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ABSTRACT

In recent years, artificial intelligence becomes all the more significant for our lives with
many applications most of us would not even imagine. Representing the real world
demands sophisticated models, which we “feed” to agents to see how they will respond.
This is where Markov Decision Processes (MDPs) and Partially Observed Markov
Decision Processes (POMDPs) shine. POMDPs provide us with a general framework to
depict many different kinds of problems. The capabilities seem endless; from agents that
play games optimally to driverless cars. One of these problems that is becoming more
and more relevant today is the dynamic defense of a cyber network, which basically
means a network that protects itself from intruders in real time by trying to predict their
moves and stop them from progressing further into the network and reaching vital points.
The development of such a defense system is complicated, since the attackers do not
use simplistic methods, but instead rely on a complex sequence of exploits, combining
many vulnerabilities. The POMDP model can provide a quite realistic representation of
this problem. However, as with most demanding problems modeled as such, it is difficult
to solve them efficiently due to the complicated structure of the POMDP model itself.
Researchers focus on creating sufficient algorithms that can tackle these problems in
realistic situations.

We will begin with introducing the basic information needed to understand the MDP model
and then we continue with the POMDP model which extends the idea to more realistic
applications. Then, we can present the formulation of the dynamic defense problem as
POMDP and after that we take a look into the DESPOT POMDP solver, which is one of
the best algorithms to scale up and cope with such complicated problems.

SUBJECT AREA: Atrtificial Intelligence, Decision making under uncertainty

KEYWORDS: reinforcement learning, MDP, POMDP, dependency graph, dynamic
defense of network, POMDP solvers



NEPIAHWYH

OMor akoupe yia tnv Texvnt Nonuoouvn TTou Ta TeAeuTaia Xpovia atroTeAEi OAO Kal
MEYOAUTEPO KOMMPATI TNG CWAG MAG ME EQPAPPOYEG TTOU OI TTEPIcOOTEPOI Ot Ba
@avrtafopaoTav ToTE. H avatrapdoTacn Tou TTpayuaTikou KOGPOU atraiTei TTOAUTTAOKA
MOVTEAQ TTOU VA PTTOPOUUE VA OWOOUUE OE TTPAKTOPES KAl VA OOUNE TTWG Ba EVEPYNOOUV.
O1 MapkoBiavég Aladikaoieg AtTrTopdoewv (MDP) kal kupiwg o1 Mepikwg MNapatnpouueveg
MapkoBiavég Aladikaoiég AtTopdoewyv (POMDP) agopouv Tn Afyn atmmo@dcewyv UTtro
aBepaidTnNTa KAl BonBouv IBIaiTEpa oTNV TTIOTH avaTrapdoTacn evog TeEpIBAAAovTog. Ol
duvaTOTNTEG PAiVOVTAl ATEAEIWTEG, KABWG Ol EQAPUOYEG KupaivovTal aTTO «EEUTTVOUGY
TTAKTEG TTAIYViIWV PEXPI auTopaToTToINUEVA cuoTAMATA 0drynong. ‘Eva 1é1o10 TTpoRANua
TTOU KEVTPICEI OUVEXWG TO €VOIA@EPOV €ival N AUTOPATOTTOINKEVN APUVA EVOG BIKTUOU,
OnAadn éva SiKTUO TTOU TTPOCTATEUETAI JOVO TOU OTTO £TTIO0EOUG EI0BOAEIG, TTPOBAETTOVTAG
TIG KIVAOEIG TOUG KAl TTAipvovTag Ta KATAAANAQ HETPA (OOTE VA TOUG ATTOTPEWE! aTTd TO va
@T1doouv o€ wTIKA onueia Tou dIKTUoU. O1 TTITNOEPEVOI OEV KAVOUV ATTAEG EVEPYEIEG, OAAG
XPNOIUOTTOIOUV TTOAUTTAOKEG TOAKTIKEG OUVOUALOVTAG TTOANG TPWTA onueia Tou SIKTUOU KiI
€101 N avaTTugn evog TETOIOU CUCTANOTOG Apuvag KabBioTatal apketd dUOKOAN. Av Kai
MTTOPOUME VO QVOTTOPAOTIOOUPE TO TTPORANUA apkeTd moTd cav POMDP, uttdpxel 10
¢NTNUa TNG ypriyopng tmiAuong, kabBwg 1o POMDP povtéAo gival AdN TTepITTAEyuEVO auTd
KaB’autd. O1 gepeuvnTég, AOITTOV, E0TIACOUV TNV TTPOCOXI TOUG OTNV AVATITUEN YPIYOPWV
OAyopiBuwy TTOU va uTTopoUvV va AUvouv autd Ta TTPOBAAPATO O€ PEQAIOTIKEG
KATaOTACEIG.

ApxIKd, Ba elodyoupe TIC PBACIKEG €VVOIEG KOl TTANPOQYOPIES TTPOKEINEVOU VA Yivel
katavontd to MDP povtého kal Ba ouvexiooupe pe 1o POMDP 1TOU €TTEKTEIVEI TO
TTPONYOUPEVO, KAVOVTAG TO PEaAIOTIKA e@apudoiyo. ‘Eteira, yivetal n TTapouciaon Tou
TTPOBAAUATOS TNG auTopaToTroINUéVNG Guuvag cav POMDP kal KOTaAfyoupe oTov
aAyopiBpo DESPOT, T1Tou gival ammd Toug KAAUTEPOUG TTOU JTTOPOUV va avTatTe¢éABouy o€
POMDP trpoBAfjuata Tétolag KAiJakag.

OEMATIKH NMEPIOXH: Texvnt Nonuoaouvn, Afqyn atro@dcewyv utrd aBefaidtnta

AEZEIX KAEIAIA: evioxuTikp paénon, MDP, POMDP, ypagriuata €EGpTnong,
auTopaTtotroiNuévn  Auuva  OIKTUOU, aAyopiBuol TTou  €TIAUOUV
POMDP
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The Dynamic Defense of Network as POMDP and the DESPOT POMDP Solver
1. INTRODUCTION

Markov Models are widely used in artificial intelligence applications. We will analyze
particularly the Markov Decision Process (MDP) and Partially Observed Markov Decision
Process (POMDP) models. Both are used to tackle problems concerning an agent who
tries to achieve a goal in an environment under uncertainty. The POMDP model extends
the idea of the MDP by adding the element of partial observability. In other words, this is
the case where the agent cannot “see” the exact state of the environment. This feature
allows us to represent more complicated and realistic environments and thus formulate
the equivalent problems.

However, there is an issue with these problems concerning scalability. Most realistic
environments are characterized by large state spaces as well as observation spaces.
This means that the algorithms used to examine the agent’s possible actions and take
decisions can be non-efficient. Researchers have created some complicated algorithms
that can scale up for large size POMDPs and this appears to be an area with a lot more
to discover.

We will begin with analyzing some basic information on the MDP and POMDP models.
Then, we present the POMDP formulation for the problem of the dynamic (or automated)
defense of a cyber network. Finally, we present the DESPOT algorithm, which is a
sophisticated POMDP-solver that belongs to the state-of-the-art family.

This chapter continues with some basic definitions and information on Markov Decision
Processes, which are the basis for the rest.

1.1 Markov Decision Processes

The finite state MDP model consists of the following ingredients:

1. X¥={1,2, .., X} denotes the state space and x; € X" denotes the state of the controlled
Markov chain attime k=0, 1, ...,N.

2. U/=1{1,2, ..U} denotes the action space. The elements u € 7/ are called actions. In
particular, u, € 7/ denotes the action chosen at time k.

