

NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

SCHOOL OF SCIENCE

DEPARTMENT OF INFORMATICS AND TELECOMMUNICATION

BSc THESIS

THE DYNAMIC DEFENSE OF NETWORK AS POMDP AND
THE DESPOT POMDP SOLVER

Nikolaos P. Karaiskakis

Supervisor: Nicholas Kalouptsidis, Professor

ATHENS

OCTOBER 2020

ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ

ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

Η ΑΥΤΟΜΑΤΟΠΟΙΗΜΕΝΗ ΑΜΥΝΑ ΔΙΚΤΥΟΥ ΩΣ POMDP ΚΑΙ
Ο ΑΛΓΟΡΙΘΜΟΣ DESPOT ΓΙΑ ΤΗΝ ΕΠΙΛΥΣΗ POMDP

Νικόλαος Π. Καραϊσκάκης

Επιβλέπων: Νικόλαος Καλουπτσίδης, Καθηγητής

ΑΘΗΝΑ

ΟΚΤΩΒΡΙΟΣ 2020

BSc THESIS

The Dynamic Defense of Network as POMDP and the DESPOT POMDP Solver

Nikolaos P. Karaiskakis

S.N.: 1115201400062

Supervisor: Nicholas Kalouptsidis, Professor

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

Η Αυτοματοποιημένη Άμυνα Δικτύου ως POMDP και ο Αλγόριθμος DESPOT για την
επίλυση POMDP

Νικόλαος Π. Καραϊσκάκης

Α.Μ.: 1115 2014 00 062

Επιβλέπων: Νικόλαος Καλουπτσίδης, Καθηγητής

ABSTRACT

In recent years, artificial intelligence becomes all the more significant for our lives with
many applications most of us would not even imagine. Representing the real world
demands sophisticated models, which we “feed” to agents to see how they will respond.
This is where Markov Decision Processes (MDPs) and Partially Observed Markov
Decision Processes (POMDPs) shine. POMDPs provide us with a general framework to
depict many different kinds of problems. The capabilities seem endless; from agents that
play games optimally to driverless cars. One of these problems that is becoming more
and more relevant today is the dynamic defense of a cyber network, which basically
means a network that protects itself from intruders in real time by trying to predict their
moves and stop them from progressing further into the network and reaching vital points.
The development of such a defense system is complicated, since the attackers do not
use simplistic methods, but instead rely on a complex sequence of exploits, combining
many vulnerabilities. The POMDP model can provide a quite realistic representation of
this problem. However, as with most demanding problems modeled as such, it is difficult
to solve them efficiently due to the complicated structure of the POMDP model itself.
Researchers focus on creating sufficient algorithms that can tackle these problems in
realistic situations.
We will begin with introducing the basic information needed to understand the MDP model
and then we continue with the POMDP model which extends the idea to more realistic
applications. Then, we can present the formulation of the dynamic defense problem as
POMDP and after that we take a look into the DESPOT POMDP solver, which is one of
the best algorithms to scale up and cope with such complicated problems.

SUBJECT AREA: Artificial Intelligence, Decision making under uncertainty

KEYWORDS: reinforcement learning, MDP, POMDP, dependency graph, dynamic
defense of network, POMDP solvers

ΠΕΡΙΛΗΨΗ

Όλοι ακούμε για την Τεχνητή Νοημοσύνη που τα τελευταία χρόνια αποτελεί όλο και
μεγαλύτερο κομμάτι της ζωής μας με εφαρμογές που οι περισσότεροι δε θα
φανταζόμασταν ποτέ. Η αναπαράσταση του πραγματικού κόσμου απαιτεί πολύπλοκα
μοντέλα που να μπορούμε να δώσουμε σε πράκτορες και να δούμε πώς θα ενεργήσουν.
Οι Μαρκοβιανές Διαδικασίες Αποφάσεων (MDP) και κυρίως οι Μερικώς Παρατηρούμενες
Μαρκοβιανές Διαδικασίές Αποφάσεων (POMDP) αφορούν τη λήψη αποφάσεων υπό
αβεβαιότητα και βοηθούν ιδιαίτερα στην πιστή αναπαράσταση ενός περιβάλλοντος. Οι
δυνατότητες φαίνονται ατελείωτες, καθώς οι εφαρμογές κυμαίνονται από «έξυπνους»
παίκτες παιγνίων μέχρι αυτοματοποιημένα συστήματα οδήγησης. Ένα τέτοιο πρόβλημα
που κεντρίζει συνεχώς το ενδιαφέρον είναι η αυτοματοποιημένη άμυνα ενός δικτύου,
δηλαδή ένα δίκτυο που προστατεύεται μόνο του από επίδοξους εισβολείς, προβλέποντας
τις κινήσεις τους και παίρνοντας τα κατάλληλα μέτρα ώστε να τους αποτρέψει από το να
φτάσουν σε ζωτικά σημεία του δικτύου. Οι επιτηθέμενοι δεν κάνουν απλές ενέργειες, αλλά
χρησιμοποιούν πολύπλοκες τακτικές συνδυάζοντας πολλά τρωτά σημεία του δικτύου κι
έτσι η ανάπτυξη ενός τέτοιου συστήματος άμυνας καθίσταται αρκετά δύσκολη. Αν και
μπορούμε να αναπαραστίσουμε το πρόβλημα αρκετά πιστά σαν POMDP, υπάρχει το
ζήτημα της γρήγορης επίλυσης, καθώς το POMDP μοντέλο είναι ήδη περιπλεγμένο αυτό
καθ’αυτό. Οι ερευνητές, λοιπόν, εστιάζουν την προσοχή τους στην ανάπτυξη γρήγορων
αλγορίθμων που να μπορούν να λύνουν αυτά τα προβλήματα σε ρεαλιστικές
καταστάσεις.
Αρχικά, θα εισάγουμε τις βασικές έννοιες και πληροφορίες προκειμένου να γίνει
κατανοητό το MDP μοντέλο και θα συνεχίσουμε με το POMDP που επεκτείνει το
προηγόυμενο, κάνοντάς το ρεαλιστικά εφαρμόσιμο. Έπειτα, γίνεται η παρουσίαση του
προβλήματος της αυτοματοποιημένης άμυνας σαν POMDP και καταλήγουμε στον
αλγόριθμο DESPOT, που είναι από τους καλύτερους που μπορούν να ανταπεξέλθουν σε
POMDP προβλήματα τέτοιας κλίμακας.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Τεχνητή Νοημοσύνη, Λήψη αποφάσεων υπό αβεβαιότητα

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: ενισχυτική μάθηση, MDP, POMDP, γραφήματα εξάρτησης,

αυτοματοποιημένη άμυνα δικτύου, αλγόριθμοι που επιλύουν
POMDP

Dedicated to my family

ACKNOWLEDGEMENTS

I would like to especially thank my supervisor, Mr. Nicholas Kalouptsidis, for his guidance
and patience. I would also like to thank his group for the cooperation and assistance.
Finally, I would like to thank my family and friends who support me in all my endeavours.

CONTENTS

PREFACE .. 11

1. INTRODUCTION .. 13

1.1 Markov Decision Processes ..13

1.2 Infinite Horizon Discounted Cost MDP ...15

1.2.1 Objective and Dynamic Programming Equation ...15

1.2.2 Numerical Methods ...15

1.3 Infinite Horizon Average Cost MDP……..……………..……………………………………………….17

1.3.1 Numerical Methods ...18

2. PARTIALLY OBSERVED MARKOV DECISIN PROCESSES 20

2.1 Finite horizon POMDP and Objective ...20

2.2 Belief State Formulation of POMDP ..21

2.3 Stochastic Dynamic Programming for POMDP ..22

2.4 Discounted Infinite Horizon POMDP ..23

2.5 Classes of POMDP Algorithms..24

2.5.1 Exact Algorithms: Incremental Pruning ..24

2.5.2 Point-Based Value Iteration Algorithms ..25

2.5.3 Online POMDP solvers ..26

3. DYNAMIC DEFENSE OF CYBER NETWORKS.. 29

3.1 POMDP Formulation of the Dynamic Defense Problem ...29

3.1.1 Dependency Graphs ...29

3.1.2 Belief Formulation based on History ..30

3.2 Defender Problem ..31

4. DESPOT ... 33

4.1 Determinized Sparse Partially Observable Tree Structure ...33

4.2 Dynamic Programming ..34

4.3 Anytime Heuristic Search..36

4.3.1 Forward Exploration ..36

4.3.2 Termination of Exploration ...37

4.3.3 Backup ..37

4.3.4 Complexity ..38

4.4 DESPOT-alpha ...38

4.5 Hyp-DESPOT ..40

TABLE OF TERMINOLOGY ... 42

ABBREVIATIONS - ACRONYMS ... 43

REFERENCES .. 44

LIST OF FIGURES

Figure 2.1: Comparison between offline and online approaches….……………….........27

Figure 3.1: Example of a dependency graph with 12 security conditions (SCs) and 13

exploits……………………………………………………………………………………….…30

Figure 1.2: Standard Belief Tree and DESPOT…………………………………………….33

Figure 1.3: DESPOT search tree for small and large observation spaces……………....39

Figure 1.4: DESPOT-α search tree……...………………………………………………….39

PREFACE

This thesis gave me the opportunity to work with great scientists and learn a lot. I occupied
myself with some very interesting topics in the field of artificial intelligence and
mathematics and got a glimpse of the future of IT technologies. I am really grateful I had
the chance to do so as an undergraduate student.

