in and . Every geometry is placed in every tile that𝑆 𝑇
intersects its MBR. Verification computes the Intersection Matrix for all candidate pairs
[29], taking special care to avoid the ones repeated across different tiles of the EquiGrid.
GIA.nt [18]. Filtering loads into main memory only the source dataset, i.e., the smallest
one in terms of the number of geometries. The granularity of the EquiGrid index is
determined by the average dimensions of the source geometries. Verification reads the
target geometries from the disk, one by one; for each , it gathers the set of candidate𝑡 ϵ 𝑇
source geometries, i.e., the ones whose MBR intersects the same tiles as the MBR of 𝑡
and computes the corresponding Intersection Matrix, adding the detected links to output .𝐿
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Static variants. Unlike the dynamic EquiGrid of the above algorithms, whose granularity
depends on the input data, Silk-spatial [19] employs a static EquiGrid, whose granularity is
predetermined, independently of the input characteristics. Even though the resulting index
might be too fine- or coarse-grained for the input datasets, this approach is based on the
idea that the resulting candidate pairs are eventually reduced by the requirement for
intersecting MBRs. To put this approach into practice, JedAI-spatial includes Static
RADON and Static GIA.nt, where the index granularity is manually defined.
Implementation improvements. RADON's implementation is publicly available through
LIMES15. However, we re-implemented it in JedAI-spatial so as to significantly improve its
performance. First, we reduce the run-time of Filtering by skipping the swapping strategy,
which is used to identify the input dataset with the smallest overall volume. This has no
impact on its functionality, given that the index granularity considers both input datasets.
Second, we reduce RADON's memory footprint to a significant extent. Instead of the
hashmap that stores all verified pairs in main memory to avoid verifying the same
candidate pairs more than once, we use the reference point technique [9], verifying every
candidate pair only in the tile that contains the top left corner of their intersection (see
Figure 6). Moreover, unlike the original implementation, which refers to all references by
their URL (of type String), we use ids for this purpose (of type int). We also use the
data structures provided by the GNU Trove library16, which work with primitive data types
(e.g., the 4-bytes int instead of the 16-bytes Integer).

For GIA.nt, we use the open-source implementation17 provided by the authors of [18],
which already involves the memory footprint optimizations discussed above.

3.9 Budget-aware Algorithms

As explained above, these algorithms operate in a pay-as-you-go manner that aims to
process as many related geometry pairs as possible within the limited available resources.
These progressive algorithms receive as input the source and target datasets, & , as𝑆 𝑇
well as a budget BU, which specifies the maximum number of verifications that will be
carried out. Their goal is to maximize the number of related geometry pairs that are
detected after consuming the available budget. To this end, they follow the three-step
framework in Figure 28. Filtering is identical with that of batch methods, producing a set of
candidate pairs . Scheduling first refines by discarding the pairs with non-overlapping𝐶 𝐶
MBRs. Then, it defines the processing order of the remaining pairs in a way that places
the likely related ones before the unlikely ones. The new set of candidate pairs is𝐶'
forwarded to Verification, which carries out their processing and returns the set of detected
links, .𝐿

Figure 28. Three-step framework.

The gist of budget-aware algorithms is the combination of Scheduling with Filtering, as
Verification is common to all algorithms. Based on the co-occurrence patterns of Filtering,
Scheduling assigns a score to every valid pair of candidates, i.e., candidates with
intersecting MBRs. The higher this score is, the more likely the constituent geometries are

17 https://github.com/giantInterlinking/prGIAnt
16 http://trove4j.sourceforge.net/html/overview.html
15 https://github.com/dice-group/LIMES
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to satisfy at least one topological relation. JedAI-spatial offers the following weighting
schemes:

1. Co-occurrence Frequency (CF) measures how many tiles intersect both the MBR of
the source and the target geometry.

2. Jaccard Similarity (JS) normalizes (CF) by the number of tiles intersecting each
geometry.

3. Pearson's test extends CF by assessing whether the given geometries appear𝑥2

independently in the set of tiles.
4. Minimum Bounding Rectangle Overlap (MBRO) returns the normalized overlap of

the MBRs of the two geometries.
5. Inverse Sum of Points (ISP) amounts to the inverse sum of boundary points in the

two geometries, thus promoting the simpler candidate pairs.
Below, we explain how these weighting schemes are leveraged by each progressive
algorithm.
Progressive GIA.nt [18]. It applies the same Filtering as its budget-agnostic counterpart
and, then, its Scheduling retains the top-BU weighted valid candidate pairs.
Progressive RADON [18]. It applies RADON's Filtering and defines the processing order
of the resulting tiles by sorting them in increasing or decreasing number of candidate
pairs. Inside every tile, it identifies the non-redundant candidate pairs using the reference
point technique. Those that are valid, too, are processed in decreasing score, as
determined by the selected weighting scheme.
Iterative Algorithm. The above algorithms might exclude some geometries completely
from the BU retained candidate pairs. To avoid this, we implemented a new progressive
algorithm that applies the same Filtering as GIA.nt and its Scheduling retains BU/|T|
candidates per target geometry. The top-weighted BU geometries are then forwarded to
Verification.
Geometry-ordered Algorithm. This is another new progressive algorithm that assumes
that the larger the average weight of a geometry is, the more likely it is to be related to its
candidates (e.g., a road that touches a lot of buildings). Thus, it applies the same Filtering
as GIA.nt and then, it estimates the average weight per target or source geometry. After
sorting the geometries in decreasing average weight, it iterates once more over the target
dataset to select the BU retained pairs from the candidates of the top-weighted
geometries. Optionally, the retained candidates can be sorted in decreasing weight.
Note, though, that the analytical examination of the relative performance of these
algorithms lies out of the scope of this thesis. We described the progressive methods
supported by JedAI-spatial for the sake of completeness.
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4. PARALLEL IMPLEMENTATIONS

The parallel algorithms were implemented on top of Apache Spark [8], a scalable, optimal,
fault-tolerant, in-memory map-reduce framework implemented in Scala. Apache Spark
employs a read-only collection of objects called RDD (Resilient Distributed Dataset).
RDDs distribute the data into partitions, which are stored and processed in different nodes
across the cluster. This abstraction allows developers to engineer software without
worrying about the internal procedures regarding Spark, such as rebuilding a partition that
was lost during execution or synchronizing all the workers.
The way the Spark cluster environment works is outlined in Figure 29. The process is the
following:

1. The Driver Program instantiates a SparkContext instance, which acts as the master
in the whole process.

2. The Driver Program connects to the Cluster Manager (i.g. Spark Standalone,
YARN), which allocates resources based on the SparkContext established in the
first step. Then, the latter launches the executors requested.

3. Spark acquires the executors running in each Worker Node and sends the source
code.

4. The Driver Program assigns tasks (map) and collects them when they are done
(reduce).

Apache Spark is the immediate successor to Apache Hadoop. Their main difference is
that Spark carries out its processes on the main memory instead of the hard disk.
However, if the memory size is not adequate, it utilizes the hard disk as well.

Figure 29. Apache Spark Cluster Overview.