3. For each action u € ?/and time k € {0, ...N—1}, P(u, k) denotes an XxX transition
probability matrix with elements

Pj(u, k) = P(Xis1 =jlxc=1,ux =u),i,j € A
4. For each state i € X, action u € U and time k € {0, ...N—1}, c(j, u, k) denotes the one-
stage cost incurred by the decision-maker (controller).
5. At time N, for each state i € X", cy(i) denotes the terminal cost.

This definition concerns the environment of the agent. We now need to specify an
objective function or a way to enable the decision-maker to do the work of taking the best
actions. Assuming a problem is modeled with a finite horizon, then the objective of the
decision-maker is:

N-1

]n(x) = ]ETL' {z C(xk'nk(hk): k) + CN(xN)le =X (11)

k=0

N. Karaiskakis 13
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which is the expected cumulative cost incurred by using policy m up to time k. Here, E,
denotes expectation with respect to the probability distribution induced by h;, = {x,, u,,
X1y Ugyeeer X1, Ug—1, Xk }-

The decision-maker determines the optimal policy in the following way:

m* = argmin J(x). (1.2)

T

The meaning of these equations is that the decision-maker searches for the policy
sequence m that minimizes the expected cumulative cost (1.1) for every initial state x. If
X and /are finite, a policy with minimum cumulative cost always exists. The policy with
the smallest expected cumulative cost amongst all policies for every initial state is called
the optimal policy and is denoted as m*. Obviously, the optimal policy sequence m* may
not be unique. (For example, if the costs c(x, u) are identical for all x and u, then all policies
are optimal.) [1].

Classes of policies

To solve the MDP (1.2) for an optimal policy m*, we need to examine the space of policies
more carefully. We distinguish three types of policies:

1. General policies: The most general class of policies t = (m,, 4, ..., Ty_4) are randomized
history dependent. That is, at each time k, action u, is chosen according to probability
distribution m;(h;) (More on h;, in [1] section 6.4). So uy is a probabilistic

function of hy).

2. Randomized Markovian policies: Action u, is chosen according to probability
distribution m;, (x;). That is, u; is a probabilistic function of state x;, only.

3. Deterministic Markovian policies: Action u,, is chosen based on a deterministic mapping
from the state space .t to action space %/

Bellman’s stochastic dynamic programming algorithm

Consider the MDP problem (1.1) with objective (1.2). The optimal policy m* is obtained
via Bellman’s stochastic dynamic programming algorithm [5].

Theorem 1.1 (Bellman’s dynamic programming algorithm) The optimal policy m*= (my,m,,
..., my—1) for the finite horizon MDP can be obtained as the solution of the following
backward recursion:

Initialize Jy (i) = c(i,N). Then for k=N — 1, ..., 0 evaluate

e = mind (i, k) + ) Py K) Jieen ()
J

7 (D) = argmind (k) + ) By 1) Jiers () (1.3)
j

For any initial state i € {1, ..., X}, the expected cumulative cost of the optimal policy m*,
namely J.(i) in (1.2) is obtained as ], (i) from (1.3) .

N. Karaiskakis 14
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1.2 Infinite Horizon Discounted Cost MDP

In this section we consider the case where the horizon length N — co. Also, the transition

probabilities and costs are assumed not to be explicit functions of time, and there is no
terminal cost. The infinite horizon discounted MDP model considered here is the 5-tuple:
(X U P;(u), c(i,u),p)i,jEXue U

where p € [0, 1) is a discount factor. The discount factor p weights the costs in the
following manner: the cost incurred by the decision-maker at time k is p*c(xy, uy).
Therefore, the first few decisions are much more important than subsequent decisions.

1.2.1 Objective and Dynamic Programming Equation

The aim is to determine the optimal policy n* = argmin /(i) where J,(i) denotes the
s

infinite horizon discounted cumulative cost

]n(l) = II5:17: IZ pkc(xk,uk)|x0 = x} (1'4)
k=0

Here m = (m,, m,, ...) IS @ sequence of policies where m; at time k maps h;, = {x,, ug, x1,
Uq,yeme X1, Ug—1, X} tO ACtION 1y,

Theorem 1.2 Consider an infinite horizon discounted cost Markov decision process with
discount factor © € [0, 1). Then

1. For any initial state 7, the optimal cumulative cost J.+(i) is attained by the value function
(i) which satisfies Bellman’s equation (1.5).

2. For any initial state 7, the optimal cumulative cost J.-(i) achieved by the stationary
deterministic Markovian policy * which satisfies Bellman’s equation (1.5).

3. The value function Vis the unique solution to Bellman’s equation (1.5). (The optimal
policy may not be unique.)

V() = min Q,(i,w), ™" = argminQ,(i,uw),
Quliw = cbw) +p ) PLGVG) (15
J

1.2.2 Numerical methods

Now we can take a look at three classical methods for solving infinite horizon discounted
cost Markov decision processes.

Value iteration algorithm
The value iteration algorithm is a successive approximation algorithm to compute the

value function V of Bellman’s equation. It proceeds as follows. Choose the number of
iterations N (typically large). Initialize V,, (/) = 0. Then for iterations k=1, 2, ..., N, compute

N. Karaiskakis 15
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V. (0) = Lnellr} Qx(i,u), m; =arg Lnel{} Qi (i,u),
Qi w) = c(iw) +p ) PV ().
Jj

Then use the stationary policy my at each time instant in the real-time controller. The
value iteration algorithm is identical to the finite horizon MDP dynamic programming
algorithm, except that in the controller implementation the stationary policy my is used at
each time.

Policy iteration algorithm

This is an iterative algorithm that computes an improved policy at each iteration compared
to that of the previous iteration. Since for a U-action, X-state Markov decision process,
there are a finite number XUpossible stationary policies, the policy iteration algorithm
converges to the optimal policy in a finite number of iterations.

The policy iteration algorithm proceeds as follows.
Assume a stationary policy m,,_; and its associated cumulative cost J, from iteration
n — 1 are given. At iteration n:

1. Policy improvement: Compute stationary policy r,, as

T, (@) = argmin|c(w +p Y Py, ()|
j
where i € A7

2. Policy evaluation: Given policy m,,, compute the discounted cumulative cost associated
with this policy as

Jry @ = €0, a D) + p ) Pyy(n (D, O
j

whereie X/

This is a linear system of equations and can be solved for J, . If ], () </, (i) for alli,
then set n =n + 1 and continue. Else stop.

Linear programming

Bellman’s equation can be seen as a linear programming optimization problem.
Define V(i) such that

V@) < min c(i,u) + pz P;w) V(j)
j

From the value iteration algorithm we have that V(i) < (/) where Vis the value function

from Bellman’s equation. This means that the value function Vis the largest V that
satisfies the above inequality. Then Vis the solution of the optimization problem

N. Karaiskakis 16
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mvaxz a, V(i) subjectto V(i) <min<c(i,u) + pz P V() ¢,
u
J

L
where 7€ X and q, are arbitrary nonnegative scalars.

Vis the solution of the linear programming problem:

m&;\xz a, V(i)

L
subject to V(i) < c(i,u) + 'DZ PV (),
j

where 7€ X and ue 7/

1.3 Infinite Horizon Average Cost MDP

As in the discounted cost case, by a stationary policy we mean the sequence of policies
n = (m,m,m, ...) and for notational convenience we denote m by . For any stationary policy
T, let E, denote the corresponding expectation and define the infinite horizon average
cost as

N
1
]n(xo) = 1\l/1£rc}oN_-|-1[E” {; C(xkl uk)lxo}- (16)

We say that a stationary policy 7* is optimal if J;; (x,) < J.(x,) for all states x,e A7

Unlike discounted infinite horizon problems, average cost problems have more issues.
The existence of an optimal stationary policy depends on the structure of the transition
matrices P(u). We will not go into depth with that. However, we introduce the term
“unichain” to present the following condition, which is sufficient for our needs, since our
description considers finite state Markov chains.