The Dynamic Defense of Network as POMDP and the DESPOT POMDP Solver

N. Karaiskakis 13

1. INTRODUCTION

Markov Models are widely used in artificial intelligence applications. We will analyze
particularly the Markov Decision Process (MDP) and Partially Observed Markov Decision
Process (POMDP) models. Both are used to tackle problems concerning an agent who
tries to achieve a goal in an environment under uncertainty. The POMDP model extends
the idea of the MDP by adding the element of partial observability. In other words, this is
the case where the agent cannot “see” the exact state of the environment. This feature
allows us to represent more complicated and realistic environments and thus formulate
the equivalent problems.

However, there is an issue with these problems concerning scalability. Most realistic
environments are characterized by large state spaces as well as observation spaces.
This means that the algorithms used to examine the agent’s possible actions and take
decisions can be non-efficient. Researchers have created some complicated algorithms
that can scale up for large size POMDPs and this appears to be an area with a lot more
to discover.

We will begin with analyzing some basic information on the MDP and POMDP models.
Then, we present the POMDP formulation for the problem of the dynamic (or automated)
defense of a cyber network. Finally, we present the DESPOT algorithm, which is a
sophisticated POMDP-solver that belongs to the state-of-the-art family.

This chapter continues with some basic definitions and information on Markov Decision
Processes, which are the basis for the rest.

1.1 Markov Decision Processes

The finite state MDP model consists of the following ingredients:

1. X = {1, 2, …, X} denotes the state space and 𝑥𝑘∈ X denotes the state of the controlled

Markov chain at time k = 0, 1, …,N.

2. U = {1, 2, …,U} denotes the action space. The elements u ∈ U are called actions. In

particular, 𝑢𝑘 ∈ U denotes the action chosen at time k.

3. For each action u ∈ U and time k ∈ {0, …,N−1}, P(u, k) denotes an X×X transition

probability matrix with elements

Pij(u, k) = P(xk+1 = j|xk= i, uk = u), i, j ∈ X.

4. For each state i ∈ X, action u ∈ U and time k ∈ {0, …,N−1}, c(i, u, k) denotes the one-
stage cost incurred by the decision-maker (controller).

5. At time N, for each state i ∈ X , 𝑐𝑁(i) denotes the terminal cost.

This definition concerns the environment of the agent. We now need to specify an
objective function or a way to enable the decision-maker to do the work of taking the best
actions. Assuming a problem is modeled with a finite horizon, then the objective of the
decision-maker is:

𝐽𝜋(𝑥) = 𝔼𝜋 {∑ 𝑐(𝑥𝑘, 𝜋𝑘(ℎ𝑘), 𝑘) + 𝑐𝑁(𝑥𝑁)|𝑥0 = 𝑥

𝑁−1

𝑘=0

} (1.1)

The Dynamic Defense of Network as POMDP and the DESPOT POMDP Solver

N. Karaiskakis 14

which is the expected cumulative cost incurred by using policy π up to time k. Here, 𝔼𝜋

denotes expectation with respect to the probability distribution induced by ℎ𝑘 = {𝑥0, 𝑢0,
𝑥1, 𝑢1,…, 𝑥𝑘−1, 𝑢𝑘−1, 𝑥𝑘}.

The decision-maker determines the optimal policy in the following way:

𝜋∗ = a𝑟𝑔min
𝜋

𝐽𝜋(𝑥). (1.2)

The meaning of these equations is that the decision-maker searches for the policy
sequence π that minimizes the expected cumulative cost (1.1) for every initial state x. If

X and U are finite, a policy with minimum cumulative cost always exists. The policy with

the smallest expected cumulative cost amongst all policies for every initial state is called

the optimal policy and is denoted as π∗. Obviously, the optimal policy sequence π∗ may

not be unique. (For example, if the costs c(x, u) are identical for all x and u, then all policies
are optimal.) [1].

Classes of policies

To solve the MDP (1.2) for an optimal policy π∗, we need to examine the space of policies
more carefully. We distinguish three types of policies:

1. General policies: The most general class of policies π = (𝜋0, 𝜋1, ..., 𝜋𝑁−1) are randomized

history dependent. That is, at each time k, action 𝑢𝑘 is chosen according to probability

distribution 𝜋𝑘(ℎ𝑘) (More on ℎ𝑘 in [1] section 6.4). So 𝑢𝑘 is a probabilistic
function of ℎ𝑘).

2. Randomized Markovian policies: Action 𝑢𝑘 is chosen according to probability
distribution 𝜋𝑘 (𝑥𝑘). That is, 𝑢𝑘 is a probabilistic function of state 𝑥𝑘 only.

3. Deterministic Markovian policies: Action 𝑢𝑘 is chosen based on a deterministic mapping

from the state space X to action space U.

Bellman’s stochastic dynamic programming algorithm

Consider the MDP problem (1.1) with objective (1.2). The optimal policy π∗ is obtained

via Bellman’s stochastic dynamic programming algorithm [5].

Theorem 1.1 (Bellman’s dynamic programming algorithm) The optimal policy π∗= (π0,π1,

…, πN−1) for the finite horizon MDP can be obtained as the solution of the following
backward recursion:

Initialize JN(i) = c(i,N). Then for k = N − 1, …, 0 evaluate

Jk(i) = min
𝑢∈U

{𝑐(𝑖, 𝑢, 𝑘) + ∑Pij(u, k) Jk+1(j)

𝑗

}

𝜋𝑘
∗(𝑖) = 𝑎𝑟𝑔 min

𝑢∈U
{𝑐(𝑖, 𝑢, 𝑘) + ∑Pij(u, k) Jk+1(j)

𝑗

} (1.3)

For any initial state i ∈ {1, …, X}, the expected cumulative cost of the optimal policy π∗,
namely Jπ∗(i) in (1.2) is obtained as J0(i) from (1.3) .

The Dynamic Defense of Network as POMDP and the DESPOT POMDP Solver

N. Karaiskakis 15

1.2 Infinite Horizon Discounted Cost MDP

In this section we consider the case where the horizon length N → ∞. Also, the transition

probabilities and costs are assumed not to be explicit functions of time, and there is no
terminal cost. The infinite horizon discounted MDP model considered here is the 5-tuple:

(X, U, Pij(u), c(i, u), ρ), i, j ∈ X, u ∈ U.

where ρ ∈ [0, 1) is a discount factor. The discount factor ρ weights the costs in the

following manner: the cost incurred by the decision-maker at time k is 𝜌𝑘c(𝑥𝑘, 𝑢𝑘).
Therefore, the first few decisions are much more important than subsequent decisions.

1.2.1 Objective and Dynamic Programming Equation

The aim is to determine the optimal policy 𝜋∗ = a𝑟𝑔min
𝜋

𝐽𝜋(𝑖) where 𝐽𝜋(𝑖) denotes the

infinite horizon discounted cumulative cost

𝐽𝜋(𝑖) = 𝔼𝜋 {∑ 𝜌𝑘𝑐(𝑥𝑘, 𝑢𝑘)|𝑥0 = 𝑥

∞

𝑘=0

} (1.4)

Here π = (𝜋0, 𝜋1, …) is a sequence of policies where 𝜋𝑘 at time k maps ℎ𝑘 = {𝑥0, 𝑢0, 𝑥1,
𝑢1,…, 𝑥𝑘−1, 𝑢𝑘−1, 𝑥𝑘} to action 𝑢𝑘.

Theorem 1.2 Consider an infinite horizon discounted cost Markov decision process with

discount factor ρ ∈ [0, 1). Then

1. For any initial state i, the optimal cumulative cost Jπ∗(i) is attained by the value function
V(i) which satisfies Bellman’s equation (1.5).
2. For any initial state i, the optimal cumulative cost Jπ∗(i) achieved by the stationary
deterministic Markovian policy π∗ which satisfies Bellman’s equation (1.5).
3. The value function V is the unique solution to Bellman’s equation (1.5). (The optimal

policy may not be unique.)

𝑉𝑘(𝑖) = min
𝑢∈ U

𝑄𝑘(𝑖, 𝑢), π∗ = 𝑎𝑟𝑔min
𝑢∈ U

𝑄𝑘(𝑖, 𝑢),

𝑄𝑘(𝑖, 𝑢) = 𝑐(𝑖, 𝑢) + 𝜌 ∑𝑃𝑖𝑗(𝑢)𝑉(𝑗)

𝑗

 (1.5)

1.2.2 Numerical methods

Now we can take a look at three classical methods for solving infinite horizon discounted
cost Markov decision processes.

Value iteration algorithm

The value iteration algorithm is a successive approximation algorithm to compute the
value function V of Bellman’s equation. It proceeds as follows. Choose the number of

iterations N (typically large). Initialize 𝑉0 (i) = 0. Then for iterations k = 1, 2, …, N, compute

The Dynamic Defense of Network as POMDP and the DESPOT POMDP Solver

N. Karaiskakis 16

𝑉𝑘(𝑖) = min
𝑢∈ U

𝑄𝑘(𝑖, 𝑢), 𝜋𝑘
∗ = 𝑎𝑟𝑔min

𝑢∈ U
𝑄𝑘(𝑖, 𝑢),

𝑄𝑘(𝑖, 𝑢) = 𝑐(𝑖, 𝑢) + 𝜌 ∑𝑃𝑖𝑗(𝑢)𝑉𝑘−1(𝑗)

𝑗

.