As already mentioned, the selection and implementation of the parallel algorithms
incorporated in JedAI-spatial was based on Pandey et al [7]. This paper compares
different Hadoop and Spark systems and frameworks through a thorough evaluation.
JedAI-spatial integrates all the Apache Spark based systems excluding SIMBA, due to the
fact that it does not support other data types besides points.
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JedAI-spatial can be considered as a level above the actual frameworks, since the
developers are required to solely provide a YAML18 configuration file denoting the
partitioning algorithm, the spatial index to be used, the source and target dataset file paths
as well as the number of partitions. The configurations for each parallel method change.
More information can be found on the ANNEX I.
Each parallel implementation is divided in three consecutive phases:

1. Preprocessing Stage
2. Global Join Stage
3. Local Join Stage

The Preprocessing Stage prepares the data for the main processing phases. First of all,
the source and target datasets are read from the HDFS in order to be transformed into
RDDs. Then, they are split into logical/physical partitions based on a partitioning method.
This is a classic technique in Apache Spark. Remember that it is a distributed framework
running on a cluster. The main idea is to group the data into partitions so as to reduce the
Spark shuffles and hence increase the performance. A Spark shuffle is when data is
rearranged between partitions.
In more detail, each framework uses its own set of partitioning techniques, such as Quad
Trees or Z-Order Curves, in order to partition the source data. Then, the geometries of
both source and target RDD datasets are assigned an identifier based on the partitions
they lie in space. The RDD is shaped as where is the identifier of the partition< 𝐾, 𝑉 > 𝐾
and the geometry. In case a geometry belongs to multiple partitions, it is assigned𝑉
multiple identifiers, i.e. , .< 𝐾1, 𝑉 > < 𝐾2, 𝑉 >

In the Global Join Stage, the source and target RDDs are joined in the same partitions
based on their key , the partition identifier. Each partition is a processing unit in the𝐾
cluster. The joined RDD is shaped as , with changing to a tuple of< 𝐾, 𝑉 > 𝑉

.(𝐼𝑡𝑒𝑟𝑎𝑏𝑙𝑒[𝑆𝑜𝑢𝑟𝑐𝑒𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑒𝑠],  𝐼𝑡𝑒𝑟𝑎𝑏𝑙𝑒[𝑇𝑎𝑟𝑔𝑒𝑡𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑒𝑠])

The third and final phase, Local Join Stage, performs the spatial join on the candidate
geometries within the same partition. Two are the available techniques, each having two
steps:

1. Nested Loop Index Join:
a. Filtering Step: Identifies all intersecting MBRs between target and source

candidates using a Spatial Index built from the .𝐼𝑡𝑒𝑟𝑎𝑏𝑙𝑒[𝑆𝑜𝑢𝑟𝑐𝑒𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑒𝑠]
b. Verification Step: Verify the topological relations of each pair of source-target

candidates.
2. Nested Loop Join:

a. Filtering Step: Filter all the intersecting MBRs between target and source
candidates by comparing each target from with𝐼𝑡𝑒𝑟𝑎𝑏𝑙𝑒[𝑇𝑎𝑟𝑔𝑒𝑡𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑒𝑠]
each source geometry from .𝐼𝑡𝑒𝑟𝑎𝑏𝑙𝑒[𝑆𝑜𝑢𝑟𝑐𝑒𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑒𝑠]

b. Verification Step: Verify the topological relations of each pair of source-target
candidates.

Integrating the parallel implementations was a challenging task. Each framework uses a
different Spark version, libraries as well as philosophy. However, all of them were
open-source, which bestowed major guidance.
JedAI-spatial focuses on migrating only the spatial join process of the above
implementations to a central repository. This meant migrating all the libraries and data

18 YAML stands for Yet Another Markup Language.
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structures in accordance with the Java Topology Suite (JTS) to ensure compatibility and
uniformity. The reasoning behind this choice was based on three factors:

1. Easier code maintenance and bug fixing. Some frameworks appeared to not be
working properly and almost all have not received an update in a very long time. It
was mandatory to keep the dependencies up-to-date.

2. Upload JedAI-spatial as a web application or a Maven/Gradle dependency.
3. Have it open-source so anyone can contribute given the proper guidelines.

As already mentioned, JedAI-spatial also employs the Reference Point Method for faster
filtering. This method is far superior to using Spark distinct for the duplicate
elimination, because the latter shuffles the data along the cluster imposing massive
overhead. For more details, please refer to the Experimental Results section.
Below, we present the parallel frameworks integrated within JedAI-spatial as well as the
improvements we incorporated in order to enhance their functionality.

4.1. Spatial Spark

Spatial Spark [20] is an open-source framework for spatial query processing which
emerged as a pioneer for extending Apache Spark and Cloud Impala with spatial querying
for distributed processing. It consists of two methods: a broadcast spatial join and a
partitioned spatial join, which aimed to address the problems that arose in the broadcast
join due to a limitation in serializing (see below for more details). The source code of
Spatial Spark is uploaded on GitHub19.

4.1.1 Spatial Spark Broadcast Join

This method embodies the initial approach implemented by the authors which leverages
Spark’s Broadcast Variables. Sparks allows engineers to broadcast a variable as
read-only to the whole cluster, which is then saved to each worker. In that way, developers
can use a shared data structure in all computing nodes.
4.1.1.1 Process
In particular, consider a source and a target dataset. Spatial Spark indexes the target
dataset using an R-Tree, which is then broadcast to all the worker nodes. Each worker
receives the spatial index of the target dataset, iterates over the source geometries and
filters all the potential candidates using the broadcasted R-Tree. After checking if the
candidates’ MBRs intersect, it discovers all their topological relations. This whole process
is illustrated in Figure 30. It lacks the Global Join Stage, because the datasets are not
merged in any way.

19 https://github.com/syoummer/SpatialSpark
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Figure 30. JedAI-spatial’s Spatial Spark Broadcast Join.

This technique is simple and adequate for small datasets. Especially small target datasets
that are less than 2GB. JedAI-spatial uses Spark 2.4.5 and the maximum value of
KryoSerializer’s buffer is 2048MB. KryoSerializer is an optimal serializer for Apache Spark
that is responsible for the serialization of RDDs among the computing nodes. As long as
the R-Tree constructed on the target dataset is less than the indicated serializing limit,
Spatial Spark’s Broadcast Join can run without any problems.

4.1.2. Spatial Spark Partitioned Join

To overcome the size limit of the Broadcast Join implementation, Spatial Spark authors
introduced a Partitioned Join variant. This method offers three partitioning techniques:

● Binary Split Partition: It samples a user defined ratio of geometries and recursively
divides the extent of the source and target datasets into partitions until the level of
the binary tree is equal to the level the user gave as input.

● Sort Tile Partitions: It samples a user defined ratio of geometries and applies the
Sort Tile Recursive (STR) packing algorithm.

● Fixed Grid Partition: It divides the extent of the source and target datasets into
partitions.𝑑𝑖𝑚𝑋 𝑥 𝑑𝑖𝑚𝑌

For the first two techniques, Spatial Spark samples the dataset with a ratio given by the
user and applies the partitioning technique to the sample. The partitions are then inserted
into an R-Tree structure. For the Fixed Grid Partition, there is no sampling; its purpose is
to divide the entire space of all input data based on the dimensions given by the user as
input.
4.1.2.1. Spatial Spark vs Spatial Spark in JedAI-spatial
The differences between the original Spatial Spark and the one on JedAI-spatial are listed
in Table 2, with the most notable being the replacement of distinct with the reference
point method. This enhancement was only applied to the partitioned join variant, since
broadcast join does not join the data into partitions whatsoever.

M. Papamichalopoulos 42



JedAI-spatial: a system for 3-dimensional Geospatial Interlinking

Table 2. Spatial Spark vs  JedAI-spatial’s Spatial Spark.

Spatial Spark Spatial Spark in JedAI-spatial

Queries Range, Spatial Join Spatial Join

Duplicate Elimination distinct reference point technique

4.1.2.2. Process
Spatial Spark’s Partition Join process follows the standard guidelines implemented in
JedAI-Spatial. It is composed of the three stages declared at the onset of the section.

Figure 31. Spatial Spark Partitioned Join in JedAI-spatial.