Definition of Unichain: An MDP is said to be unichain if every deterministic stationary
policy yields a Markov chain with a single recurrent class.

It turns out that if an average cost MDP is unichain, then an optimal stationary policy 7*
always exists. Checking the unichain condition can be computationally intractable though
since there are XYpossible stationary policies; for each such policy one needs to check
that the resulting transition matrix (B; (r(i)) , i, j € A") forms a recurrent class.

If all the transition probabilities P;; (u) are strictly positive for each m, then the unichain
condition trivially holds [1]. The next theorem is equivalent to Bellman’'s dynamic
programming.

N. Karaiskakis 17
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Theorem 1.3 Consider a finite-state finite-action unichain average cost Markov decision
process. Then the optimal policy n* satisfies

g+ V(@ =min{cGu) + Z P,V () (1.7)
J

7 (i) = argmin? c(i,u) + Z PLV() . (1.8)
J

Here n* is a stationary nonrandomized policy. Also, g = J.+(x,) denotes the average cost
achieved by the optimal policy 7* and is independent of the initial state x,. Furthermore,
g is unique while if V (i), i € X satisfies (1.7) then so does V(i) + K for any constant K.

1.3.1 Numerical methods

Relative value iteration algorithm

Since by Theorem 1.3 any constant added to the value function also satisfies (1.7) , it is
is convenient to rewrite (1.7) in the following form that is anchored at state 1. Define V(i)
= 1)— (1). So obviously {1)= 0. Then (1.7) can be rewritten relative to state 1 as:

g+ 7@ =mindc(i,w) + ZPij(u)V(j) P>,
1
g+V(1) = mindc(1,u) + Z PGP ()t + V(1)
J
or
g =min{ c(1,u) +ZP1j(u)l7(j) .
J
(1.9)

In analogy to the value iteration algorithm described for the discounted cost MDP (section
1.2.2), (1.9) yields the following relative value iteration algorithm that operates for
k=1,2,..

Ve = minJ c(i,u) + ZPij(u)Vk_l(j) Cgei>1,

>1
gk = n}lin c(1,u) + z Plj(u)]?k—l(j) .
j

(1.10)

N. Karaiskakis 18
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Linear programming

An average cost MDP can be formulated as a linear programming problem and solved
using interior point methods or simplex algorithms [1]. From Theorem 1.3, solving
Bellman’s equation is equivalent to the following linear program

Maximize g
subjectto g + V(1) < c(i,u) + Xje x PV (). (1.11)

The dual of the above problem can be formulated as the following linear programming
problem. Let p(x, u) = P (x;x = x, u, = u), x € X u € ¢ denote the joint action state
probabilities.

Theorem 1.4 Consider a finite-state finite-action unichain average cost Markov decision
process. Then the optimal policy ©* is

m*(x) = u with probability 6,.,, = M
* Diexpr ()

The X x Uelements of p* are the solution of the linear programming problem:

minimize Z Z c(i,u)p(i,u) withrespecttop

ieX ueu

subject top(i,u) = 0,i€e X ue U

> plw=1

i

Zp(i,u) - ZZp(i,u)Pij(u), e, .. x.

N. Karaiskakis 19
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2. PARTIALLY OBSERVED MARKOV DECISION PROCESSES

The POMDP model extends the MDP by adding the feature of partial observability. A
model where the agent does not fully observe the environment provides a framework to
formulate more realistic problems.

2.1 Finite Horizon POMDP and Objective

A POMDP model with finite horizon N is a 7-tuple (X, 74 1/ P(u), O(u), c(u), cy).

1. X¥={1, 2, .., X} denotes the state space and x,€ t"denotes the state of a controlled
Markov chain at time k=0, 1, ..., N.

2. /=11, 2, ..U} denotes the action space with u,€ 7/denoting the action chosen at
time k by the controller.

3. I/ denotes the observation space which can either be finite or a subset of R. y,€ I/
denotes the observation recorded at each time k € {1, 2, .., N}.

4. For each action u € 7/ P(u) denotes a X x X transition probability matrix with

elements P;j(u) =P (xyy1 = Jlxx=hup = u),i,j € A7 2.1)
5. For each action u € 7/, O(u) denotes the observation distribution with
Oy () =P (Y41 =Nxpp1=tux=u), IE Xy € V. (2.2)

6. For state x;, and action u,, the decision-maker incurs a cost c(xy, uy).
7. Finally, at terminal time N, a terminal cost cy (xy) is incurred.

The decision-maker does not observe the state x,,, but only observes noisy observations
v, that depend on the action and the state specified by the probabilities in (2.2).

Objective

We have to specify a performance criterion or objective function for the decision-maker.
For the finite horizon, the objective is:

N-1
]n(bo) = ]En {Z C(xk'uk) + CN(xN)lbO (23)

k=0

which is the expected cumulative cost incurred by the decision-maker when using policy
7 up to time N given the initial distribution b, of the Markov chain.

Here, E, denotes expectation with respect to the joint probability distribution of (x,, y,, x1,
Y1, Xn-1, YN-1, Xn, Yn)- The goal of the decision-maker is to determine the optimal policy
sequence

m* = argmin J,(by), (2.4)

for any initial prior b, that minimizes the expected cumulative cost. Of course, the optimal
policy sequence m* may not be unique.

Remarks

N. Karaiskakis 20



The Dynamic Defense of Network as POMDP and the DESPOT POMDP Solver

1. The decision-maker does not observe the state x,. It only observes noisy observations
v, that depend on the action and the state. Also, the decision-maker knows the cost
matrix c(x, u) for all possible states and actions in A, 7/ But since the decision-maker
does not know the state x; at time k, it does not know the cost accrued at time k or
terminal cost. Of course, the decision-maker can estimate the cost by using the noisy
observations of the state.

2. The term POMDP is usually used in the case where the observation space IV is finite.
However, we consider both finite and continuous valued observations.

3. The action u, affects the evolution of the state and observation distribution. In
controlled sensing applications such as radars and sensor networks, the action only
affects the observation distribution and not the evolution of the target.

2.2 Belief State Formulation of POMDP

This section details a crucial step in the formulation and solution of a POMDP, namely,
the belief state formulation. In this formulation, a POMDP is equivalent to a continuous-
state MDP with states being the belief states. These belief states are simply the posterior
state distributions computed via the HMM filter described in Part 1 of [1]. We then
formulate the optimal policy as the solution to Bellman’s dynamic programming recursion
written in terms of the belief state. The main outcome of this section is the formulation of
the POMDP dynamics in terms of the belief state.

Recall from that for a fully observed MDP, the optimal policy is Markovian and the optimal
action u, = my(x;). In comparison, for a POMDP the optimal action chosen by

the decision-maker is in general

Uy = mp(hy), where hp= (bg, Ug, Y1, Ug—1, Vic)- (2.5)
Since h; is increasing in dimension with k, to implement a controller, it is useful to obtain
a sufficient statistic that does not grow in dimension. In [1] section 3.5, a HMM filter is

used to compute the posterior distribution b, which is a sufficient statistic for hy,.
We define the posterior distribution of the Markov chain given h;, as:

bk(l) = P(xk = Ilhk)' i€ XY where hk: (bo, Ug, V1,0 uk_l,yk) (26)

We will call the X-dimensional probability vector by= [by (1),..., by (X)]” as the belief state
or information state at time k.

The main point established below in Theorem 2.1 is that (2.5) is equivalent to

Uy = (b)), (2.7)

In other words, the optimal controller operates on the belief state b, (HMM filter posterior)
to determine the action u;.

In light of (2.7), let us first define the space where by, lives in.