Then use the stationary policy 𝜋𝑁

∗ at each time instant in the real-time controller. The
value iteration algorithm is identical to the finite horizon MDP dynamic programming
algorithm, except that in the controller implementation the stationary policy 𝜋𝑁

∗ is used at
each time.

Policy iteration algorithm

This is an iterative algorithm that computes an improved policy at each iteration compared

to that of the previous iteration. Since for a U-action, X-state Markov decision process,

there are a finite number 𝑋𝑈possible stationary policies, the policy iteration algorithm
converges to the optimal policy in a finite number of iterations.

The policy iteration algorithm proceeds as follows.

Assume a stationary policy 𝜋𝑛−1 and its associated cumulative cost 𝐽𝜋𝑛−1
 from iteration

n − 1 are given. At iteration n:

1. Policy improvement: Compute stationary policy 𝜋𝑛 as

𝜋𝑛(𝑖) = 𝑎𝑟𝑔 min
𝑢∈ U

[𝑐(𝑖, 𝑢) + 𝜌 ∑𝑃𝑖𝑗(𝑢)𝐽𝜋𝑛−1
(𝑗)

𝑗

],

where i ∈ X.

2. Policy evaluation: Given policy 𝜋𝑛, compute the discounted cumulative cost associated
with this policy as

𝐽𝜋𝑛
(𝑖) = 𝑐(𝑖, 𝜋𝑛(𝑖)) + 𝜌 ∑𝑃𝑖𝑗(𝜋𝑛(𝑖))𝐽𝜋𝑛

(𝑗)

𝑗

,

where i ∈ X.

This is a linear system of equations and can be solved for 𝐽𝜋𝑛
. If 𝐽𝜋𝑛

 (i) < 𝐽𝜋𝑛−1
(𝑖) for all i,

then set n = n + 1 and continue. Else stop.

Linear programming

Bellman’s equation can be seen as a linear programming optimization problem.
Define 𝑉̅(𝑖) such that

𝑉̅(𝑖) ≤ min
𝑢

{𝑐(𝑖, 𝑢) + 𝜌 ∑𝑃𝑖𝑗(𝑢)

𝑗

𝑉̅(𝑗)}

From the value iteration algorithm we have that 𝑉̅(𝑖) ≤ V(i) where V is the value function

from Bellman’s equation. This means that the value function V is the largest 𝑉 ̅that

satisfies the above inequality. Then V is the solution of the optimization problem

The Dynamic Defense of Network as POMDP and the DESPOT POMDP Solver

N. Karaiskakis 17

max
𝑉

∑𝛼𝜄

𝜄

𝑉̅(𝑖) 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑉̅(𝑖) ≤min
𝑢

{𝑐(𝑖, 𝑢) + 𝜌 ∑𝑃𝑖𝑗(𝑢)

𝑗

𝑉̅(𝑗)} ,

where i ∈ X and 𝛼𝜄 are arbitrary nonnegative scalars.

V is the solution of the linear programming problem:

max
𝑉

∑𝛼𝜄

𝜄

𝑉̅(𝑖)

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑉̅(𝑖) ≤ 𝑐(𝑖, 𝑢) + 𝜌 ∑𝑃𝑖𝑗(𝑢)

𝑗

𝑉̅(𝑗),

where i ∈ X and u ∈ U.

1.3 Infinite Horizon Average Cost MDP

As in the discounted cost case, by a stationary policy we mean the sequence of policies

π = (π,π,π, …) and for notational convenience we denote π by π. For any stationary policy
π, let 𝔼𝜋 denote the corresponding expectation and define the infinite horizon average
cost as

𝐽𝜋(𝑥0) = lim
𝑁→∞

1

𝑁 + 1
𝔼𝜋 {∑ 𝑐(𝑥𝑘, 𝑢𝑘)|𝑥0

𝑁

𝑘=0

}. (1.6)

We say that a stationary policy 𝜋∗ is optimal if 𝐽𝜋
∗(𝑥0) ≤ 𝐽𝜋(𝑥0) for all states 𝑥0∈ X.

Unlike discounted infinite horizon problems, average cost problems have more issues.
The existence of an optimal stationary policy depends on the structure of the transition
matrices P(u). We will not go into depth with that. However, we introduce the term
“unichain” to present the following condition, which is sufficient for our needs, since our
description considers finite state Markov chains.

Definition of Unichain: An MDP is said to be unichain if every deterministic stationary

policy yields a Markov chain with a single recurrent class.

It turns out that if an average cost MDP is unichain, then an optimal stationary policy 𝜋∗
always exists. Checking the unichain condition can be computationally intractable though

since there are 𝑋𝑈possible stationary policies; for each such policy one needs to check

that the resulting transition matrix (Pij (π(i)) , i, j ∈ X) forms a recurrent class.

If all the transition probabilities 𝑃𝑖𝑗 (u) are strictly positive for each π, then the unichain

condition trivially holds [1]. The next theorem is equivalent to Bellman’s dynamic
programming.

The Dynamic Defense of Network as POMDP and the DESPOT POMDP Solver

N. Karaiskakis 18

Theorem 1.3 Consider a finite-state finite-action unichain average cost Markov decision

process. Then the optimal policy 𝜋∗ satisfies

𝑔 + 𝑉(𝑖) = min
𝑢

{𝑐(𝑖, 𝑢) + ∑𝑃𝑖𝑗(𝑢)𝑉(𝑗)

𝑗

} (1.7)

𝜋∗(i) = argmin
𝑢

{𝑐(𝑖, 𝑢) + ∑𝑃𝑖𝑗(𝑢)𝑉(𝑗)

𝑗

}. (1.8)

Here 𝜋∗ is a stationary nonrandomized policy. Also, g = 𝐽𝜋∗(𝑥0) denotes the average cost

achieved by the optimal policy 𝜋∗ and is independent of the initial state 𝑥0. Furthermore,

g is unique while if 𝑉(𝑖), i ∈ X satisfies (1.7) then so does V(i) + K for any constant K.

1.3.1 Numerical methods

Relative value iteration algorithm

Since by Theorem 1.3 any constant added to the value function also satisfies (1.7) , it is

is convenient to rewrite (1.7) in the following form that is anchored at state 1. Define 𝑉̃(𝑖)
= V(i)−V(1). So obviously V(1)= 0. Then (1.7) can be rewritten relative to state 1 as:

𝑔 + 𝑉̃(𝑖) = min
𝑢

{𝑐(𝑖, 𝑢) + ∑𝑃𝑖𝑗(𝑢)𝑉̃(𝑗)

𝑗>1

} , 𝑖 > 1,

𝑔 + 𝑉(1) = min
𝑢

{𝑐(1, 𝑢) + ∑𝑃1𝑗(𝑢)𝑉̃(𝑗)

𝑗

} + 𝑉(1)

or

𝑔 = min
𝑢

{𝑐(1, 𝑢) + ∑𝑃1𝑗(𝑢)𝑉̃(𝑗)

𝑗

} .

(1.9)

In analogy to the value iteration algorithm described for the discounted cost MDP (section
1.2.2), (1.9) yields the following relative value iteration algorithm that operates for

k = 1, 2, …

𝑉̃𝑘(𝑖) = min
𝑢

{𝑐(𝑖, 𝑢) + ∑𝑃𝑖𝑗(𝑢)𝑉̃𝑘−1(𝑗)

𝑗>1

} − 𝑔𝑘, 𝑖 > 1,

𝑔𝑘 = min
𝑢

{𝑐(1, 𝑢) + ∑𝑃1𝑗(𝑢)𝑉̃𝑘−1(𝑗)

𝑗

} .

(1.10)

The Dynamic Defense of Network as POMDP and the DESPOT POMDP Solver

N. Karaiskakis 19

Linear programming

An average cost MDP can be formulated as a linear programming problem and solved
using interior point methods or simplex algorithms [1]. From Theorem 1.3, solving
Bellman’s equation is equivalent to the following linear program

Maximize 𝑔
subject to 𝑔 + 𝑉(1) ≤ 𝑐(𝑖, 𝑢) + ∑ 𝑃𝑖𝑗(𝑢)𝑉(𝑗). (1.11)𝑗 ∈ 𝑋

The dual of the above problem can be formulated as the following linear programming

problem. Let p(x, u) = P (𝑥𝑘 = x, 𝑢𝑘 = u), x ∈ X, u ∈ U, denote the joint action state

probabilities.

Theorem 1.4 Consider a finite-state finite-action unichain average cost Markov decision

process. Then the optimal policy 𝜋∗ is

𝜋∗(𝑥) = 𝑢 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝜃𝑥,𝑢 =
𝑝∗(𝑥, 𝑢)

∑ 𝑝∗(𝑖, 𝑢)𝑖∈X

The X × U elements of 𝑝∗ are the solution of the linear programming problem:

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ ∑ 𝑐(𝑖, 𝑢)𝑝(𝑖, 𝑢) 𝑤𝑖𝑡ℎ 𝑟𝑒𝑠𝑝𝑒𝑐𝑡 𝑡𝑜 𝑝

𝑢∈U𝑖∈X

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑝(𝑖, 𝑢) ≥ 0, i ∈ X, u ∈ U

∑∑𝑝(𝑖, 𝑢) = 1

𝑢𝑖

∑𝑝(𝑖, 𝑢) = ∑ ∑𝑝(𝑖, 𝑢)𝑃𝑖𝑗(𝑢),

𝑢𝑖

 𝑗 ∈ {1, … , 𝑋).