4.2. Apache Sedona

Apache Sedona20 is an open-source21 system, immediate successor of GeoSpark [21],
[22], and retains its key architecture, such as the Spatial RDD and Spatial Query
Processing Layer. Moreover, it provides overall updates to libraries, such as JTS, as well
as code improvements and bugfixes. Nevertheless, it deprecates all GeoSpark’s
partitioning techniques, besides Quad Trees and K-D-B-Trees and as a result the second
method of duplicate elimination described below, since it is no longer applied.
JedAI-spatial provides both GeoSpark and Apache Sedona experiments. We strongly
recommend using Apache Sedona, since it is more up-to-date and optimized.
In the remainder of this subsection, we first analyze GeoSpark’s key features and
limitations and then describe the integration of Apache Sedona in JedAI-spatial.

4.2.1. GeoSpark

GeoSpark[21] is a state-of-the-art framework that allows users to query large-scale spatial
data by providing two extra layers on top of Apache Spark, by extending both the core and
the Spark SQL and by supporting spatial queries in both formats. These layers are:

1. Apache Spark Layer
2. Spatial RDD (SRDD) Layer
3. Spatial Query Processing Layer

21 https://github.com/apache/incubator-sedona
20 https://sedona.apache.org/
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The Spatial RDD Layer introduces a new Spatial RDD structure, written in Java, which
extends Spark’s RDD. SRDD supports Points, Rectangles, Polygons and LineStrings
using the JTS library. Part of the SRDD Layer is the partitioning and the indexing. In more
detail, GeoSpark splits the area covered by the geometries into grids using one of (i)
K-D-B-Tree (ii) R-Tree (iii) Quad Tree (iv) Voronoi (v) Uniform Grid (vi) Hilbert Curves.
R-Tree and Voronoi partitioning methods are implemented using sampling. As a result, the
extent of the index may not cover the entire area of the geometries. For that reason, the
developers of GeoSpark append the geometries that are not covered to an overflow
bucket. Thereafter, the source and target geometries are mapped to grid cells and are
grouped into partitions in later phases using the grid cell identifier. The framework also
supports R-Tree and Quad Trees as Spatial Indices for the geometries of individual
partitions.
After the SRDD has been constructed and processed, the developers may use the Spatial
Query Processing Layer to perform Range, kNN, Spatial and Distance join queries on
top of the populated SRDDs.
In order to avoid duplicate verifications, GeoSpark utilizes two techniques based on the
partitioning method.

1. RPM, which we have already analyzed in various parts of the thesis, can only be
applied to partitioning methods which produce disjoint partitions, such as the Quad
Tree, K-D-B-Tree and Equal Grids.

2. groupBy operation on the result tuples, which collects all the geometries by their
key and then removes the duplicates. A tuple is in the form of

. Using a groupBy, the tuples are transformed into(𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑦1,  𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑦2)
whereby, the duplicates are removed by(𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑦1,  [𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑦2,  ...,  𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑦𝑘])

iterating over the array of verified geometries.
It goes without saying that the second method imposes a significant overhead since it
triggers big data shuffles across the cluster.

4.2.2. Apache Sedona vs Apache Sedona in JedAI-spatial

As aforementioned, JedAI-spatial is an abstraction over the frameworks it integrates.
Developers no longer need to write their own code in order to find the topological relations
between their spatial data. They are required to provide the HDFS paths of their files, the
partitioning method (sedonaGridType), the indexing method (sedonaLocalIndexType) and
the number of partitions (partitions) for the cluster execution. These configurations can be
found in the configurationTemplate.yaml file in the github repository and in ANNEX I.
Apache Sedona uses the latest JTS library and has already implemented Reference Point
Filtering.

Table 3. Apache Sedona vs JedAI-spatial’s Apache Sedona.

Apache Sedona Apache Sedona in
JedAI-spatial

Queries Range, kNN, Spatial Join, Distance Join Spatial Join
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4.2.3. Process

Figure 32. JedAI-spatial’s Apache Sedona Process.

Figure 32 presents the actual process implemented by JedAI-spatial’s Apache Sedona.
Bear in mind that it is organized in three consecutive phases as indicated in the beginning
of the section. In the Preprocessing Stage, the source data are partitioned based on
Apache Sedona’s Partitioner and then all the geometries are mapped to the
corresponding partition given an identifier. SRDD partitions the data by carefully analyzing
the dataset and using a user defined partition technique. In the second phase, the entities
with the same identifier are grouped in the same partitions. The index source arrows in the
Local Join Stage are denoted with dotted lines, because indexing the source is optional,
since Apache Sedona supports both Nested Loop Index Joins and Nested Loop Joins.

4.3. Location Spark

Location Spark [23], [24] is an open-source, spatial query processing framework, available
on GitHub22, that addresses four major problems emerging in Apache Spark clusters:

1. Spatial Indexing
2. Data Skew
3. Query Optimization
4. Network shuffling

Regarding Spatial Indexing, Location Spark employed multiple index methods, like
R-Trees, IR-Trees, EquiGrid and Quad Trees. For Global Indexing, it uses one of (i) Grid
(ii) R-Tree (iii) Quad Tree to partition the input data. For Local Indexing, it uses R-Tree,
IR-Trees, EquiGrid and Quad Trees.
Location Spark is the only framework that applies a form of Skew Analysis to the
partitions. In Apache Spark, each partition is a processing unit. Significant overhead is
imposed by not splitting the partitions evenly, due to data skew, resulting in inflated
partitions and delayed execution. This deteriorates the overall performance of the cluster,
because the execution cannot progress to a new job if the workers have not finished their
already assigned ones. Location Spark proposes a Query Plan Scheduler, which utilized
two methods to alleviate the skew problem:

● Strategy 1: Learns the data distribution by recording the number of data points in
each partition and repartitions the data points into newly generated sub-partitions,
making sure that they contain an equal amount of data.

22 https://github.com/purduedb/LocationSpark
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● Strategy 2: Collects a sample from the queries that are originally assigned to𝑄𝑠 𝑄𝑖
partitions and then computes how is distributed over , by recording the𝐷𝑖 𝑄𝑠 𝐷𝑖
frequencies of the queries in the partitions. The data are repartitioned based on the
frequencies gathered.

Location Spark’s Query Optimization chooses among a Nested Loop Join and a Nested
Loop Index Join by evaluating the space and execution within each worker.
For reducing Network Shuffling, Location Spark employs a Spatial Bloom Filter which is
used mostly to check if a geometry is contained in a partition. Typically, the filter is used
for spatial range queries in order to find the geometries which are in range of the
candidate geometry without the overhead of an unnecessary network shuffle.

4.3.1. Location Spark vs Location Spark in JedAI-spatial

JedAI-spatial has made severe changes regarding Location Spark’s core. First and
foremost, some vital mechanisms of Location Spark have been removed. The Query
Optimization mechanism has been left up to the user. The framework no longer decides
the optimal index. The index chosen is indicated by the configurations given as input by
the user.
The second mechanism removed is the Spatial Bloom Filter. JedAI-spatial is a Geospatial
Interlinking framework which verifies the spatial join relations. The Spatial Bloom Filter is
used mainly for spatial range queries. Moreover, the geometries during preprocessing
may be assigned to multiple partitions; there is no need to verify if a geometry belongs to
a partition. Preliminary experiments demonstrated that Spatial Bloom Filter imposes an
unnecessary overhead in our case.
Location Spark used Apache Spark’s reduceByKey method for duplicate elimination,
which is identical to distinct, due to triggering shuffles. We enhance the filtering phase
with RPM.
The last and most important change is replacing Location Spark’s partitioning phase with
the GeoSpark partitioner. GeoSpark’s partitioning is state-of-the-art and supports the main
partitioning techniques (Quad Tree, R-Tree and EquiGrid).
However, as previously described in the Apache Sedona section, the R-Tree partitioning
technique is implemented using sampling and GeoSpark[21] retains an overflow bucket
for that reason. The major problem for JedAI-spatial is that the overflow bucket contains
geometries from the entire input datasets, meaning it cannot leverage the reference point
method to remove the duplicates, because the extent MBR of those geometries is not
disjoint with all the MBRs of the other partitions, a problem described in GeoSpark paper
as well. Given that we want to avoid using the second method for duplicate elimination of
GeoSpark, due to its high computational cost, we completely removed R-Tree from the
available partitioning techniques.
In the future, JedAI-spatial could replace R-Tree partitioned with R-Grove [35], which
offers disjoint partitions and cares for the problems addressed below.
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Table 4. summarizes all the changes between Location Spark and JedAI-spatial’s Location Spark.