The beliefs b, k=0, 1, ... defined in (2.6) are X-dimensional probability vectors. Therefore,
they lie in the X — 1 dimensional unit simplex denoted as

B(X)={be R:1'b=1,0<b(i) <1 forallle X ={1, 2, ..., X}}.
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B(X) is called the belief space. B(2) is a one-dimensional simplex (unit line segment),
B(3) is a two-dimensional simplex (equilateral triangle); B(4) is a tetrahedron, etc. Note
that the unit vector states e, e,, ..., ex of the underlying Markov chain X" are the vertices
of B(X).

We now formulate the POMDP objective in terms of the belief state. Consider the
objective (2.3). Then

Ju(bo) = Ep Z (o, ug) + CN(xN)IbO}

k=0

—E, Z Efc (o, ) |} + [E{cN(xN)th}lbO}
k=0

=

-1 X
=1

C(i, uk)bk (l) + z CN(l)bN(L)IbO}

&
Il

0i

N—1

~E, {Z ¢ i + c’NbN|b0}
k=0

(2.8)

In (2.8), the X-dimensional cost vectors c, (k) and terminal cost vector ¢y are defined as:

c, = [c(L,u) ...cX,w)], cy = [cy(1) ... ex(X)]. (2.9)

In this way the POMDP has been expressed as a continuous-state (fully observed) MDP.
This continuous-state MDP has belief state b, which lies in unit simplex belief space B(X).
Determining the optimal policy for a POMDP is equivalent to partitioning B(X) into regions
where a particular action z€ {1, 2, .., U} is optimal.

2.3 Stochastic Dynamic Programming for POMDP

In this section, we present how we can use Bellman’s dynamic programming for POMDPs
according to the formulation we previously saw.

Theorem 2.1 For a finite horizon POMDP with model (X, 7/ 1/ P(u), O(u), c(u), cy):

1. The minimum expected cumulative cost J,-(b) is achieved by deterministic policies

n* = (my, My, ..., Ty_1 ), Whereu, = my(by).

2. The optimal policy n* = (n§, 3, ..., ty_, ) for a POMDP is the solution of the following
Bellman’s dynamic programming backward recursion: Initialize Jy(b) =c’'yb and then for
k=N-1,..,0
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J(b) = mind ¢'ub + D Jeaa (TC,y,0)0 (b, y,1)

yEY

mi(b) = argmind 'ub + ) Jusa (T(m,y, 1) (h,y, 1))

YEY

(2.10)

The expected cumulative cost J,.(b) (2.10) of the optimal policy * is given by the value
function J,(b) for any initial belief b € B(X).

Since the belief space B(X) is uncountable, the above dynamic programming recursion
does not translate into practical solution methodologies. J, (b) needs to be evaluated at
each b € B(X), an uncountable set.

2.4 Discounted Infinite Horizon POMDP
So far we have considered finite horizon POMDPs. This section considers infinite horizon
discounted cost POMDPs. The discounted POMDP model is a 7-tuple (X, 7, 1/ P(u),

O(u), c(u), p) where P(u), O(u) and c are no longer explicit functions of time and p € [0,
1) is an economic discount factor. Also, there is no terminal cost cy.

We define a stationary policy sequence as =(m,m,m,...) where 1 is not an explicit function
of time k. For stationary policy  : B(X) — 7/ initial belief by€ B(X), discount factor p € [0,
1), define the objective function as the discounted expected cost:

Jr(bo) = Ey IZ PkC(xk»uk)}; where w, = m(by)
k=0

or
]n(bo) = ]En {Z pkcln(bk)l;
k=0
(2.11)
where ¢, = [c(1,u), ..., c(X,u)]’,u € ¥/ is the cost vector for each action.

The aim is to compute the optimal stationary policy =* : B(X) — 7/such that
Jrr (Bo) < Jr(bg) ¥ by € B(X).

Theorem 2.2 Consider an infinite horizon discounted cost POMDP with discount factor p
€ [0, 1). Then with b € B(X) denoting the belief state,

1. The optimal expected cumulative cost is achieved by a stationary deterministic
Markovian policy *.
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2. The optimal policy n*(b) and value function Wb) satisfy Bellman’s dynamic
programming equation
n*(b) = arg min Q(b,w), Jr+(bo) =V (bo) (2.12)

V() = minQ(b,w), Q(b,w) = a(b) +p ) V(T(b,y,0)o(by,w,

yEeY

3. The value function n) is continuous and concave in b € B(X).

For more general theoretical background on MDPs and POMDPs, except for [1], also [2]
and [3] provide the reader with much information.

2.5 Classes of POMDP Algorithms

In this section, we present the basic categories of POMDP solvers. First, we will talk about
exact algorithms, which are used to solve optimally finite horizon POMDPs. However,
these algorithms are not efficient, so we need to take a look into approximating algorithms
that search for near-optimal solutions and can scale pretty well even for large scale
POMDPs. The most important categories of such solvers are the point-based (PB)
algorithms and the online algorithms.

2.5.1 Exact Algorithms: Incremental Pruning

These algorithms solve optimally finite horizon POMDPs. They are based on Sodnik’s
idea [4], which was the first exact algorithm for POMDPs of the finite horizon. Exact here
means that there is no approximation involved in the dynamic programming algorithm.

According to [1] (section 7.5.1), Bellman’s dynamic programming recursion (2.10) can be
expressed as the following three steps:

!

b
Qb 1) = 2+ Ja(T(b,y,0)a (b, 1)

Q1) = ) Qelbu,y)

yeY

Jk(b) = HE“ Qi (b, w).
(2.13)

Based on the above three steps, the set of vectors I}, that form the piecewise linear value
function [1], can be constructed as:

Cy

2+ PA)Oy (WYY € Fira

I"R(u,y)={

L(w) =@ L (w,y)

I, =Uyeu I (w).
(2.14)
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Here @ denotes the cross-sum operator: given two sets of vectors A and B, A@B consists
of all pairwise additions of vectors from these two sets.

In general, the set I}, constructed according to (2.14) may contain superfluous vectors
(we call them “inactive vectors” below) that never arise in the value function J, (b).

The incremental pruning algorithm seeks to eliminate useless vectors by pruning I}, to
maintain a parsimonious set of vectors. Below is the Incremental pruning algorithm:

Algorithm 2.1: Incremental pruning

1: Given set [}, ., generate [}, as follows:
2: Initialize I}, (u, y), I}, (u), I}, as empty sets

3:foreachu € %/
4: foreachye l/

Ii(uy) < prune ({%‘ + P(u)0y(wyly € Fk+1})

I, (u)« prune (I}, (W1} (u,y))
end for
I, < prune (I U I} (u))
end for

The value function J, (b) = rrenirn yb" with set of vectors I is piecewise linear and concave.
Vel

Suppose there is a vector v & I such that for all b € B(X), it holds that y’b > y'b for all
vectorsy € Iy —{r }. Then ¥ dominates every other vector in I, and is never active.

The following linear programming dominance test can be used to identify and prune
inactive vectors:

min x
subject to: (y-y)' b =x,VyeT-{y} (2.15)

If the above linear program yields a solution x > 0 for a vector y, then y dominates all other

vectors in [ — { ¥}, which means it is inactive and can be excluded from I'. This pruning

method makes the Incremental Pruning Algorithm more efficient compared to other exact
POMDP-solvers.

Other known exact algorithms are Monahan’s algorithm and Witness algorithm.

2.5.2 Point-Based Value lteration Algorithms

Point-based value iteration methods seek to compute an approximation of the value
function at special points in the belief space. The main idea is to compute solutions only
for those belief states that have been visited by running the POMDP. This urges
researchers to develop approximate solution techniques that use a sampled set of belief
states on which the POMDP is solved.

Such a method can be inefficient given the exponential growth in value function
representation size. When performing value iteration over the belief space, it is crucial to
limit the size of the set of vectors representing the value function. The issue here lies in
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the decision on which vectors should be removed. Of course, there is a trade-off between
avoiding the growth of the set of vectors of the value function, at the cost of compromising
the accuracy of the value function.