𝑢

The Dynamic Defense of Network as POMDP and the DESPOT POMDP Solver

N. Karaiskakis 20

2. PARTIALLY OBSERVED MARKOV DECISION PROCESSES

The POMDP model extends the MDP by adding the feature of partial observability. A
model where the agent does not fully observe the environment provides a framework to
formulate more realistic problems.

2.1 Finite Horizon POMDP and Objective

A POMDP model with finite horizon N is a 7-tuple (X, U, Y, P(u), O(u), c(u), 𝑐𝑁).

1. X = {1, 2, …, X} denotes the state space and 𝑥𝑘∈ X denotes the state of a controlled

Markov chain at time k = 0, 1, …, N.

2. U = {1, 2, …,U} denotes the action space with 𝑢𝑘∈ U denoting the action chosen at

time k by the controller.

3. Y denotes the observation space which can either be finite or a subset of R. 𝑦𝑘∈ Y
denotes the observation recorded at each time k ∈ {1, 2, …, N}.

4. For each action u ∈ U, P(u) denotes a X × X transition probability matrix with

elements 𝑃𝑖𝑗(u) = P (𝑥𝑘+1 = j|𝑥𝑘= i, 𝑢𝑘 = u), i, j ∈ X. (2.1)

5. For each action u ∈ U , O(u) denotes the observation distribution with

𝑂𝑖𝑦(u) = P (𝑦𝑘+1 = y|𝑥𝑘+1= i, 𝑢𝑘 = u), i ∈ X, y ∈ Y. (2.2)

6. For state 𝑥𝑘 and action 𝑢𝑘, the decision-maker incurs a cost c(xk, uk).
7. Finally, at terminal time N, a terminal cost 𝑐𝑁 (𝑥𝑁) is incurred.

The decision-maker does not observe the state 𝑥𝑘, but only observes noisy observations
𝑦𝑘 that depend on the action and the state specified by the probabilities in (2.2).

Objective

We have to specify a performance criterion or objective function for the decision-maker.
For the finite horizon, the objective is:

𝐽𝜋(𝑏0) = 𝔼𝜋 {∑ 𝑐(𝑥𝑘, 𝑢𝑘) + 𝑐𝑁(𝑥𝑁)|𝑏0

𝑁−1

𝑘=0

} (2.3)

which is the expected cumulative cost incurred by the decision-maker when using policy
𝜋 up to time N given the initial distribution 𝑏0 of the Markov chain.

Here, 𝔼𝜋 denotes expectation with respect to the joint probability distribution of (𝑥0, 𝑦0, 𝑥1,
𝑦1,…, 𝑥𝑁−1, 𝑦𝑁−1, 𝑥𝑁, 𝑦𝑁). The goal of the decision-maker is to determine the optimal policy
sequence

𝜋∗ = a𝑟𝑔min

𝜋
𝐽𝜋(𝑏0), (2.4)

for any initial prior 𝑏0 that minimizes the expected cumulative cost. Of course, the optimal
policy sequence 𝜋∗ may not be unique.

Remarks

The Dynamic Defense of Network as POMDP and the DESPOT POMDP Solver

N. Karaiskakis 21

1. The decision-maker does not observe the state 𝑥𝑘. It only observes noisy observations

𝑦𝑘 that depend on the action and the state. Also, the decision-maker knows the cost

matrix c(x, u) for all possible states and actions in X, U. But since the decision-maker

does not know the state 𝑥𝑘 at time k, it does not know the cost accrued at time k or
terminal cost. Of course, the decision-maker can estimate the cost by using the noisy
observations of the state.

2. The term POMDP is usually used in the case where the observation space Y is finite.

However, we consider both finite and continuous valued observations.

3. The action 𝑢𝑘 affects the evolution of the state and observation distribution. In
controlled sensing applications such as radars and sensor networks, the action only
affects the observation distribution and not the evolution of the target.

2.2 Belief State Formulation of POMDP

This section details a crucial step in the formulation and solution of a POMDP, namely,
the belief state formulation. In this formulation, a POMDP is equivalent to a continuous-
state MDP with states being the belief states. These belief states are simply the posterior
state distributions computed via the HMM filter described in Part 1 of [1]. We then
formulate the optimal policy as the solution to Bellman’s dynamic programming recursion
written in terms of the belief state. The main outcome of this section is the formulation of
the POMDP dynamics in terms of the belief state.
Recall from that for a fully observed MDP, the optimal policy is Markovian and the optimal

action 𝑢𝑘 = 𝜋𝑘
∗(𝑥𝑘). In comparison, for a POMDP the optimal action chosen by

the decision-maker is in general

 𝑢𝑘 = 𝜋𝑘
∗ (ℎ𝑘), where ℎ𝑘= (𝑏0, 𝑢0, 𝑦1,…, 𝑢𝑘−1, 𝑦𝑘). (2.5)

Since ℎ𝑘 is increasing in dimension with k, to implement a controller, it is useful to obtain
a sufficient statistic that does not grow in dimension. In [1] section 3.5, a HMM filter is

used to compute the posterior distribution 𝑏𝑘, which is a sufficient statistic for ℎ𝑘.
We define the posterior distribution of the Markov chain given ℎ𝑘 as:

𝑏𝑘(i) = P(𝑥𝑘 = i|ℎ𝑘), i ∈ X where ℎ𝑘= (𝑏0, 𝑢0, 𝑦1,…, 𝑢𝑘−1, 𝑦𝑘) (2.6)

We will call the X-dimensional probability vector bk= [bk (1), . . . , bk (X)]’ as the belief state

or information state at time k.

The main point established below in Theorem 2.1 is that (2.5) is equivalent to

𝑢𝑘 = 𝜋𝑘
∗ (𝑏𝑘), (2.7)

In other words, the optimal controller operates on the belief state 𝑏𝑘(HMM filter posterior)

to determine the action 𝑢𝑘.
In light of (2.7), let us first define the space where 𝑏𝑘 lives in.

The beliefs 𝑏𝑘, k = 0, 1, … defined in (2.6) are X-dimensional probability vectors. Therefore,

they lie in the X − 1 dimensional unit simplex denoted as

 𝐵(𝑋) = {𝑏 ∈ R𝑋: 1′𝑏 = 1, 0 ≤ 𝑏(𝑖) ≤ 1 for all I ∈ X = {1, 2, …, X}}.

The Dynamic Defense of Network as POMDP and the DESPOT POMDP Solver

N. Karaiskakis 22

B(X) is called the belief space. B(2) is a one-dimensional simplex (unit line segment),

B(3) is a two-dimensional simplex (equilateral triangle); B(4) is a tetrahedron, etc. Note

that the unit vector states 𝑒1, 𝑒2, …, 𝑒𝑋 of the underlying Markov chain X are the vertices

of B(X).
We now formulate the POMDP objective in terms of the belief state. Consider the

objective (2.3). Then

𝐽𝜋(𝑏0) = 𝔼𝜋 {∑ 𝑐(𝑥𝑘, 𝑢𝑘) + 𝑐𝑁(𝑥𝑁)|𝑏0

𝑁−1

𝑘=0

}

 = 𝔼𝜋 {∑ 𝔼{𝑐(𝑥𝑘, 𝑢𝑘)|ℎ𝑘} + 𝔼{𝑐𝑁(𝑥𝑁)|ℎ𝑁}|𝑏0

𝑁−1

𝑘=0

}

 = 𝔼𝜋 {∑ ∑𝑐(𝑖, 𝑢𝑘)𝑏𝑘(𝑖) + ∑𝑐𝑁(𝑖)𝑏𝑁(𝑖)|𝑏0

𝑋

𝑖=1

𝑋

𝑖=1

𝑁−1

𝑘=0

}

 = 𝔼𝜋 {∑ 𝑐′𝑢𝑘
𝑏𝑘 + 𝑐′𝑁𝑏𝑁|𝑏0

𝑁−1

𝑘=0

}

 (2.8)

In (2.8), the X-dimensional cost vectors 𝑐𝑢(𝑘) and terminal cost vector 𝑐𝑁 are defined as:

 𝑐𝑢 = [𝑐(1, 𝑢) … 𝑐(𝑋, 𝑢)]′, 𝑐𝑁 = [𝑐𝑁(1)… 𝑐𝑁(𝑋)]. (2.9)

In this way the POMDP has been expressed as a continuous-state (fully observed) MDP.
This continuous-state MDP has belief state 𝑏𝑘 which lies in unit simplex belief space B(X).
Determining the optimal policy for a POMDP is equivalent to partitioning B(X) into regions

where a particular action u ∈ {1, 2, …,U} is optimal.

2.3 Stochastic Dynamic Programming for POMDP

In this section, we present how we can use Bellman’s dynamic programming for POMDPs
according to the formulation we previously saw.

Theorem 2.1 For a finite horizon POMDP with model (X, U, Y, P(u), O(u), c(u), 𝑐𝑁):

1. The minimum expected cumulative cost 𝐽𝜋∗(𝑏) is achieved by deterministic policies

 𝜋∗ = (𝜋0

∗, 𝜋1
∗, … , 𝜋𝑁−1

∗), 𝑤ℎ𝑒𝑟𝑒 𝑢𝑘 = 𝜋𝑘
∗(𝑏𝑘).