Location Spark Location Spark in JedAI-spatial

Skew Analysis Strategy 2 Strategy 1

Data Types Point, Rectangle Rectangle, Polygon, LineString

Queries Range, kNN, Spatial Join,
Distance Join, kNN Join

Spatial Join

Duplicate Elimination reduceByKey reference point technique

Partitioning Techniques Grid, Quad Tree, R-Tree GeoSpark Partitioner

Local Index R-Tree, IR-Tree, EquiGrid, Quad
Tree

R-Tree, EquiGrid, Quad Tree

4.3.2. Process

JedAI-spatial’s Location Spark’s processing is depicted in Figure 33. Initially, it divides the
input data through GeoSpark’s Partitioner. Then, Location Spark’s Query Plan Scheduler
performs a skew analysis in order to partition the data as evenly as possible; it uses
Strategy 2, which repartitions the skewed partitions which are at least twice the size of the
smallest partition. After inner joining partitions with the same id, a local index is
constructed for each partitioning (R-Tree, QuadTee, EqualGrids) and the topological
relations are verified based on DE-9IM.

Figure 33. JedAI-spatial’s Location Spark Process.

4.4. Magellan

Magellan23 is the fourth framework integrated in JedAI-spatial. It must be noted that
Magellan is solely an open-source GitHub project that extends the Spark SQL module of
Apache Spark with extra rules. Nevertheless, it is referenced in multiple experimental
evaluation sections in the literature. It is based on Z-Order/Morton Curves [25]. Z-Order
Curves are space filling curves which Morton introduced as a system in order to sequence
a static two-dimensional geographical database. This system allowed the division of the
Earth’s surface from two-dimensions to one-dimension preserving spatial locality, meaning
the geographical close locations are portrayed close in the coordinate system and
consequently to non-volatile media.

23 https://github.com/harsha2010/magellan
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Figure 34. Z-Order Curve Overview.
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In Morton’s proposition, the space is divided into frames/tiles. Each tile is represented by a
pair of . The value of a tile is calculated by interleaving the binary representations of(𝑥, 𝑦)

. Connecting the value of each tile in a sequence produces the Z-Order curve. The(𝑥, 𝑦)
way the coordinates are sequenced resembles a Z, hence the name.
Example 7. Figure 34, consists of 3 subfigures. In the top left, the Z-Order curve has a
precision of 2 and the space it fills is partitioned in 4 tiles. These 4 unit frames make a
1-factor frame. In the top right, the Z-Order curve has a precision of 4 and it divides the
space in 16 tiles. These 4 1-factor frames combined, produce a 2-factor frame. At last, the
final figure consists of a Z-Order curve with a precision of 6 dividing the space in 64 tiles,
producing a 3-factor frame, meaning 4 2-factor frames. Each f-factor frame is created by
using lower f-factor frames.

Example 8: Find the tile of coordinates . Firstly, find the binary representation of ,(4, 5) 4
which is and , which is . The interleaving representation of is ,100 5 101 (4, 5) 110010
hence .50

4.4.1. Magellan vs Magellan in JedAI-Spatial

Following are the differences between Magellan and JedAI-spatial’s Magellan. The most
notable improvement is the transformation from the Dataframe API to Spark RDDs.
Magellan does not include any sophisticated method for duplicate elimination. The
Dataframe API supports two methods; distinct and dropDuplicates, which are both
computationally expensive. We have replaced them with RPM.

Table 5. Magellan vs JedAI-spatial’s Magellan.

Magellan Magellan in JedAI-spatial

Language Extended Spark SQL Spark RDD

Data Types Point, LineString, Polygon,
MultiPoint, MultiPolygon

Rectangle, Polygon, LineString

Queries Range, Spatial Join Spatial Join

Duplicate Elimination distinct / dropDuplicates reference point filtering

4.4.2. Process

Magellan leverages Z-Order curves to partition the space. Unlike Spatial Spark Partitioned
Join, which considers the extent of the source and target geometries, Magellan considers
the extent of Earth’s surface as an MBR of (-180, 180, -90, 90). It allows users to
associate every geometry with one or more Z-Order Curves. Original Magellan gave users
the choice to not use a Z-Order Curve Index at all, resulting in a cartesian join between
the source and target dataset. JedAI-spatial has completely deprecated this approach,
because it does not scale to large datasets, due to memory limitations, and always uses
Z-Order Curves.

In the Preprocessing Phase, the initial is transformed into𝑅𝐷𝐷[𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑦]
. These curves cover the bounding box of the𝑅𝐷𝐷[𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑦,  𝐴𝑟𝑟𝑎𝑦[𝑍 − 𝑂𝑟𝑑𝑒𝑟𝐶𝑢𝑟𝑣𝑒])

respective geometry and are used to join the spatial objects into the same partitions using
the interleaving bits of their coordinates. This technique acts as a partitioning(𝑥, 𝑦)
scheme, dividing the space into tiles. In due course, each partition is assigned to2𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
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an executor, where a nested loop join is performed and the final relations are produced.
The whole process is illustrated in Figure 35.

Figure 35. JedAI-spatial’s Magellan Process.
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5. EXPERIMENTAL RESULTS

In this section, we present the experimental evaluation of each spatial join algorithm
carried out on a server with Intel Xeon E5-4603 v2 @ 2.20GHz, 128GB RAM, consisting
of 32 cores and 4 NUMA nodes. The parallel methods are implemented using Scala
2.11.12 and Apache Spark 2.4.4.
The datasets used for the experiments are popular in the literature [26], [27] and comprise
real datasets imported from US Census Bureau TIGER24 files. They consist of USA’s Area
Hydrography (AREAWATER), Linear Hydrography (LINEARWATER), roads (ROADS) and
edges (EDGES) as well as datasets extracted from OpenStreeMap representing lakes
(Lakes), parks (Parks), roads (Roads) and buildings (Buildings) of the whole world. The
datasets are combined into six pairs (D1-D6), as illustrated on Table 6:

Table 6. Technical characteristics of the real datasets used in our experimental analysis.

D1 D2 D3 D4 D5 D6

Source Dataset AREAWATER AREAWATER Lakes Parks ROADS Roads

Target Dataset LINEARWATER ROADS Parks Roads EDGES Buildings

#Source
Geometries

2,292,766 2,292,766 8,419,320 9,961,891 19,592,688 72,339,926

#Target
Geometries

5,838,339 19,592,688 9,961,891 72,339,926 70,380,191 114,796,567

Cartesian Product 1.34 ⨯ 1013 4.49 ⨯ 1013 8.19 ⨯ 1013 7.11 ⨯ 1014 1.38 ⨯ 1015 8.30 ⨯ 1015

#Candidate Pairs 6,310,640 15,729,319 19,595,036 67,336,808 430,597,631 257,075,645

#Qualifying Pairs 2,401,396 199,122 5,551,014 14,163,325 163,982,135 1,041,562

#Contains 806,158 3,792 947,788 6,323,433 12,218,867 276,010

#CoveredBy 0 0 3,031,403 48,922 53,758,452 83,936

#Covers 832,843 4,692 948,086 6,470,655 12,218,867 276,023

#Crosses 40,489 106,823 270,248 6,490,937 6,769 314,708

#Equals 0 0 557,465 3,147 12,218,867 18,972

#Intersects 2,401,396 199,122 5,551,014 14,163,325 163,982,135 1,041,562

#Overlaps 0 0 822,241 45,116 73 54,899

#Touches 1,554,749 88,507 1,037,412 1,258,163 110,216,841 332,249

#Within 0 0 3,030,790 48,823 53,758,452 82,668

Total Topological
Relations

5,635,635 402,936 16,196,447 34,852,521 418,379,323 2,481,027

Following is a figure illustrating the size of the cartesian product of each dataset, which
provides a measure for the volume of data we considered.