PB algorithms belong to the offline family, since they construct a policy by dividing the
belief space into areas based on the domination relations among the vectors representing
the value function. Also, they need an initial estimation of the value function. More details
on PB algorithms can be found at [7].

We will now take a look into the Value Iteration algorithm for discounted cost POMDPs.
Letn =1, 2, .., N denote iteration number. The value iteration algorithm for a discounted
cost POMDP is a successive approximation algorithm for computing the value function
V() of Bellman’s equation (2.12) and proceeds as follows: initialize V,(b)= 0. For
iterations n =1, 2, .., N, evaluate

Vn(b) = min @, (b,u), 73(b) = arg min Q, (b, w),

Qubw) = b+ p ) Vo s(T(b,y,10)0(b,y,w) (2.16)

YEY

Finally, the stationary policy r;, is used at each time instant k in the real-time controller.
The POMDP value iteration algorithm (2.16) is identical to the finite horizon dynamic
programming recursion (2.10). So at each iteration n, V,(b) is piecewise linear and
concave in b (by Theorem 2.1). The value iteration algorithm (2.16) generates a sequence
of value functions {V,} that will converge uniformly (sup-norm metric) as N —oo to V(b),
the optimal value function of Bellman’s equation.

As mentioned already, the number of piecewise linear segments that characterize V,,(b)
can grow exponentially with iteration n. Therefore, we cannot expect great results except
for POMDP problems with small state, action and observation spaces.

2.5.3 Online POMDP solvers

An offline POMDP solver returns a policy defining which action to execute in every
possible belief state. Given the complexity of the POMDP model, it is obvious that this
practice is not sufficient. Exact algorithms can only be useful when it comes to small to
mid-size domains, since the policy construction step takes significant time. Online
algorithms tackle this issue by computing good local policies at each time step.
Approximating offline algorithms may be used in order to compute upper and lower
bounds of the value function. Then, an online algorithm takes into account these bounds
S0 as to search for policies based on the more promising areas of the belief space and
save time.

Online approaches try to find a good local policy for the current belief. These approaches
tend to be more appropriate for large POMDPs, because they only need to consider belief
states that are reachable from the current belief state. This focuses computation on a
small set of beliefs and thus reduces running time drastically. In addition, since online
planning is done at every step, it is sufficient to calculate only the maximal value for the
current belief state. In this setting, the policy construction steps and the execution steps
are interleaved with one another as shown in Figure 2.1.

In some cases, online approaches may require a few extra execution steps (and online
planning), since the policy is locally constructed and therefore not always optimal.
However, the policy construction time is often substantially shorter.
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Offline Approaches

Policy Construction Policy Execution

Online Approaches

L 1

Small policy construction step between policy execution steps
Figure 2.1: Comparison between offline and online approaches.

Consequently, the overall time for the policy construction and execution is normally less
for online approaches. In practice, a potential limitation of online planning is when we
need to meet short real-time constraints. In such case, the time available to construct the
plan is very small compared to offline algorithms.

Online algorithms comprise two basic steps; the planning phase and the execution phase.
In the planning phase, the algorithm is given the current belief state and computes the
best action to execute in the current belief. This is usually achieved in two steps.

First a tree of reachable belief states from the current belief state is built by looking at
several possible sequences of actions and observations that can be taken from the
current belief. In this tree, the current belief is the root node and subsequent reachable
beliefs are added to the tree as child nodes of their immediate previous belief. Belief
nodes are represented using OR-nodes (at which we must choose an action) and actions
are included in between each layer of belief nodes using AND-nodes (at which we must
consider all possible observations that lead to subsequent beliefs) [8]. Then the value of
the current belief is estimated by propagating value estimates up from the fringe nodes,
to their ancestors, all the way to the root, according to Bellman’s equation.

After the planning phase is done, the execution phase proceeds by executing the best
action found for the current belief in the environment, and updating the current belief and
tree according to the observation obtained.

Algorithm 2.2 provides an outline on a generic online algorithm’s implementation of the
planning phase (lines 5-9) and the execution phase (lines 10-13). The algorithm first
initializes the tree to contain only the initial belief state (line 2). Then given the current
tree, the planning phase of the algorithm proceeds by first selecting the next node to
expand (line 6). The Expand function (line 7) constructs the next reachable beliefs under
the selected leaf for some pre-determined expansion depth D and evaluates the
approximate value function for all newly created nodes. The new approximate value of
the expanded node is propagated to its ancestors via the UpdateAncestors function (line
8). The planning phase goes on until some terminating condition is met (either an optimal
action is found or planning time has run out).

Then, the algorithm proceeds to the execution phase, where it executes the best action
u* found during planning (line 10) and gets a new observation o from the environment
(line 11). Next, the algorithm updates the current belief state and the search tree T
according to the most recent action u* and observation o (lines 12-13).
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Algorithm 2.2: Online POMDP-solver

1: Static: b.: The current belief state of the agent.

D+ Expansion depth.

L: Alower bound on V*.

U: An upper bound on V*.
2:b, < b,
3: Initialize 7'to contain only b.at the root
4: while not ExecutionTerminated() do

5 while not PlanningTerminated() do

6: b*« ChooseNextNodeToExpand()
7: Expand(b*, D)

8 UpdateAncestors(b*)

9 end while

10: Execute best action u* for b,
11: Perceive a new observation o

12: b, ~ 7(b,, u*, 0)
13: Update tree 7T'so that b, is the new root
14: end while

T: An AND-OR tree representing the current search tree.

N. Karaiskakis
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3. DYNAMIC DEFENSE OF CYBER NETWORKS

After seeing the basic elements of POMDPSs, we can introduce a problem modeled as
such. The problem is the protection of a cyber network from intruders in real time.
Specifically, given a network, the defender attempts to prevent the attacker from reaching
important points, by blocking possible future actions that further the intrusion, while
maintaining an adequate level of availability for trusted users.

In order to do so, the defender has to rely on the representation of the network he has
during each time step. The defender does not know the true strategy of the attacker and
is unable to perfectly observe the attacker’s actions, resulting in a lack of certainty of the
security status of the network at any given time. The defender only has access to a stream
of noisy security information generated in real-time (for example, security alerts
generated via intrusion detection systems). Oftentimes, this information suffers from a
high-rate of false alarms, that is, alarms being triggered when nothing of concern has
actually occurred. This element constitutes the partial observability aspect of the problem
and thus urges us to adopt the POMDP formulation.

The defender aims to decide on his actions based on a near-optimal policy. So the
problem is modeled as a POMDP, where the decision-maker is the defender, and based
on the information from the environment, choses the best action for the given situation
each time.

3.1 POMDP Formulation of the Dynamic Defense Problem

3.1.1 Dependency Graphs

First of all we need a way to represent the network and especially the relation between
exploits the attacker can attempt and network states, as well as the states we cannot
allow which are the cases the intruder has succeeded in reaching critical points.

One way to model such interactions are Attack trees/graphs. Attack trees/graphs (first
introduced in [11]) model the dependencies between exploits and system states in a cyber
network, allowing one to construct the specific attack paths that intruders can take to enter
a network. However, these graphs tend to be enormously large even for modestly-sized
systems, rendering them restricting for any realistic applications. One way to improve
scalability, is the assumption of monotonicity on the attacker’s behavior, which means
that the success of a previous exploit will not interfere with the success of a future exploit.
Monotonicity enables one to restrict attention to dependencies between exploits and
security conditions, in what is termed a dependency graph, avoiding the need to
enumerate over all system states. In this way the amount of information required to
describe network attacks is drastically reduced.