2. The optimal policy 𝜋∗ = (𝜋0
∗, 𝜋1

∗, … , 𝜋𝑁−1
∗) for a POMDP is the solution of the following

Bellman’s dynamic programming backward recursion: Initialize 𝐽𝑁(𝑏) =𝑐′𝑁𝑏 and then for
k = N − 1, …, 0

The Dynamic Defense of Network as POMDP and the DESPOT POMDP Solver

N. Karaiskakis 23

𝐽𝑘(𝑏) = min
𝑢∈U

{𝑐′𝑢𝑏 + ∑𝐽𝑘+1(𝑇(𝜋, 𝑦, 𝑢))𝜎(𝑏, 𝑦, 𝑢))

𝑦∈Y

}

𝜋𝑘
∗(𝑏) = 𝑎𝑟𝑔min

𝑢∈U
{𝑐′

𝑢𝑏 + ∑ 𝐽𝑘+1(𝑇(𝜋, 𝑦, 𝑢))𝜎(𝑏, 𝑦, 𝑢))

𝑦∈𝑌

}

 (2.10)

The expected cumulative cost 𝐽𝜋∗(𝑏) (2.10) of the optimal policy 𝜋∗ is given by the value

function 𝐽0(𝑏) for any initial belief b ∈ B(X).

Since the belief space B(X) is uncountable, the above dynamic programming recursion
does not translate into practical solution methodologies. 𝐽𝑘(𝑏) needs to be evaluated at

each b ∈ B(X), an uncountable set.

2.4 Discounted Infinite Horizon POMDP

So far we have considered finite horizon POMDPs. This section considers infinite horizon

discounted cost POMDPs. The discounted POMDP model is a 7-tuple (X, U, Y, P(u),

O(u), c(u), ρ) where P(u), O(u) and c are no longer explicit functions of time and ρ ∈ [0,

1) is an economic discount factor. Also, there is no terminal cost 𝑐𝑁.

We define a stationary policy sequence as π=(π,π,π,...) where π is not an explicit function

of time k. For stationary policy π : B(X) → U, initial belief b0∈ B(X), discount factor ρ ∈ [0,

1), define the objective function as the discounted expected cost:

𝐽𝜋(𝑏0) = 𝔼𝜋 {∑ 𝜌𝑘𝑐(𝑥𝑘, 𝑢𝑘)

∞

𝑘=0

} , 𝑤ℎ𝑒𝑟𝑒 𝑢𝑘 = 𝜋(𝑏𝑘)

or

𝐽𝜋(𝑏0) = 𝔼𝜋 {∑ 𝜌𝑘𝑐′𝜋(𝑏𝑘)

∞

𝑘=0

},

 (2.11)

where 𝑐𝑢 = [𝑐(1, 𝑢),… , 𝑐(𝑋, 𝑢)]′, 𝑢 ∈ U is the cost vector for each action.

The aim is to compute the optimal stationary policy 𝜋∗ : B(X) → U such that

 Jπ∗(b0) ≤ Jπ(b0) ∀ b0 ∈ B(X).

Theorem 2.2 Consider an infinite horizon discounted cost POMDP with discount factor ρ
∈ [0, 1). Then with b ∈ B(X) denoting the belief state,

1. The optimal expected cumulative cost is achieved by a stationary deterministic
Markovian policy 𝜋∗.

The Dynamic Defense of Network as POMDP and the DESPOT POMDP Solver

N. Karaiskakis 24

2. The optimal policy 𝜋∗(𝑏) and value function V(b) satisfy Bellman’s dynamic

programming equation
𝜋∗(𝑏) = 𝑎𝑟𝑔min

𝑢∈U
𝑄(𝑏, 𝑢), 𝐽𝜋∗(𝑏0) = 𝑉(𝑏0) (2.12)

𝑉(𝑏) = min
𝑢∈U

𝑄(𝑏, 𝑢), 𝑄(𝑏, 𝑢) = 𝑐′𝜋(𝑏𝑘) + 𝜌 ∑𝑉(𝑇(𝑏, 𝑦, 𝑢))𝜎(𝑏, 𝑦, 𝑢),

y∈𝑌

3. The value function V(π) is continuous and concave in b ∈ B(X).

For more general theoretical background on MDPs and POMDPs, except for [1], also [2]
and [3] provide the reader with much information.

2.5 Classes of POMDP Algorithms

In this section, we present the basic categories of POMDP solvers. First, we will talk about
exact algorithms, which are used to solve optimally finite horizon POMDPs. However,
these algorithms are not efficient, so we need to take a look into approximating algorithms
that search for near-optimal solutions and can scale pretty well even for large scale
POMDPs. The most important categories of such solvers are the point-based (PB)
algorithms and the online algorithms.

2.5.1 Exact Algorithms: Incremental Pruning

These algorithms solve optimally finite horizon POMDPs. They are based on Sodnik’s
idea [4], which was the first exact algorithm for POMDPs of the finite horizon. Exact here
means that there is no approximation involved in the dynamic programming algorithm.

According to [1] (section 7.5.1), Bellman’s dynamic programming recursion (2.10) can be
expressed as the following three steps:

𝑄𝑘(𝑏, 𝑢, 𝑦) =
𝑐𝑢

′ 𝑏

𝑌
+ 𝐽𝑘+1(𝑇(𝑏, 𝑦, 𝑢))𝜎(𝑏 , 𝑦 , 𝑢)

𝑄𝑘(𝑏, 𝑢) = ∑ 𝑄𝑘(𝑏, 𝑢, 𝑦)

𝑦∈Y

𝐽𝑘(𝑏) = min

𝑢
𝑄𝑘(𝑏, 𝑢).

 (2.13)

Based on the above three steps, the set of vectors 𝛤𝑘 that form the piecewise linear value
function [1], can be constructed as:

𝛤𝑘(𝑢, 𝑦) = {
𝑐𝑢

𝑌
+ 𝑃(𝑢)𝑂𝑦(𝑢)𝛾|𝛾 ∈ 𝛤𝑘+1}

𝛤𝑘(𝑢) =⊕ 𝛤𝑘(𝑢, 𝑦)

𝛤𝑘 =∪𝑢∈U 𝛤𝑘(𝑢).

 (2.14)

The Dynamic Defense of Network as POMDP and the DESPOT POMDP Solver

N. Karaiskakis 25

Here ⊕ denotes the cross-sum operator: given two sets of vectors A and B, A⊕B consists
of all pairwise additions of vectors from these two sets.

In general, the set 𝛤𝑘 constructed according to (2.14) may contain superfluous vectors
(we call them “inactive vectors” below) that never arise in the value function 𝐽𝑘 (b).

The incremental pruning algorithm seeks to eliminate useless vectors by pruning 𝛤𝑘 to
maintain a parsimonious set of vectors. Below is the Incremental pruning algorithm:

The value function 𝐽𝑘(𝑏) = min
𝛾∈𝛤𝑘

𝛾𝑏′ with set of vectors Γk is piecewise linear and concave.

Suppose there is a vector γ ∈ Γk such that for all b ∈ B(X), it holds that γ’b ≥ 𝛾̅′b for all

vectors γ̅ ∈ Γk − {γ}. Then γ dominates every other vector in Γk and is never active.

The following linear programming dominance test can be used to identify and prune
inactive vectors:

min x
subject to: (γ-γ̅)′ b ≥ x, ∀ γ̅ ∈ Γ-{γ} (2.15)

If the above linear program yields a solution x ≥ 0 for a vector γ, then γ dominates all other

vectors in Γ − {γ}, which means it is inactive and can be excluded from Γ. This pruning

method makes the Incremental Pruning Algorithm more efficient compared to other exact
POMDP-solvers.

Other known exact algorithms are Monahan’s algorithm and Witness algorithm.

2.5.2 Point-Based Value Iteration Algorithms

Point-based value iteration methods seek to compute an approximation of the value
function at special points in the belief space. The main idea is to compute solutions only
for those belief states that have been visited by running the POMDP. This urges
researchers to develop approximate solution techniques that use a sampled set of belief
states on which the POMDP is solved.
Such a method can be inefficient given the exponential growth in value function
representation size. When performing value iteration over the belief space, it is crucial to
limit the size of the set of vectors representing the value function. The issue here lies in

Algorithm 2.1: Incremental pruning

1: Given set 𝛤𝑘+1 generate 𝛤𝑘 as follows:
2: Initialize 𝛤𝑘 (u, y), 𝛤𝑘 (u), 𝛤𝑘 as empty sets

3: for each u ∈ U

4: for each y ∈ Y

5: 𝛤𝑘(𝑢, 𝑦) ← 𝑝𝑟𝑢𝑛𝑒 ({
𝑐𝑢

𝑌
+ 𝑃(𝑢)𝑂𝑦(𝑢)𝛾|𝛾 ∈ 𝛤𝑘+1})

6: 𝛤𝑘 (u)← prune (𝛤𝑘 (u)⊕ 𝛤𝑘 (u, y))

7: end for
7: 𝛤𝑘 ← prune (𝛤𝑘 ∪ 𝛤𝑘 (𝑢))
8: end for

The Dynamic Defense of Network as POMDP and the DESPOT POMDP Solver

N. Karaiskakis 26

the decision on which vectors should be removed. Of course, there is a trade-off between
avoiding the growth of the set of vectors of the value function, at the cost of compromising
the accuracy of the value function.
PB algorithms belong to the offline family, since they construct a policy by dividing the
belief space into areas based on the domination relations among the vectors representing
the value function. Also, they need an initial estimation of the value function. More details
on PB algorithms can be found at [7].

We will now take a look into the Value Iteration algorithm for discounted cost POMDPs.