24 http://spatialhadoop.cs.umn.edu/datasets.html
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Figure 36. Cartesian product of geometry pairs in D1-D6.

To show the robustness of each method as well as their scalability as the size of the input
data increases, D1 was divided into 10 distinct subsets of increasing size. Each subset
contains a percentage of the total relations of D1 and is bigger than its previous by 10%.
Special care was taken to ensure that every subset captures correctly the corresponding
computational cost both with respect to the number of geometries from each input dataset
and the number of related pairs. The sample datasets based on D1 are available at Table
7:

Table 7. D1’s and subsets’ topological relations.

10% 20% 30% 40% 50% 60% 70% 80% 90% D1

#Source
Geometries

229,276 458,553 687,829 917,106 1,146,383 1,375,659 1,604,936 1,834,212 2,063,489 2,292,766

#Target
Geometries

583,833 1,167,667 1,751,501 2,335,335 2,919,169 3,503,003 4,086,837 4,670,671 5,254,505 5,838,339

#Contains 103,260 213,447 324,852 432,286 532,688 623,290 699,244 757,131 793,947 806,158

#CoveredBy 0 0 0 0 0 0 0 0 0 0

#Covers 108,976 224,501 340,698 451,795 554,831 647,392 724,686 783,328 820,525 832,843

#Crosses 6,446 13,266 19,096 24,582 29,095 32,546 35,564 37,769 39,375 40,489

#Equals 0 0 0 0 0 0 0 0 0 0

#Intersects 312,327 656,523 1,000,117 1,329,225 1,628,178 1,887,767 2,102,013 2,261,258 2,362,497 2,401,396

#Overlaps 0 0 0 0 0 0 0 0 0 0

#Touches 202,621 429,810 656,169 872,357 1,066,395 1,231,931 1,367,205 1,466,358 1,529,175 1,554,749

#Within 0 0 0 0 0 0 0 0 0 0

Total
Topological
Relations

733,630 1,537,547 2,340,932 3,110,245 3,811,187 4,422,926 4,928,712 5,305,844 5,545,519 5,635,635
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5.1. Serialized Experiments
All serialized methods described above produce the same results. Therefore, we can only
assess their relative performance with respect to their time efficiency: the lower the
run-time of a method is, the better is its performance. To this end, we carried out two
experiments:

1. We measure their scalability over the increasing input size of the 10 subsets of D1
2. We measure their run-time over datasets D1 - D3.

In each case, we are interested in two efficiency measures, with each one which
estimating the time required to complete the homonymous step in the Filter-Verification
framework:

1. The filtering time, .𝑡
𝑓

2. The verification time, .𝑡
𝑣

In this way, we are able to examine the impact of every step on the overall performance of
each method and to provide insights into the strengths and weaknesses in each case.
Due to the large number of methods implemented by JedAI-spatial, we present their
performance in three groups: (i) the grid-based methods, which include GIA.nt and
RADON along with their static variants, (ii) the partition-based methods, which include
Plane Sweep and its variants, and (iii) the tree-based methods, which include R-Tree,
Quad Tree and CR-Tree. We applied every method to every dataset 10 times and
considered the average run-times. Below, we describe the results of every experiment.

5.1.1. Scalability analysis
The resulting filtering and verification times appear in Figure 37 and Figure 38,
respectively. In each figure, the same scale is used in all diagrams, to facilitate the
comparisons between the three categories.
Starting with Figure 37, we observe that for all algorithms, the Filtering step is completed
within a few seconds, even when processing the entire D1. The reason is that Filtering
constitutes a quick process that considers exclusively the MBR of the input geometries,
thus disregarding their actual complexity. Yet, it manages to reduce the number of
candidates by a whole order of magnitude, as indicated by the relative size of the
Cartesian Product and the number of Candidate Pairs (with intersecting MBRs) in Table 6.
Among the grid-based methods, RADON is consistently the slowest approach, followed by
GIA.nt, whose run-time is lower by at least 30%. The reason is that RADON iterates over
both input datasets, whereas GIA.nt considers exclusively the source one. In both cases,
though, their static variants are significantly faster: Static RADON is faster than its
dynamic counterpart by ~40%, while Static GIA.nt outperforms GIA.nt by 60%-75%; in the
latter case, the larger the subset of D1, the larger is the difference between the two
methods, because Static GIA.nt increases its tf by just 3 times from 10% to 100%, unlike
GIA.nt, which increases its tf by 12 times (i.e., linearly).

M. Papamichalopoulos 53



JedAI-spatial: a system for 3-dimensional Geospatial Interlinking

Figure 37. Filtering time of each serial algorithm over the scalability datasets of Table 7.
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Regarding the partition-based methods, we observe that for each main algorithm, the
filtering time is almost identical for the two variants we consider, regardless of the
underlying data structure. We also observe that Strip Sweep involves the fastest, by far,
filtering step. This should be attributed to its simplicity, since it indexes only the source
geometries in a limited number of strips. As a result, it scales sublinearly with the increase
of the input data: from 10% to 100%, its tf raises by just 5 times. Strip Sweep is followed
by Plane Sweep, which is 4-5 times slower, with PBSM being 15%-20% slower. This
should be expected, given that PBSM applies Plane Sweep to each one of its space
partitions. Both algorithms, though, scale linearly with the increase in the input data.
Finally, all tree-based algorithms exhibit a sublinear scalability, as they index exclusively
the source dataset. Quad Tree is the fastest algorithm, followed by R-Tree and CR-Tree.
The last algorithm involves a significant overhead for the compression of the resulting
tree index. Note that Quad Tree involves the overall fastest Filtering, together with Stripe
Sweep.
Regarding the Verification time, we notice in Figure 38 that it constitutes the bottleneck of
Geospatial Interlinking, being two orders of magnitude larger than Filtering time. This is
caused by the complexity of the input geometries, which determines the time complexity
for calculating a single Intersection Matrix.
Looking into the grid-based algorithms, we observe that (Static) RADON is significantly
faster than (Static) GIA.nt - from 5% to 12%. The larger the input datasets are, the larger
is their difference. This is in contrast with the relative performance reported in [18], where
GIA.nt is slightly faster than RADON, demonstrating the significant impact of the
implementation improvements we have incorporated in JedAI-spatial. Note, though, that
the lower run-time of (Static) GIA.nt should be attributed to the overhead of reading the
target geometries from the disk, unlike (Static) RADON, which loads the target dataset
into main memory during the Preprocessing phase; this overhead increases linearly with
the size of the input data, thus accounting for the larger differences between the two
algorithms as we move from 10% to 100%. It is also worth noting that Static GIA.nt is
slightly slower than GIA.nt, because of the finer-grained tiles it employs, which increase
the tiles associated with every geometry and raise the overhead of retrieving the
candidates per target geometries.
Among the partition-based algorithms, we notice that Plane Sweep and PBSM are by far
the slowest ones when using Linked Lists to maintain the active source and target
geometries. This is caused by the high overhead of querying and updating the contents of
the Linked Lists. The situation is actually worse for PBSM, which maintains separate lists
for each partition. The performance of both algorithms is significantly improved when
using Stripes, which significantly reduces the overhead of maintaining the active
geometries. Plane Sweep with Stripes is actually the fastest partition-based algorithm,
followed in close distance by PBSM, which is 3% to 7% slower, due to the overhead of
RPM, which is applied to every pair before its verification. Almost identical performance is
exhibited by Stripe Sweep with STR trees, which significantly improves the plain Stripe
Sweep algorithm: by considering the overlap of candidate pairs on the vertical axis, it
reduces the verification time from 11% over the smallest dataset to 29% over the largest
ones, because the number of irrelevant candidates in stripes increases with the increase
of target geometries. Note though that Stripe Sweep reads the target geometries from the
disk, one by one, unlike Plane Sweep and PBSM, which load them into main memory,
during the Preprocessing phase.
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Figure 38. Verification time of each serial algorithm over the scalability datasets of Table 7.
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Finally, we observe that Figure 38 reports only the performance of Quad Tree and R-Tree.
CR-Tree is excluded, because its run-time over the smallest dataset is 235 minutes,
exceeding the time required by most other algorithms even for the largest dataset. The
reasons are (i) its high cost of retrieving the candidates for every target geometry, due to
the required transformation of the MBRs, and (ii) the lack of memory manipulation Java
provides compared to languages like C or C++. Such low-level languages allow the user
to allocate amounts of memory on demand and as a result create structs of size that can
be leveraged by the L1 and L2 cache. Quad Tree and R-Trees process every query in an
efficient way, thus yielding much lower verification times. The latter is actually slightly
faster than the former, due to its lower overhead. Recall that both algorithms read the
target geometries from the disk on the fly.
Overall, all serialized algorithms involve a rather efficient Filtering step, which reduces the
search space by orders of magnitude. Yet, their performance is determined by the
efficiency of the Verification step, which is the bottleneck of Geospatial Interlinking. In this
respect, the fastest algorithms are RADON and Static RADON, followed in close distance
by Plane Sweep based on Stripes. Yet, these algorithms are memory-intensive, requiring
that the target geometries can be loaded into main memory. As a result, they cannot scale
to large datasets, as discussed below. Among the memory-frugal algorithms, which read
the target geometries one by one from the disk, GIA.nt involves the fastest verification,
with Stripe Sweep being slightly slower.