A dependency graph is used to model how the attacker progresses through the cyber
network over time. The dependency graph is represented as a hypergraph, where nodes
represent possible security conditions and directed hyperedges (edges that connect a
pair of sets of nodes) represent exploits, thus presenting the relations between
preconditions, the security conditions that must be enabled in order for the exploit to be
attempted, and postconditions, the security conditions that become enabled if the attacker
is successful with that exploit.

A security state is the set of currently enabled security conditions. In this sense, the
security state at any given time represents the current capabilities of the attacker. For a
given security state, the attacker uses its current capabilities (the set of enabled security
conditions) to attempt exploits, with the goal of enabling more security conditions until
one (or more) goal condition is achieved. The specific strategy that the attacker employs
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is its own private information and is assumed to dynamically adjust according to the
defender’s actions.

Below is an example of a dependency graph, where we see how each exploit leads to a
new SC. The cycled SCs are goal states for the attacker and need to be protected.

uorssaidord s 1oxoe)ye

Figure 3.1: Example of a dependency graph with 12 security conditions (SCs) and 13 exploits

Formally, we represent a condition dependency graph as a directed acyclic hypergraph
G = (N, Z) where V= {cy, .., cn ) is the set of security conditions (nodes) and Z'= {e,
., en,} IS the set of exploits (hyperedges). The acyclic nature of the graph follows from
the monotonicity assumption. Each security condition ¢, € Ain the hypergraph can either
be true or false. The truth value of each condition is interpreted as follows: a true (enabled)
condition means that the attacker possesses condition c;, and a false (disabled) condition
means that the attacker does not possess c;. An enabled condition is interpreted as the
attacker having a particular capability.

Some of the conditions in the hypergraph, when enabled, designate that an attacker has
reached a goal. Such nodes are termed goal conditions and are denoted by the subset

N, = V. Goal conditions are defined by the defender and correspond to something that
it wants to protect.

3.1.2 Belief Formulation based on History

As mentioned above the defender, does not know exactly which SCs are enabled by the
attacker. The decision-maker can only receive noisy observations based on the attacker’s
previous actions and so keeps a belief over the current state each moment.
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The defender has to take into consideration the possible attacker type as well, meaning
that, for a given network state, different attackers will attempt different actions in order to
deepen their progression.

Using the environment, in this case the received security alerts, the defender constructs
a belief over the current situation, denoted by b, , that summarizes its uncertainty over
both the security state and the attacker type. This belief is constructed using all of the
defender’s available information at time k: the (distribution over the) initial security state
and attacker type, the history of all defense actions from time 0 to time k — 1, and all
observations from time 0 to k, denoted by hy, = (by, Ug, Vo, - - - » Uk—1, Yk )- The belief
represents the joint probability distribution over security states and attacker types, and is
defined as:

1,1 1,2 1,|0|
b, b, bk 1

|
k-| . . . Ie BXX(I)

X1 [X1,2 |X,|®]
pXit plxiz o plxiiel]

where b) = P(xy = i, @ = jlhy = h) is the likelihood that x, is the true security state and
@y is the true type given the realized information h; . The space By » IS the probability
simplex over the state-type space X x @ . Notice that b, is a doubly-stochastic matrix for
each k; each row represents a probability mass function over the type space for a given
state and each column represents a probability mass function over the space of security
states for a given type.

Based on the above, the problem of the dynamic defense of a network can be modeled
as a POMDP, where the defender is the decision-maker and the attacker is part of the
environment of the agent [6].

3.2 Defender problem

The defender wishes to determine an optimal defense action to deploy for any belief that
it may encounter. This means trying to stop the attacker from progressing through the
network, while keeping a sufficient availability level for trusted users in the network. The
decision rule determining this action is termed a defense policy and is represented by the

function m : By, o— 7/ mapping a belief matrix b € By, , to a defense actionu € 7/

The problem of determining m©m™ <can be <cast as a POMDP:

For a given initial belief b=b,, the objective of the decision maker is:

Jn(bo) = min E, iz p"c(bk.uk)wo} 3.1)
k=0
And the optimal policy is:
7* = arg minE, {z p"c(bk,uk)|bo}, (3.2)
k=0
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where p with 0 < p < 1 is the discount factor. The function c(by,u;) represents the
expected cost for being in belief state b, when defense action u, is selected and is

defined as c(by, uy) = inEX,<ijd5 b}i{j c(xi, @), ug) -

c(s, d,u) is the weighted cost [6] taking into account security and availability and is defined
as c(x, p,u)=wcs(x, ) + (1 — w)c, (u), where 0 £ w < 1.
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4. DESPOT

The DESPOT algorithm is an online POMDP solver considered state-of-the-art. It
approximates the belief tree so as to search for optimal policies in a much smaller belief
space.

4.1 Determinized Sparse Partially Observable Tree Structure

A DESPOT is a sparse approximation of a standard belief tree. While a standard belief
tree captures the execution of all policies under all possible scenarios, a DESPOT
captures the execution of all policies under a set of randomly sampled scenarios (Figure
4.1).

o . L
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Figure 4.1: Standard Belief Tree and DESPOT

To overcome the computational challenge of online planning under uncertainty, DESPOT
samples a small finite set of K scenarios as representatives of the future. Each scenario
contains a sampled initial state and random numbers which determinize the uncertain
outcomes of future actions and observations.

This approximation of the belief tree contains all the action branches, but not all the
observation branches. Instead, it only contains those observation branches encountered
under the sampled scenarios.

DESPOT is constructed by applying a deterministic simulative model to all possible action
sequences under K sampled scenarios.

A scenario is an abstract simulation trajectory starting from a state x,. Formally, a
scenario for a belief b is a random sequence ¢ = (x,, @1, ¢, -..), in which the start state
X, IS sampled according to b and each ¢;, is a real number sampled independently and
uniformly from the range [0, 1]. The deterministic simulative model is a function g: X'x ¢/
x R = X x VY, such that if a random number ¢, is distributed uniformly over [0, 1], then
x"y") = g(x,u, ) is distributed according to p(x’,y’|x, u) = T(x,u,x)0(X’, u, y").

Applying this simulative model for an action sequence (u,, u,,...) under a scenario (s,
¥4, ©,, ...) generates a simulation trajectory (xq, U, X1, V1, Uz, X3, ¥3...),Where (xx, yi) =
g(xe_q, U, @y) fork=1,2,....

The simulation trajectory traces out a path (u,, y;, u,, y,,...) from the root of the standard
belief tree. Now all the nodes and edges on this path are added to the DESPOT D being
constructed. Each node b of D contains a set @, of all scenarios that it encounters. We
insert the scenario (x,, @o, @2, ...) into the set ¢, at the root b, and insert the scenario
(XK Pk+1) Pi+2, ---) INto the set @, at the belief node by reached at the end of the subpath

(Ugy Y1y Uzy Yareees Uy Vi), TOrk=1,2,....
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Repeating this process for every action sequence under every sampled scenario
completes the construction of D.

A DESPOT is completely determined by the set of K random sequences sampled a priori.
Hence the name Determinized Sparse Partially Observable Tree. In a DESPOT tree
every node b represents a belief (just like a standard belief tree) and contains a set @, of
scenarios starting from this belief node. The start states of the scenarios in @, form a
particle set that represents b approximately.

It is possible to search for near-optimal policies using a DESPOT instead of a standard
belief tree. The empirical value ¥, (b)of a policy T under the sampled scenarios encoded
in a DESPOT is the average total discounted reward obtained by simulating the policy
under each scenario for a belief node. Formally, let V,, , be the total discounted reward of
the trajectory obtained by simulating m under a scenario ¢ € @, for some node b in a

DESPOT, then

Te(b) = Tpea, 22

[®pl

where |®,| is the number of scenarios in ®,. Since . (b) converges to V,(b) almost surely
as K — oo, the problem of finding an optimal policy at b can be approximated as that of
doing so under only the sampled scenarios. However, overfitting can be an issue, since
a policy optimized for finitely many sampled scenarios may not be optimal in general, as
many scenarios are excluded from set @,. To overcome overfitting, a regularization of the
empirical value of a policy is introduced by adding a term that penalizes large policy size.
There is a chance that the agent encounters an observation not present in @, as m
contains only the observation branches resulting from the simulation of the scenarios. In
this case, the agent follows a default policy from then on. Similarly, it follows the default
policy when reaching a leaf node of .