Let n = 1, 2, …, N denote iteration number. The value iteration algorithm for a discounted
cost POMDP is a successive approximation algorithm for computing the value function

V(π) of Bellman’s equation (2.12) and proceeds as follows: initialize V0(b)= 0. For

iterations n = 1, 2, …, N, evaluate

Vn(b) = min
𝑢∈U

𝑄𝑛(𝑏, 𝑢), 𝜋𝑛
∗(𝑏) = 𝑎𝑟𝑔min

𝑢∈U
𝑄𝑛(𝑏, 𝑢),

𝑄𝑛(𝑏, 𝑢) = 𝑐′𝑢 𝑏 + 𝜌 ∑ 𝑉𝑛−1(𝑇(𝑏, 𝑦, 𝑢))𝜎(𝑏, 𝑦, 𝑢) (2.16)

y∈𝑌

Finally, the stationary policy 𝜋𝑛
∗ is used at each time instant k in the real-time controller.

The POMDP value iteration algorithm (2.16) is identical to the finite horizon dynamic

programming recursion (2.10). So at each iteration n, Vn(b) is piecewise linear and
concave in b (by Theorem 2.1). The value iteration algorithm (2.16) generates a sequence

of value functions {Vn} that will converge uniformly (sup-norm metric) as N →∞ to V(b),
the optimal value function of Bellman’s equation.
As mentioned already, the number of piecewise linear segments that characterize Vn(b)
can grow exponentially with iteration n. Therefore, we cannot expect great results except
for POMDP problems with small state, action and observation spaces.

2.5.3 Online POMDP solvers

An offline POMDP solver returns a policy defining which action to execute in every
possible belief state. Given the complexity of the POMDP model, it is obvious that this
practice is not sufficient. Exact algorithms can only be useful when it comes to small to
mid-size domains, since the policy construction step takes significant time. Online
algorithms tackle this issue by computing good local policies at each time step.
Approximating offline algorithms may be used in order to compute upper and lower
bounds of the value function. Then, an online algorithm takes into account these bounds
so as to search for policies based on the more promising areas of the belief space and
save time.
Online approaches try to find a good local policy for the current belief. These approaches
tend to be more appropriate for large POMDPs, because they only need to consider belief
states that are reachable from the current belief state. This focuses computation on a
small set of beliefs and thus reduces running time drastically. In addition, since online
planning is done at every step, it is sufficient to calculate only the maximal value for the
current belief state. In this setting, the policy construction steps and the execution steps
are interleaved with one another as shown in Figure 2.1.
In some cases, online approaches may require a few extra execution steps (and online
planning), since the policy is locally constructed and therefore not always optimal.
However, the policy construction time is often substantially shorter.

The Dynamic Defense of Network as POMDP and the DESPOT POMDP Solver

N. Karaiskakis 27

Figure 2.1: Comparison between offline and online approaches.

Consequently, the overall time for the policy construction and execution is normally less
for online approaches. In practice, a potential limitation of online planning is when we
need to meet short real-time constraints. In such case, the time available to construct the
plan is very small compared to offline algorithms.
Online algorithms comprise two basic steps; the planning phase and the execution phase.
In the planning phase, the algorithm is given the current belief state and computes the
best action to execute in the current belief. This is usually achieved in two steps.
First a tree of reachable belief states from the current belief state is built by looking at
several possible sequences of actions and observations that can be taken from the
current belief. In this tree, the current belief is the root node and subsequent reachable
beliefs are added to the tree as child nodes of their immediate previous belief. Belief
nodes are represented using OR-nodes (at which we must choose an action) and actions
are included in between each layer of belief nodes using AND-nodes (at which we must
consider all possible observations that lead to subsequent beliefs) [8]. Then the value of
the current belief is estimated by propagating value estimates up from the fringe nodes,
to their ancestors, all the way to the root, according to Bellman’s equation.
After the planning phase is done, the execution phase proceeds by executing the best
action found for the current belief in the environment, and updating the current belief and
tree according to the observation obtained.

Algorithm 2.2 provides an outline on a generic online algorithm’s implementation of the
planning phase (lines 5-9) and the execution phase (lines 10-13). The algorithm first
initializes the tree to contain only the initial belief state (line 2). Then given the current
tree, the planning phase of the algorithm proceeds by first selecting the next node to
expand (line 6). The Expand function (line 7) constructs the next reachable beliefs under
the selected leaf for some pre-determined expansion depth D and evaluates the
approximate value function for all newly created nodes. The new approximate value of
the expanded node is propagated to its ancestors via the UpdateAncestors function (line
8). The planning phase goes on until some terminating condition is met (either an optimal
action is found or planning time has run out).
Then, the algorithm proceeds to the execution phase, where it executes the best action
𝑢∗ found during planning (line 10) and gets a new observation o from the environment

(line 11). Next, the algorithm updates the current belief state and the search tree T
according to the most recent action 𝑢∗ and observation o (lines 12-13).

The Dynamic Defense of Network as POMDP and the DESPOT POMDP Solver

N. Karaiskakis 28

Algorithm 2.2: Online POMDP-solver

1: Static: 𝑏𝑐: The current belief state of the agent.

T: An AND-OR tree representing the current search tree.
D: Expansion depth.
L: A lower bound on 𝑉∗.
U: An upper bound on 𝑉∗.

2: 𝑏𝑐 ← 𝑏0
3: Initialize T to contain only 𝑏𝑐at the root
4: while not ExecutionTerminated() do
5: while not PlanningTerminated() do
6: 𝑏∗← ChooseNextNodeToExpand()
7: Expand(𝑏∗ , D)
8: UpdateAncestors(𝑏∗)
9: end while
10: Execute best action 𝑢∗ for 𝑏𝑐
11: Perceive a new observation o

12: 𝑏𝑐 ← τ(𝑏𝑐 , 𝑢∗, o)

13: Update tree T so that 𝑏𝑐 is the new root

14: end while

The Dynamic Defense of Network as POMDP and the DESPOT POMDP Solver

N. Karaiskakis 29

3. DYNAMIC DEFENSE OF CYBER NETWORKS

After seeing the basic elements of POMDPs, we can introduce a problem modeled as
such. The problem is the protection of a cyber network from intruders in real time.
Specifically, given a network, the defender attempts to prevent the attacker from reaching
important points, by blocking possible future actions that further the intrusion, while
maintaining an adequate level of availability for trusted users.
In order to do so, the defender has to rely on the representation of the network he has
during each time step. The defender does not know the true strategy of the attacker and
is unable to perfectly observe the attacker’s actions, resulting in a lack of certainty of the
security status of the network at any given time. The defender only has access to a stream
of noisy security information generated in real-time (for example, security alerts
generated via intrusion detection systems). Oftentimes, this information suffers from a
high-rate of false alarms, that is, alarms being triggered when nothing of concern has
actually occurred. This element constitutes the partial observability aspect of the problem
and thus urges us to adopt the POMDP formulation.
The defender aims to decide on his actions based on a near-optimal policy. So the
problem is modeled as a POMDP, where the decision-maker is the defender, and based
on the information from the environment, choses the best action for the given situation
each time.

3.1 POMDP Formulation of the Dynamic Defense Problem

3.1.1 Dependency Graphs

First of all we need a way to represent the network and especially the relation between
exploits the attacker can attempt and network states, as well as the states we cannot
allow which are the cases the intruder has succeeded in reaching critical points.
One way to model such interactions are Attack trees/graphs. Αttack trees/graphs (first
introduced in [11]) model the dependencies between exploits and system states in a cyber
network, allowing one to construct the specific attack paths that intruders can take to enter
a network. However, these graphs tend to be enormously large even for modestly-sized
systems, rendering them restricting for any realistic applications. One way to improve
scalability, is the assumption of monotonicity on the attacker’s behavior, which means
that the success of a previous exploit will not interfere with the success of a future exploit.
Monotonicity enables one to restrict attention to dependencies between exploits and
security conditions, in what is termed a dependency graph, avoiding the need to
enumerate over all system states. In this way the amount of information required to
describe network attacks is drastically reduced.
A dependency graph is used to model how the attacker progresses through the cyber
network over time. The dependency graph is represented as a hypergraph, where nodes
represent possible security conditions and directed hyperedges (edges that connect a
pair of sets of nodes) represent exploits, thus presenting the relations between
preconditions, the security conditions that must be enabled in order for the exploit to be
attempted, and postconditions, the security conditions that become enabled if the attacker
is successful with that exploit.
A security state is the set of currently enabled security conditions. In this sense, the
security state at any given time represents the current capabilities of the attacker. For a
given security state, the attacker uses its current capabilities (the set of enabled security
conditions) to attempt exploits, with the goal of enabling more security conditions until
one (or more) goal condition is achieved. The specific strategy that the attacker employs

The Dynamic Defense of Network as POMDP and the DESPOT POMDP Solver

N. Karaiskakis 30

is its own private information and is assumed to dynamically adjust according to the
defender’s actions.

Below is an example of a dependency graph, where we see how each exploit leads to a
new SC. The cycled SCs are goal states for the attacker and need to be protected.

Figure 3.1: Example of a dependency graph with 12 security conditions (SCs) and 13 exploits

Formally, we represent a condition dependency graph as a directed acyclic hypergraph

G = (N, E), where N = {𝑐1, …, 𝑐𝑛𝑐
} is the set of security conditions (nodes) and E = {𝑒1,

…, 𝑒𝑛𝑒
} is the set of exploits (hyperedges). The acyclic nature of the graph follows from

the monotonicity assumption. Each security condition 𝑐𝜄 ∈ N in the hypergraph can either

be true or false. The truth value of each condition is interpreted as follows: a true (enabled)

condition means that the attacker possesses condition 𝑐𝑖, and a false (disabled) condition

means that the attacker does not possess 𝑐𝑖. An enabled condition is interpreted as the
attacker having a particular capability.
Some of the conditions in the hypergraph, when enabled, designate that an attacker has
reached a goal. Such nodes are termed goal conditions and are denoted by the subset

𝑁𝑔 ⊆ N . Goal conditions are defined by the defender and correspond to something that

it wants to protect.