5.1.2. Performance over D1 - D3

In the previous sub-section, we compared thoroughly the pros and cons of each algorithm.
We now present the performance of the serial processing algorithms for datasets D1 - D3
in Table 8 and Table 9 in seconds and hours respectively. Figure 39 and Figure 40
illustrate the filtering and verification time respectively.

Table 8. Filtering time of serial processing algorithms for datasets D1-D3 in seconds.

D1 D2 D3

Static GIAnt 6.85 9.84 75.02

GIA.nt 34.82 32.10 117.97

Static RADON 24.93 35.81

RADON 38.99 88.71

Plane Sweep (Stripe) 33.42 72.35

PBSM (Stripe) 38.09 97.29

Strip Sweep 5.56 5.01 20.54

Strip Sweep (STR) 5.24 5.97 25.50

QuadTree 6.83 4.70 28.97

R-Tree 13.03 12.95 53.01
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Table 9. Verification time of serial processing algorithms for datasets D1- D3 in hours.

D1 D2 D3

Static GIAnt 1.58 3.35 9.54

GIA.nt 1.58 3.42 9.58

Static RADON 1.33 2.94

RADON 1.38 2.91

Plane Sweep (Stripe) 1.40 2.96

PBSM (Stripe) 1.50 3.36

Strip Sweep 1.97 4.55 13.90

Strip Sweep (STR) 1.45 3.09 9.68

QuadTree 1.77 3.48 11.10

R-Tree 1.70 3.36 56.99

We do not take into account datasets D4 - D6, because of their long-lasting execution time.
Note also that the memory-intensive algorithms are excluded from the evaluation of
dataset D3 due to insufficient memory. Recall that such algorithms load both the source
and target datasets in main memory, but this is not possible with the available 128GB of
RAM. These are (Static) RADON, Plane Sweep and PBSM. The rest of the algorithms are
memory-frugal, building spatial indexes only on the source dataset.
Starting with the grid-based algorithms, we observe that the static variants, Static RADON
and Static GIA.nt have a faster filtering time compared to the non-static, RADON and
GIA.nt. This observation occurred in the scalability analysis as well, because the static
variants do not find the average width of every geometry. The verification time of static
variants is identical with the non-static variants.
Regarding the partition-based algorithms, PBSM has by far the longest filtering-time, due
to its coarse-grained tiles (i.e., it sorts a large number of geometries per tile). Strip Sweep
has the most simple filtering phase resulting in the best filtering time among the group.
Strip STR Sweep seems to have the same filtering time as Strip Sweep, due to the fact
that the STR-Tree is constructed when the first query method is called. Hence, a
significant part of the filtering is within the verification.
As it is apparent, the tree-based methods’ filtering time is significantly lower than the other
algorithms. R-Tree is on par with Quad Tree for datasets D1 and D2. For dataset D3, its
verification time is the highest among all the algorithms (almost 60 hours). We believe this
happens because of poor configuration (M=6) and/or because D3 has a lot of overlapping
MBRs. As a result, when range searching for candidate geometries, the subtrees visited
recursively deviate from the average complexity of . This is a well-known𝑂(𝑙𝑜𝑔

𝑀
(𝑛))

problem for the R-Trees. Using an R-Tree with STR tree packing algorithm could alleviate
such problems as already mentioned.
To conclude, the fastest methods are Quad Tree, GIA.nt and Strip STR Sweep. Their key
characteristic is their simplified and robust filtering phase method, which scales
sub-linearly among different datasets. Their efficient index also allows for faster
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verification and faster execution, in total, unlike methods like R-Tree, whose verification
time is heavily affected by overlapping partitions in the spatial index. Finally, the
memory-intensive algorithms are only suitable for datasets small enough to fit into main
memory. In these cases, they provided competitive run-times, especially for the
Verification phase, as they save the cost of loading the target dataset from the disk
on-the-fly.

Figure 39. Filtering time of each serial algorithm over D1-D3.

Figure 40. Verification time of each serial algorithm over D1-D3.
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5.2. Parallel Experiments
From the parallel experiments, we exclude Spatial Spark with broadcast join due to the
KryoSerializer limitation analyzed earlier in the thesis. Moreover, it should be stressed that
we do not present the execution time for each phase (preprocessing, global join, local join)
due to Apache Spark’s internal functionality: Apache Spark has two kinds of methods,
transformations and actions. Transformations are always lazy, meaning they do not make
any calculations until an action is invoked by the driver program. Adding actions before
and after each phase so as to measure them, is not a good practice because Apache
Spark’s job scheduling and DAG scheduler pipeline many transformations together for
optimization. As a result, applying the above technique would produce inaccurate results.
For that reason, we exclusively report the total execution time for each method.
We conducted three major experiments so as to examine:

1. The scalability of each algorithm over the subsets of  D1 in Table 7. (Section 5.2.1)
2. The vast gap in performance between reference point method and Apache Spark’s

distinct method for eliminating the redundant candidate pairs in each method.
(Section 5.2.2)

3. An evaluation between the best configurations for each method on the six real large
datasets of Table 6. (Section 5.2.3)

5.2.1. Scalability analysis

We conducted numerous experiments with each method in order to find the optimal
configurations. In more detail, we consider the following parameters:

● We combined Spatial Spark with Fixed Grid and Sort Tile Partitioning using 32x32,
64x64, 128x128, 256x256, 512x512 and 1024x1024 grids. The sampling ratio for
Sort Tile Partitioning was set to 10% of the overall source dataset. However, more
effort is required in order to come up with a better method for sampling, due to the
fact that most cases were error-prone regarding the verifications. The bigger the
dataset, the more incorrect were the results. We also experimented with the Binary
Split Partitioning, but its performance was below expectations. In a later version of
JedAI-spatial, a more optimized implementation will take its place.