To simplify the presentation, we assume without loss of generality that all rewards are

non-negative and are bounded by R, .

DESPOT iterates over two main steps: action selection and belief update. A standard
particle filtering method, sequential importance resampling (SIR) (Gordon, Salmond, &
Smith, 1993) is used for belief update.

There are two action selection methods. The first approach consists of a simple dynamic
programming method that constructs a DESPOT fully before finding the optimal action.
However, constructing the DESPOT fully in advance is not practical for large POMDPs.
The second approach, which is more useful, is an anytime DESPOT algorithm that
performs anytime heuristic search. The anytime algorithm uses a heuristic to construct
the DESPOT incrementally. This allows this method to scale particularly well even for
large scale POMDPs. The algorithm converges to an optimal policy when the heuristic is
admissible and that the performance of the algorithm degrades gracefully even when the
heuristic is not admissible [9].

4.2 Dynamic Programming

This approach wants to construct a fixed DESPOT D with K randomly sampled scenarios

and derive from D a policy that maximizes the regularized empirical value under the
sampled scenarios:
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max{7, (by) — Al|}

where b, is the current belief, at the root of D. A DESPOT policy is represented as a

policy tree. For each node b of m, we define the regularized weighted discounted utility
(RWDU):

ve(b) = 2Ly 3000, (b) = Ay, 41)

where |®,| is the number of scenarios passing through node b, y is the discount factor,
A(Db) is the depth of 4in the policy tree T, T, is the subtree rooted at b, and|n,| is the size
of m,. The ratio |®,|/K is an empirical estimate of the probability of reaching b. For root
node b, we have v, (b,) =V}, (b) — A|r|, which we want to optimize.

For every node b of D, define v*(b) as the maximum RWDU of b over all policies in I1p,.
Assuming that D has finite depth and that |, | = 0, the following dynamic programming

procedure computes v*(b,) recursively from bottom up. At a leaf node b of D, the agent
follows default policy m, under the sampled scenarios:

»*(b) ='q;(' a®F, ().

For each node b, t(b, u, y) represents the child of b following the action branch u and the
observation branch y at b. Then

@ _
v*(b) = max %y“b%o(b),mgg p(b,u) + Z v*(z(b,u,y)) (4.2)
u

YEYpu

where

1
p(b,u) = I Z y4® R(x¢,u) -4

PEDY

the state x,, is the start state of the scenario ¢, and Y, is the set of observations following
the action branch u at the node b. The outer maximization in (4.2) decides either to
execute the default policy or expand the subtree at b. The inner maximization chooses
among the different actions available. When the algorithm terminates, the maximizer at

the root b, of D gives the best action at b,.

In cases where D has unbounded depth, there is the option of truncating D to a depth
of [Rpmax/A(1 — y)] + 1 and run the above algorithm, provided that A > 0. This approach is
sufficient because an optimal regularized policy 7 cannot include the truncated nodes of
D. Otherwise, 7 has size at least [R,,,/A(1 — y)] + 1 and thus RWDU v, (b,) < 0. Since
the default policy m, has RWDU v, (by) = 0 is then better than r, a contradiction.

We first simulate the deterministic model to construct the tree, then do a bottom-up
dynamic programming to initialize IZTO (b), and finally compute v*(b) using Equation (4.2).

N. Karaiskakis 35



The Dynamic Defense of Network as POMDP and the DESPOT POMDP Solver

Based on these, the complexity of the standard dynamic programming approach
algorithm for a DESPOT is O(|U|PKD).

4.3 Anytime Heuristic Search

The bottom-up dynamic programming algorithm presented in section 4.2 constructs the
full DESPOT D in advance. This is generally not practical, when it comes to large scale
POMDPs. Instead, we use the DESPOT approach based on an anytime forward search
algorithm to scale up. In that way, we do not construct the DESPOT fully in advance, but
incrementally. The algorithm selects the action by incrementally constructing a DESPOT

Zrooted at the current belief b, using heuristic search, and approximating the optimal
RWDU v*(b). The main components of the algorithm are described below.

To guide the heuristic search, we maintain a lower bound 1(b) and an upper bound pu(b)
on the optimal RWDU at each node b of D, so that I(b) < v*(b) < u(b).To prune the
search tree, we additionally maintain an upper bound U(b) on the empirical value V* (b)
of the optimal regularized policy so that U(b) > V* (b) and compute an initial lower bound
Lo, (b) with Ly (b) <V (b) . In particular, we use L, (b) <1V (b) for the default policy m,
at b [9].

The aim is to construct and search a DESPOT D incrementally, using K sampled
scenarios. At first, D contains only a single root node with belief b, and the associated
initial upper and lower bounds. The algorithm makes a series of explorations to expand
D and reduce the gap between the bounds u(b,) and 1(b,) at the root node b,o0f D . Each
exploration follows a heuristic and traverses a promising path from the root of D to add
new nodes to D . Specifically, it keeps on choosing and expanding a promising leaf node
and adds its child nodes into D until current leaf node is not heuristically promising. Once
this happens, the algorithm traces the path back to the root and performs backup on the
upper and lower bounds at each node in the path, using Bellman’s principle. The

explorations continue, until the gap between the bounds p(b,) and 1(b,) reaches a target
level e, = 0 or the online planning time runs out. More details in section 4.2 of [9].

4.3.1 Forward Exploration

Let e(b) = u(b) - I(b) denote the gap between the upper and lower RWDU bounds at a
node b. Each exploration aims to reduce the current gap e(b,) at the root b, to &e(b,) for
some given constant 0 < € < 1. An exploration starts at the root b,. At each node b along
the trial path, we choose the action branch optimistically according to the upper bound

k(b):

u* = argmaxu(b,u) = arg max< p(b,u) + Z u(b") ¢, (4.3)
ueu ueu

YEYpu

where b’ = t(b, u, y) is the child of b following the action branch u and the observation
branch y at b. We then choose the observation branch y that leads to a child node
b’ = t(b, u* y) maximizing the excess uncertainty E(b") at b’

AL (4.4)
vl e, |

y* = arg max E(b") =arg max {e(b ) —

bux bux
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Intuitively, the excess uncertainty E(b") measures the difference between the current gap
at b’ and the “expected” gap at b’ if the target gap &e(b,) at b, is satisfied. The exploration
strategy seeks to reduce the excess uncertainty in a greedy manner.

If the exploration encounters a leaf node b, we expand b by creating a child b’ of b for
each action u € 7/and each observation encountered under a scenario ¢ € ®,. For each
new child b’, we need to compute the initial bounds p,(b"), 15(b"), Uy(b") and Ly(b"). The
RWDU bounds p,(b"), and I,(b"), can be expressed in terms of the empirical value
bounds U,(b’) and Ly(b"), respectively.

Applying the default policy m, at b’ and using the definition of RWDU in (4.1), we have
! ! |d) ’l !
lo(b") = vo (b') = — 2= y* @ Lo(b")

as |m,| = 0. For the initial upper bound p,(b"), there are two cases. If the policy for
maximizing the RWDU at b' is the default policy, then we can set
1o (b")=1,(b"). Otherwise, the optimal policy has size at least 1, and it follows from (4.1)

that uy(b') = 'd;(—”' y2®y,(b)-A is an upper bound. So we have

Uo (b) = max {lo(b):% )’A(b) Uo(b) - l} .