3.1.2 Belief Formulation based on History

As mentioned above the defender, does not know exactly which SCs are enabled by the
attacker. The decision-maker can only receive noisy observations based on the attacker’s
previous actions and so keeps a belief over the current state each moment.

The Dynamic Defense of Network as POMDP and the DESPOT POMDP Solver

N. Karaiskakis 31

The defender has to take into consideration the possible attacker type as well, meaning
that, for a given network state, different attackers will attempt different actions in order to
deepen their progression.

Using the environment, in this case the received security alerts, the defender constructs
a belief over the current situation, denoted by 𝑏𝑘 , that summarizes its uncertainty over
both the security state and the attacker type. This belief is constructed using all of the
defender’s available information at time k: the (distribution over the) initial security state

and attacker type, the history of all defense actions from time 0 to time k − 1, and all

observations from time 0 to k, denoted by ℎ𝑘 = (𝑏0, 𝑢0, 𝑦0, . . . , 𝑢𝑘−1, 𝑦𝑘). The belief
represents the joint probability distribution over security states and attacker types, and is
defined as:

𝑏𝑘 =

[

 𝑏𝑘

1,1 𝑏𝑘
1,2 … 𝑏𝑘

1,|𝛷|

. . .

. . .

. . .

𝑏𝑘
|𝛸|,1

𝑏𝑘
|𝛸|,2

… 𝑏𝑘
|𝛸|,|𝛷|

]

 ∈ 𝐵𝑋× 𝛷

where bk
ij

= P(xk = i, φk = j|hk = h) is the likelihood that xk is the true security state and

φk is the true type given the realized information ℎ𝑘 . The space 𝐵𝑋× 𝛷 is the probability
simplex over the state-type space 𝑋 × 𝛷 . Notice that 𝑏𝑘 is a doubly-stochastic matrix for

each k; each row represents a probability mass function over the type space for a given
state and each column represents a probability mass function over the space of security
states for a given type.

Based on the above, the problem of the dynamic defense of a network can be modeled
as a POMDP, where the defender is the decision-maker and the attacker is part of the
environment of the agent [6].

3.2 Defender problem

The defender wishes to determine an optimal defense action to deploy for any belief that
it may encounter. This means trying to stop the attacker from progressing through the
network, while keeping a sufficient availability level for trusted users in the network. The
decision rule determining this action is termed a defense policy and is represented by the

function π : 𝐵𝑋× 𝛷→ U, mapping a belief matrix b ∈ 𝐵𝑋× 𝛷 to a defense action u ∈ U.

The problem of determining π can be cast as a POMDP:

For a given initial belief b=𝑏0, the objective of the decision maker is:

𝐽𝜋(𝑏0) = min
𝜋

𝔼𝜋 {∑ 𝜌𝑘𝑐(𝑏𝑘 , 𝑢𝑘)|𝑏0

∞

𝑘=0

} (3.1)

And the optimal policy is:

𝜋∗ = 𝑎𝑟𝑔min
𝜋

𝔼𝜋 {∑ 𝜌𝑘𝑐(𝑏𝑘, 𝑢𝑘)|𝑏0

∞

𝑘=0

}, (3.2)

The Dynamic Defense of Network as POMDP and the DESPOT POMDP Solver

N. Karaiskakis 32

where ρ with 0 < ρ < 1 is the discount factor. The function 𝑐(𝑏𝑘 , 𝑢𝑘) represents the

expected cost for being in belief state 𝑏𝑘 when defense action 𝑢𝑘 is selected and is

defined as 𝑐(𝑏𝑘 , 𝑢𝑘) = ∑ 𝑏𝑘
𝑖𝑗
 𝑐(𝑥𝑖, 𝜑𝑗, 𝑢𝑘)𝑥𝑖∈𝑋,𝜑𝑗∈𝛷 .

c(s, ϕ, u) is the weighted cost [6] taking into account security and availability and is defined

as 𝑐(𝑥, 𝜑, 𝑢)=ω𝑐𝑠(𝑥, 𝜑) + (1 − 𝜔)𝑐𝑢(𝑢), where 0 ≤ ω ≤ 1.

The Dynamic Defense of Network as POMDP and the DESPOT POMDP Solver

N. Karaiskakis 33

4. DESPOT

The DESPOT algorithm is an online POMDP solver considered state-of-the-art. It
approximates the belief tree so as to search for optimal policies in a much smaller belief
space.

4.1 Determinized Sparse Partially Observable Tree Structure

A DESPOT is a sparse approximation of a standard belief tree. While a standard belief
tree captures the execution of all policies under all possible scenarios, a DESPOT
captures the execution of all policies under a set of randomly sampled scenarios (Figure
4.1).

Figure 4.1: Standard Belief Tree and DESPOT

To overcome the computational challenge of online planning under uncertainty, DESPOT

samples a small finite set of K scenarios as representatives of the future. Each scenario
contains a sampled initial state and random numbers which determinize the uncertain
outcomes of future actions and observations.
This approximation of the belief tree contains all the action branches, but not all the
observation branches. Instead, it only contains those observation branches encountered
under the sampled scenarios.
DESPOT is constructed by applying a deterministic simulative model to all possible action

sequences under K sampled scenarios.
A scenario is an abstract simulation trajectory starting from a state 𝑥0. Formally, a

scenario for a belief b is a random sequence φ = (𝑥0, 𝜑1, 𝜑2, …), in which the start state
𝑥0 is sampled according to b and each 𝜑𝑖, is a real number sampled independently and

uniformly from the range [0, 1]. The deterministic simulative model is a function g : X x U

x R → X x Y, such that if a random number 𝜑𝑖 is distributed uniformly over [0, 1], then

(x′,y’) = g(x, u,φ) is distributed according to p(x′,y’|x, u) = T(x,u,x’)O(x’, u, y’).

Applying this simulative model for an action sequence (𝑢1, 𝑢2,…) under a scenario (𝑠0,

𝜑1, 𝜑2, …) generates a simulation trajectory (𝑥0, 𝑢1, 𝑥1, 𝑦1, 𝑢2, 𝑥2, 𝑦2…),where (𝑥𝑘, 𝑦𝑘) =

g(𝑥𝑡−1, 𝑢𝑘, 𝜑𝑘) for k = 1, 2,….
The simulation trajectory traces out a path (𝑢1, 𝑦1, 𝑢2, 𝑦2,…) from the root of the standard

belief tree. Now all the nodes and edges on this path are added to the DESPOT D being

constructed. Each node b of D contains a set 𝛷𝑏 of all scenarios that it encounters. We

insert the scenario (𝑥0, 𝜑0, 𝜑2, …) into the set 𝛷𝑏0
 at the root 𝑏0 and insert the scenario

(𝑥𝑘, 𝜑𝑘+1, 𝜑𝑘+2, …) into the set 𝛷𝑏𝑘
 at the belief node 𝑏𝑘 reached at the end of the subpath

(𝑢1, 𝑦1, 𝑢2, 𝑦2,…, 𝑢𝑘, 𝑦𝑘), for k = 1, 2,….

The Dynamic Defense of Network as POMDP and the DESPOT POMDP Solver

N. Karaiskakis 34

Repeating this process for every action sequence under every sampled scenario

completes the construction of D.

A DESPOT is completely determined by the set of K random sequences sampled a priori.
Hence the name Determinized Sparse Partially Observable Tree. In a DESPOT tree
every node b represents a belief (just like a standard belief tree) and contains a set 𝛷𝑏 of

scenarios starting from this belief node. The start states of the scenarios in 𝛷𝑏 form a

particle set that represents b approximately.
It is possible to search for near-optimal policies using a DESPOT instead of a standard

belief tree. The empirical value 𝑉̂𝜋(b)of a policy π under the sampled scenarios encoded
in a DESPOT is the average total discounted reward obtained by simulating the policy

under each scenario for a belief node. Formally, let 𝑉𝜋,𝛷 be the total discounted reward of

the trajectory obtained by simulating π under a scenario φ ∈ 𝛷𝑏 for some node b in a

DESPOT, then

𝑉̂𝜋(b) = ∑
𝑉𝜋,𝛷

|𝛷𝑏|φ∈𝛷𝑏

where |𝛷𝑏| is the number of scenarios in 𝛷𝑏. Since 𝑉̂𝜋(b) converges to 𝑉𝜋(b) almost surely

as K → ∞, the problem of finding an optimal policy at b can be approximated as that of
doing so under only the sampled scenarios. However, overfitting can be an issue, since
a policy optimized for finitely many sampled scenarios may not be optimal in general, as
many scenarios are excluded from set 𝛷𝑏. To overcome overfitting, a regularization of the
empirical value of a policy is introduced by adding a term that penalizes large policy size.
There is a chance that the agent encounters an observation not present in π, as π
contains only the observation branches resulting from the simulation of the scenarios. In
this case, the agent follows a default policy from then on. Similarly, it follows the default

policy when reaching a leaf node of π.

To simplify the presentation, we assume without loss of generality that all rewards are

non-negative and are bounded by 𝑅𝑚𝑎𝑥.