● For Magellan, we tested the values 16, 20 and 24 for the Z-Order Curve precision.
Magellan seemed to have a huge disk spill for a Z-Order Curve precision of 24
when executing on 20% or more of D1.

● For Apache Sedona, we used both K-D-B-Tree and Quad Tree partitioning with
R-Tree and Quad Tree local indexing. We also performed experiments without local
indexes at all (Nested Loop Join).

● We combined Location Spark with Quad Tree partitioning and Quad Tree, R-Tree
and EqualGrid local indexing.

The experiments ran over the subsets of D1 in Table 7 are 240 in total. In Table 10, we
present the frameworks with the best configurations along with their total wall-clock
execution time in seconds. These are Apache Sedona with K-D-B-Tree partitioning and
R-Tree local indexing (AS KDB-RT), Spatial Spark with 512x512 Fixed Grid Partitioning
(SP FGP), Location Spark with Quad-Tree partitioning and R-Tree local indexing (LS
QT-RT) and Magellan with Z-Order Curves of 20 precision.
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Table 10. Total execution time for D1.

10% 20% 30% 40% 50% 60% 70% 80% 90% D1

AS KDB-RT 165.20 223.20 231.61 309.30 347.19 431.03 550.85 614.66 661.05 843.67

SP FGP 211.87 284.03 383.08 512.13 640.69 748.69 922.97 1189.47 1360.44 1472.87

LS QT-RT 214.10 236.10 275.68 405.65 485.38 372.92 490.84 534.57 583.55 664.73

Magellan (20) 191.74 259.00 331.65 410.67 488.22 577.45 686.99 794.81 902.56 1037.94

Each algorithm is successful for different amounts and types of data. As it is apparent, the
algorithms that implement a Local Index scale better to big data. This means that
implementing a Local Index trades higher space requirements for better run-times.
Spatial Spark with Fixed Grid Partitioning is performing poorly for all the subsets of D1.
This happens due to the fact that using a Fixed Grid for partitioning does not partition the
geometries effectively: in cases of fine-grained tiles, it assigns every geometry to multiple
partitions, thus increasing the filtering computations. However, this was the best
performance we achieved with Spatial Spark. Location Spark is also performing poorly for
small datasets until its skew analysis algorithm bears fruit starting from the 60% of D1.
This is depicted with a slight curve from 50% to 60% in Figure 41. Magellan performs
approximately as the average between Spatial Spark and Apache Sedona, which is the
top performer for the smallest subsets, due to its effective partitioning during the Global
Join Phase.

Figure 41. Wall-clock execution run-time of each parallel algorithm over the scalability datasets of
Table 7.
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Figure 42. Stacked column chart for total execution time of D1.

It is also worth stressing that all algorithms scale sublinearly with the size of the input data:
their wall-clock run-time increases by 3 times (LocationSpark) to 7 times (Spatial Spark)
when comparing 10% with 100%. Moreover, when comparing their run-time with that of
serialized algorithms in Figure 37 and Figure 38, we notice that they are significantly
faster, especially for the larger subsets, where the overhead of Apache Spark pays off: for
the entire D1, the slowest parallel algorithm (Spatial Spark) is 3.2 times faster than the
faster serialized algorithm (RADON).
Considering their overall wall-clock execution over all subsets in Table 10, we observe in
Figure 41 that Location Spark is the most efficient approach, followed in close distance by
Apache Sedona. Both algorithms require almost half the overall run-time of Spatial Spark,
with Magellan lying in the middle of these two extremes.

5.2.2. Reference Point Method vs Spark.distinct()

To show the strength of the reference point method, we run an experiment on the first 10%
data of D1 using Spatial Spark Partitioned Join with 256x256 Fixed Grid Partitioning.
The experiment utilizing RPM, lasted 199.63 seconds. The same experiment using
Apache Spark’s distinct method lasted 40 minutes, whereafter the execution stopped
because the overall shuffle writes surpassed the available memory and disk. The shuffle
writes reached 130.4 GBs before the process terminated. The larger the volume of data
the more the overall size of the shuffles and subsequently the execution time.
Following are screenshots from Apache Spark’s UI denoting the execution time and
shuffle writes:
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Figure 43. Apache Spark UI execution time for Spatial Spark with distinct filtering.

Figure 44. Apache Spark UI shuffle write for Spatial Spark with distinct filtering.

5.2.3. Performance over D1 - D6

For this subsection, we executed 84 experiments based on the best performing
frameworks from subsection 5.2.1. These were: Spatial Spark with Fixed Grid (512x512,
1024x1024) and Sort Tile (128x128, 256x256, 512x512, 1024x1024) partitioning with 10%
sampling ratio, Magellan (20 Z-Order Curve precision), Apache Sedona with Quad Tree or
K-D-B-Tree partitioning and R-Tree or Quad Tree local indexes and lastly, Location Spark
with Quad Tree partitioning and Quad Tree, R-Tree or EqualGrid local indexing.
From the above-mentioned configurations, we present the frameworks with the best ones.
Table 11 and Figure 45 report the total wall-clock execution time for datasets D1 - D6 in
minutes. These are Apache Sedona with K-D-B-Tree partitioning and R-Tree local
indexing (AS KDB-RT), Spatial Spark with 512x512 Sort Tile Partitioning (SP STP),
Location Spark with Quad-Tree partitioning and R-Tree local indexing (LS QT-RT) and
Magellan with Z-Order Curves of 20 precision. For D6, Magellan’s execution was
terminated after 24 hours.
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Table 11. Total wall-clock execution time over all datasets in Table 6 in minutes.

D1 D2 D3 D4 D5 D6

AS KDB-RT 14.06 15.05 41.95 185.79 73.20 28.12

SP STP 18.60 29.34 62.14 163.96 134.01 424.70

LS QT-RT 11.07 16.19 36.80 122.49 79.36 39.68

Magellan 20 17.29 33.73 68.38 409.94 1064.60 >1440.00

The best performing frameworks are Location Spark and Apache Sedona. Location Spark
is performing better for datasets D1, D3 and D4. We expected Location Spark to be
superior among all the datasets since the volume of data is enormous and it employs a
skew analysis. However, K-D-B-Tree partitioning distributes the input data in a more
effective way than Quad Tree partitioning for some datasets, hence Apache Sedona’s
better performance in D2, D5 and D6. It must also be noted that Magellan’s execution time
skyrockets from D4 on, due to Magellan’s preprocessing. We observed that during that
phase, Magellan assigned geometries in significantly more partitions than the rest of the
frameworks, resulting in high overhead in the filtering phase. Spatial Spark’s Sort Tile
partitioning is on par with Apache Sedona and Location Spark, excluding dataset D6.
However, as explained above, a new sampling technique must be implemented, because
it produced wrong verification results.