There are various ways to construct the initial empirical value bounds U,and L,. More
about this at [9] sections 4.3 and 4.4.

4.3.2 Termination of Exploration

We terminate the exploration at a node b under three conditions. First, A(b) > D, i.e., the
maximum tree height is exceeded. Second, E(b) < 0, indicating that the expected gap at
b is reached and further exploration from b onwards may be unprofitable. Finally, b is
blocked by an ancestor node b’:

ol s - Lob)) < 2105, b)

where [(b’, b)is the number of nodes on the path from b’to b. The intuition behind this
condition is that there is insufficient number of sampled scenarios at the ancestor node
b’ . Further expanding b and thus enlarging the policy subtree at b’ . may cause overfitting
and reduce the regularized utility at b’ . We thus prune the search by applying the default
policy at b and setting the bounds accordingly.

4.3.3 Backup

When the exploration terminates, the anytime DESPOT algorithm traces the path back to
the root to perform backup on the bounds at each node b along the way, using Bellman’s
principle:
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u(b) = maxy ly(b), max p(b,u) + Z u) ¢

YEYpu

1(6) = max o), maxd p(b,u) + 2 (b)Y,

YVEYpu
1 I‘Db’l
= — R '
Ub) = maxs 15 Q. Rlspw)+y ) 2,1 VPO
PED) YEYpu

where b’ is a child of b with b’ = t(b, u, y).

4.3.4 Complexity

The EXPLORE method [9] of the algorithm traverses a path from the root to a leaf node
of a DESPOT D, visiting at most D+ K - 1 nodes along the way because a path has at
most D nodes, and at most K - 1 nodes not on the path can be added. At each node, the
following steps dominating the running time. Checking the condition for pruning takes
time O (D?) in total and O (D) per node. Adding a new node to D and initializing the
bounds take time O (/). Choosing the action branch takes time O(| 74). Choosing the
observation branch takes time min{| Y, K} € O (K), which is loose because only the
sampled observation branches are involved. Thus, the running time at each node is O (D
+/7+ | 74 + K). Assuming that the anytime search algorithm invokes EXPLORE method N
times, time complexity is O(N(D+/7+ | 74 + K)).

As far as space complexity is concerned, the anytime search algorithm constructs a
partial DESPOT with at most N(2 + K) nodes, while the dynamic programming algorithm
(section 4.2) constructs a DESPOT fully with O (|U|PKD) nodes. While the bounds are not
directly comparable, N(D + K) is typically much smaller than |U|PKD in many practical
settings. This is the main differentiator between the two algorithms.

4.4 DESPOT-alpha

DESPOT-alpha (DESPOT-a ) (analyzed in detail in [10]) is a variation of the standard
DESPOT algorithm. It aims to surpass the state-of-the-art POMDP solvers by overcoming
the difficulties the latter face due to particle divergence, when it comes to problems with
large observation spaces. DESPOT- a improves the practical performance of online
planning for POMDPs with large observation as well as state spaces. Like DESPOT,
DESPOT- « uses the particle belief approximation and searches a determinized sparse
belief tree. To tackle large observation spaces, DESPOT- a shares sub-policies among
many observations during online policy computation.

DESPOT-a makes use of both a sparse sampling method and DESPOT. A sparse
sampling method by Kearns et al. [12] is an online algorithm which can potentially deal
with large observation spaces because it samples a fixed number of C observations for
each action branch resulting in tree size of )(C?|U|P).
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Figure 4.3: DESPOT-a search tree

K is much smaller than CP for many problems but DESPOT suffers from the particle
divergence problem when the observation space is large. The DESPOT-a variation
constructs a tree of size (CP|U|P) like sparse sampling but use determinized scenarios
like DESPOT.

DESPOT-alpha (DESPOT-a ) does a similar anytime forward search as standard
DESPOT through trials consisting of exploration and backup on sampled scenarios.
However instead of propagating only the particles producing the same observation to the
child of a belief-action node, this variation suggests that we propagate all the particles to
the child nodes (Figure 4.3) and update the weights of particles according to relative
likelihood of observation p(y | x, u). This is similar to a particle filter.

p(y |x, u) values are also generally available for particle filtering. For a belief b,
represented by the particle set @, with each particle having weight wy, (x), the weight of
particles in child belief node t(b, u, y) is:

Py | X', u) Yxeo, DX | X, U)Wy (%)

w (x") = 4.5
rbm) p(/ 1 b,u) *5)
where
PO b= ) PO ) pE | xww,() (4:6)
xleq)‘r(b,u,y) XEPD

In our determinized tree, a particle x transitions to only one particle x’ i.e. @, has one to
one correspondence with @, ,, ,)). Let x'_ be the particle in ¢, that transitions to particle
x and let x", be the particle in @, ,,,,, to which particle x transitions. Then:
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pOIb = ) wE PO IYw = Y wEpelrLe) @)
X' €D (pauy) XEDY
and

POy | X, Wwy (x'-)

p(y|bu)

Wr(bu,y) (x") =

The resulting tree is an approximation of the belief tree based on the DESPOT definition,
meaning a determinized sparse belief tree as it still contains only the observation
branches reachable by the K sampled scenarios. However, every belief-action node can
have up to C child belief nodes: as we do not use observations to decide which particles
will go into each child node, we can sample only C(< K) instead of K observations from K
scenarios by using only C out of K scenarios to generate observations. Always having C
child belief nodes prevents over optimistic evaluation of value of belief but also makes
the tree size (C|U|)P.

Note that eventually after few information gathering actions, most of the weight would be
concentrated around a few particles in the search tree. Particle filters do re-sampling
when this happens. However, in the search tree, re-sampling is not required as we only
need to estimate the reward which gets discounted as depth increases.

4.5 HyP-DESPOT

The Hybrid Parallel DESPOT (HyP-DESPOT) is a variation of the DESPOT algorithm that
seeks to surpass the state-of-the-art algorithms for POMDPs by leveraging both CPU and
GPU parallelization in order to achieve near real-time online planning performance for
complex tasks with large state, action, and observation spaces.

HyP-DESPOT is a massively parallel online planning algorithm that integrates CPU and
GPU parallelism in a multi-level scheme. It performs parallel DESPOT tree search by
simultaneously traversing multiple independent paths using multi-core CPUs and
performs parallel Monte-Carlo simulations at the leaf nodes of the search tree using
GPUs. The research presented in [13] shows that HyP-DESPOT can speed up online
planning by up to several hundred times, compared with the original DESPOT algorithm,
in several challenging robotic tasks in simulation.

The aim of HyP-DESPOT is to parallelize all key steps of the standard DESPOT
algorithm. The fact that these key steps exhibit different structural properties for
parallelization needs to be taken into consideration. The two tree search steps, forward
search and back-up, are irregular; leaf node initialization, which consists of many identical
Monte Carlo simulations with different initial states, is regular and embarrassingly parallel.
HyP-DESPOT builds a CPU-GPU hybrid parallel model to treat them separately. It uses
the more flexible CPU threads to handle the two irregular tree search steps. It uses
massively parallel GPU threads to handle the embarrassingly parallel Monte Carlo
simulations for leaf node initialization.

HyP-DESPOT integrates CPU-based parallel tree search and GPU-based parallel Monte
Carlo simulations in a multilevel scheme. Specifically, HyP-DESPOT launches multiple
CPU threads to simultaneously search different paths and discover leaf nodes. At the
same time, It relies on the GPU threads to takes over these leaf nodes, expand them,
and initialize their children through massively parallel Monte Carlo simulations. Further,
HyP-DESPOT factors the dynamics model and the observation model within a single
simulation step and simulates the factored elements in parallel, in order to maximally
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exploit GPU parallelization. The reader can find an extensive analysis of the HyP-
DESPOT algorithm in [13].
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