Figure 45. Line chart for total execution timTe of D1-D6.
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Figure 46. Stacked column chart for total execution time of D1-D6.
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6. CONCLUSIONS AND FUTURE WORK

To conclude, the purpose of this thesis is to gather famous serial algorithms and parallel
frameworks into a single, novel tool for geospatial interlinking: JedAI-spatial. We have
categorized the spatial join algorithms in three dimensions; space tiling,
budget-awareness and execution mode. For the serial methods, we introduced new
approaches (Strip Sweep) and optimized the implementation of the existing ones (e.g.,
see the implementation improvements for RADON) For the parallel frameworks, which
run on top of Apache Spark, we enhanced their filtering process with the Reference Point
Method for duplicate elimination. We performed a thorough evaluation that involves six
real, voluminous datasets as well as all serial and parallel budget-agnostic (i.e., batch)
algorithms with the results providing interesting insights into their relative performance.
JedAI-spatial is a robust system but some of its methods need tweaking. Algorithms such
as CR-Tree and the partition-based ones that use list sweep structures need further
optimization. We believe CR-Tree performs below expectations due to the fact that it is
implemented in Java, which does not allow proper memory manipulation compared to
programming languages like C or C++. Spatial Spark’s Binary Split partitioning needs
optimization, as well as a superior policy for declaring the sampling ratio for Sort Tile
partitioning. R-Tree partitioning for the preprocessing phase is simply not compatible with
the Reference Point Method due to its overlapping partitions. For that reason, we plan to
integrate R-Grove [30], a method that addresses all our concerns analyzed in subsection
4.3.1.
Apart from tweaking the already improved methods, we aim to integrate other famous
algorithms, spatial structures and bulk load techniques. Considering the remarkable
execution time for Quad Tree in section 5.1., we believe that similar tree-based algorithms,
like k-d Tree [34], should be included in our system. Another useful addition would be STR
packing, which as afore-mentioned we believe can solve a lot of problems for some
datasets with overlapping geometries.
The main advantage of JedAI-spatial, besides the benchmarking and the categorization of
the established algorithms for Geospatial Interlinking, is that it offers a common platform
for introducing improvements to all supported techniques.
For example, we plan to develop a novel load-balancing method that enhances all parallel
algorithms, since their bottleneck typically lies in the partitioning phase. Recall subsection
5.2.3, where Magellan’s execution skyrockets, due to inferior partitioning which extended
its filtering phase. Using the skew analysis strategies of Location Spark as a stepping
stone, we could develop a powerful, yet generic load-balancer that distributes the
workload evenly, among all available workers.
Similarly, we are currently working on a novel algorithm that replaces the typical,
coarse-grained MBR of each geometry with another one of finer granularity. This approach
will allow for reducing the false positives of FIltering to a significant extent. These are
candidate pairs that have intersecting MBRs but satisfy no topological relation apart from
disjoint. We also intend to extend JedAI-spatial in various ways: by adding support for
point geometries and proximity relations, by combining it with JedAI [31], [35], [36], [37],
[38] to explore the interplay between textual and spatial information in data integration and
by publishing as a Docker-based web application that can be easily used for free. This
practice was followed in JedAI [31], [35], [36], [37], [38], which provided an intuitive
Graphical User Interface (GUI) that allowed users to manually configure their desired
entity resolution methods. JedAI-spatial’s web application would allow users to provide
input datasets, configure their spatial join algorithms and save their results in RDF format.
Moreover, as we already mentioned we hope to release two versions, one for parallel and
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one for serial implementations, as Maven, Gradle or sbt25 dependencies. Since
JedAI-spatial is open-source under Apache License V2.0, we encourage other engineers
to submit their own spatial join algorithms and frameworks so as to build a toolkit with
various techniques.
Finally, we plan to apply JedAI-spatial to a wealth of real-world applications, such as the
interlinking of satellite images with in-situ observations [32] or news articles extracted from
the Web [33].

25 https://www.scala-sbt.org/
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Ξενόγλωσσος όρος Ελληνικός Όρος
Semantic Web Σημασιολογικός Ιστός
Geospatial Interlinking Διασύνδεση Γεωχωρικών Δεδομένων
Spatial Join Χωρική Διασύνδεση
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ABBREVIATIONS - ACRONYMS

IoT Internet of Things

DE-9IM Dimensionally Extended 9-Intersection Model

RAM Random-Access Memory

CPU Central Processing Unit

AWS Amazon Web Services

RDD Resilient Distributed Dataset

OGC Open Geospatial Consortium

JTS Java Topology Suite

WKT Well-Known Text

CSV Comma-Separated Values

TSV Tab-Separated Values

RDF Resource Description Framework

MBR Minimum Bounding Rectangle

RPM Reference Point Method

PBSM Partition Based Spatial-Merge Join

SSSJ Scalable Sweeping-Based Spatial Join

CR-Tree Cache-Consciours R-Tree

STR Sort Tile Recursive

RMBR Relative Minimum Bounding Rectangle

QRMBR Quantized Relative Minimum Bounding Rectangle

NE NorthEast

NW NorthWest

SE SouthEast

SW SouthWest

CF Co-occurrence Frequency

JS Jaccard Similarity

MBRO Minimum Bounding Rectangle Overlap

ISP Inverse Sum of Points

HDFS Hadoop Distributed FileSystem

SRDD Spatial Resilient Distributed Dataset

SQL Structured Query Language

API Application Programming Interface
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YAML Yet Another Markup Language

GUI Graphical User Interface
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ANNEX Ι

The code for the Apache Spark-based implementations is open-source and available at

https://github.com/GeoLinker/GeoLinker.

In order to run an experiment on the cluster, one has to first build a fat jar (Java Archive)

file using the command sbt assembly and provide the configuration for the execution

according to the configuration file at config/configurationTemplate.yaml.

A sample execution for a Magellan experiment would be the following:

$ sbt assembly

$ spark-submit --master <master> --class experiments.MagellanExp

target/scala-2.11/DS-JedAI-assembly-0.1.jar <options> -conf

</path/to/configuration.yaml>

Other experiments that are available:

experiments.GeoSparkExp

experiments.SedonaExp

experiments.SpatialSparkPartitionedExp

experiments.SpatialSparkExp

experiments.LocationSparkExp

Hereby, we present sample configuration files for each method, which we used in our

experiments for the D1 dataset:

GeoSpark:

source:

path: "hdfs:///user/gman/ds-jedai/AREAWATER.tsv"

realIdField: "2"

geometryField: "0"

target:

path: "hdfs:///user/gman/ds-jedai/LINEARWATER.tsv"

realIdField: "2"

geometryField: "0"

relation: "DE9IM"

configurations:

partitions: "400"

magellanZOrderCurvePrecision: "20"
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Apache Sedona:

source:

path: "hdfs:///user/gman/ds-jedai/AREAWATER.tsv"

realIdField: "2"

geometryField: "0"

target:

path: "hdfs:///user/gman/ds-jedai/LINEARWATER.tsv"

realIdField: "2"

geometryField: "0"

relation: "DE9IM"

configurations:

sedonaGridType: "KDBTREE"

sedonaLocalIndexType: "RTREE"

partitions: "400"

Location Spark:

source:

path: "hdfs:///user/gman/ds-jedai/AREAWATER.tsv"

realIdField: "2"

geometryField: "0"

target:

path: "hdfs:///user/gman/ds-jedai/LINEARWATER.tsv"

realIdField: "2"

geometryField: "0"

relation: "DE9IM"

configurations:

locationSparkLocalIndexType: "QUADTREE"

partitions: "400"

Magellan:

source:

path: "hdfs:///user/gman/ds-jedai/AREAWATER.tsv"

realIdField: "2"

geometryField: "0"
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target:

path: "hdfs:///user/gman/ds-jedai/LINEARWATER.tsv"

realIdField: "2"

geometryField: "0"

relation: "DE9IM"

configurations:

partitions: "400"

magellanZOrderCurvePrecision: "20"

Spatial Spark Partitioned:

source:

path: "hdfs:///user/gman/ds-jedai/AREAWATER.tsv"

realIdField: "2"

geometryField: "0"

target:

path: "hdfs:///user/gman/ds-jedai/LINEARWATER.tsv"

realIdField: "2"

geometryField: "0"

relation: "DE9IM"

configurations:

partitions: "400"

spatialSparkMethod: "FGP"

spatialSparkMethodConf: "512:512"
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