DESPOT iterates over two main steps: action selection and belief update. A standard
particle filtering method, sequential importance resampling (SIR) (Gordon, Salmond, &
Smith, 1993) is used for belief update.

There are two action selection methods. The first approach consists of a simple dynamic
programming method that constructs a DESPOT fully before finding the optimal action.
However, constructing the DESPOT fully in advance is not practical for large POMDPs.
The second approach, which is more useful, is an anytime DESPOT algorithm that
performs anytime heuristic search. The anytime algorithm uses a heuristic to construct
the DESPOT incrementally. This allows this method to scale particularly well even for
large scale POMDPs. The algorithm converges to an optimal policy when the heuristic is
admissible and that the performance of the algorithm degrades gracefully even when the
heuristic is not admissible [9].

4.2 Dynamic Programming

This approach wants to construct a fixed DESPOT D with K randomly sampled scenarios

and derive from D a policy that maximizes the regularized empirical value under the

sampled scenarios:

The Dynamic Defense of Network as POMDP and the DESPOT POMDP Solver

N. Karaiskakis 35

max
𝜋

{𝑉̂𝜋(𝑏0) − 𝜆|𝜋|}

where 𝑏0 is the current belief, at the root of D. A DESPOT policy is represented as a

policy tree. For each node b of π, we define the regularized weighted discounted utility
(RWDU):

𝑣𝜋(b) =
|𝛷𝑏|

𝐾
𝛾𝛥(𝑏)𝑉̂𝜋𝑏

(𝑏) − 𝜆|𝜋𝑏|, (4.1)

where |𝛷𝑏| is the number of scenarios passing through node b, γ is the discount factor,

Δ(b) is the depth of b in the policy tree π, πb is the subtree rooted at b, and|𝜋𝑏| is the size
of 𝜋𝑏. The ratio |𝛷𝑏|/K is an empirical estimate of the probability of reaching b. For root

node 𝑏0 we have 𝑣𝜋(𝑏0) = 𝑉̂𝜋𝑏
(𝑏) − 𝜆|𝜋|, which we want to optimize.

For every node b of D, define 𝑣∗(b) as the maximum RWDU of b over all policies in 𝛱𝐷.

Assuming that D has finite depth and that |𝜋0 | = 0, the following dynamic programming

procedure computes 𝑣∗(𝑏0) recursively from bottom up. At a leaf node b of D, the agent

follows default policy 𝜋0 under the sampled scenarios:

𝑣∗(b) =
|𝛷𝑏|

𝐾
𝛾𝛥(𝑏)𝑉̂𝜋𝑏

(𝑏).

For each node b, τ(b, u, y) represents the child of b following the action branch u and the

observation branch y at b. Then

𝑣∗(b) = max {
|𝛷𝑏|

𝐾
𝛾𝛥(𝑏)𝑉̂𝜋0

(𝑏),max
𝑢∈𝑈

{𝜌(𝑏, 𝑢) + ∑ 𝑣∗(𝜏(𝑏, 𝑢, 𝑦))

𝑦∈𝑌𝑏,𝑢

}} (4.2)

where

𝜌(𝑏, 𝑢) =
1

𝐾
∑ 𝛾𝛥(𝑏)

𝜑∈𝛷𝑏

𝑅(𝑥𝜑, 𝑢) − 𝜆

the state 𝑥𝜑 is the start state of the scenario φ, and 𝑌𝑏,𝑢 is the set of observations following

the action branch u at the node b. The outer maximization in (4.2) decides either to

execute the default policy or expand the subtree at b. The inner maximization chooses
among the different actions available. When the algorithm terminates, the maximizer at

the root 𝑏0 of D gives the best action at 𝑏0.

In cases where D has unbounded depth, there is the option of truncating D to a depth

of ⌈𝑅𝑚𝑎𝑥/𝜆(1 − 𝛾)⌉ + 1 and run the above algorithm, provided that λ > 0. This approach is

sufficient because an optimal regularized policy 𝜋̂ cannot include the truncated nodes of

D. Otherwise, 𝜋̂ has size at least ⌈𝑅𝑚𝑎𝑥/𝜆(1 − 𝛾)⌉ + 1 and thus RWDU 𝑣𝜋̂(𝑏0) < 0. Since

the default policy 𝜋0 has RWDU 𝑣𝜋0
(𝑏0) ≥ 0 is then better than 𝜋, a contradiction.

We first simulate the deterministic model to construct the tree, then do a bottom-up

dynamic programming to initialize 𝑉̂𝜋0
(𝑏), and finally compute 𝑣∗(b) using Equation (4.2).

The Dynamic Defense of Network as POMDP and the DESPOT POMDP Solver

N. Karaiskakis 36

Based on these, the complexity of the standard dynamic programming approach

algorithm for a DESPOT is O (|𝑈|𝐷KD).

4.3 Anytime Heuristic Search

The bottom-up dynamic programming algorithm presented in section 4.2 constructs the

full DESPOT D in advance. This is generally not practical, when it comes to large scale

POMDPs. Instead, we use the DESPOT approach based on an anytime forward search
algorithm to scale up. In that way, we do not construct the DESPOT fully in advance, but
incrementally. The algorithm selects the action by incrementally constructing a DESPOT

D rooted at the current belief b, using heuristic search, and approximating the optimal

RWDU 𝑣∗(b). The main components of the algorithm are described below.
To guide the heuristic search, we maintain a lower bound l(b) and an upper bound μ(b)

on the optimal RWDU at each node b of D, so that l(b) ≤ 𝑣∗(b) ≤ μ(b).To prune the

search tree, we additionally maintain an upper bound U(b) on the empirical value 𝑉̂∗ (𝑏)

of the optimal regularized policy so that U(b) ≥ 𝑉̂∗ (𝑏) and compute an initial lower bound

𝐿0 (b) with 𝐿0 (b) ≤ 𝑉̂∗ (𝑏) . In particular, we use 𝐿0 (b) ≤ 𝑉̂𝜋0
∗ (𝑏) for the default policy 𝜋0

at b [9].

The aim is to construct and search a DESPOT D incrementally, using K sampled

scenarios. At first, D contains only a single root node with belief 𝑏0 and the associated

initial upper and lower bounds. The algorithm makes a series of explorations to expand

D and reduce the gap between the bounds μ(𝑏0) and l(𝑏0) at the root node 𝑏0of D . Each

exploration follows a heuristic and traverses a promising path from the root of D to add

new nodes to D . Specifically, it keeps on choosing and expanding a promising leaf node

and adds its child nodes into D until current leaf node is not heuristically promising. Once

this happens, the algorithm traces the path back to the root and performs backup on the
upper and lower bounds at each node in the path, using Bellman’s principle. The

explorations continue, until the gap between the bounds μ(𝑏0) and l(𝑏0) reaches a target
level 𝑒0 ≥ 0 or the online planning time runs out. More details in section 4.2 of [9].

4.3.1 Forward Exploration

Let e(b) = μ(b) - l(b) denote the gap between the upper and lower RWDU bounds at a
node b. Each exploration aims to reduce the current gap e(𝑏0) at the root 𝑏0 to ξe(𝑏0) for

some given constant 0 < ξ < 1. An exploration starts at the root 𝑏0. At each node b along
the trial path, we choose the action branch optimistically according to the upper bound
μ(b):

𝑢∗ = 𝑎𝑟𝑔max
𝑢∈𝑈

𝜇(𝑏, 𝑢) = 𝑎𝑟𝑔max
𝑢∈𝑈

{𝜌(𝑏, 𝑢) + ∑ 𝜇(𝑏′)

𝑦∈𝑌𝑏,𝑢

}, (4.3)

where b’ = τ(b, u, y) is the child of b following the action branch u and the observation

branch y at b. We then choose the observation branch y that leads to a child node

b’ = τ(b, u*, y) maximizing the excess uncertainty E(b’) at b’:

𝑦∗ = 𝑎𝑟𝑔 max
𝑦∈𝑌𝑏,𝑢∗

𝐸(𝑏′) = 𝑎𝑟𝑔 max
𝑦∈𝑌𝑏,𝑢∗

{𝑒(𝑏′) −
|𝛷𝑏′|

𝐾
 𝜉𝑒(𝑏0)}. (4.4)

The Dynamic Defense of Network as POMDP and the DESPOT POMDP Solver

N. Karaiskakis 37

Intuitively, the excess uncertainty 𝐸(𝑏′) measures the difference between the current gap

at 𝑏′ and the “expected” gap at 𝑏′ if the target gap 𝜉𝑒(𝑏0) at 𝑏0 is satisfied. The exploration
strategy seeks to reduce the excess uncertainty in a greedy manner.

If the exploration encounters a leaf node b, we expand b by creating a child b′ of b for

each action u ∈ U and each observation encountered under a scenario φ ∈ 𝛷𝑏. For each

new child b′, we need to compute the initial bounds μ0(b
′), l0(b

′), U0(b
′) and L0(b

′). The

RWDU bounds μ0(b
′), and l0(b

′), can be expressed in terms of the empirical value
bounds U0(b

′) and L0(b
′), respectively.

Applying the default policy 𝜋0 at b’ and using the definition of RWDU in (4.1), we have

𝑙0(𝑏
′) = 𝑣𝜋0(𝑏

′) =
|𝛷𝑏′|

𝐾
 𝛾𝛥(𝑏)𝐿0(𝑏

′)

as |𝜋0| = 0. For the initial upper bound μ0(b

′), there are two cases. If the policy for

maximizing the RWDU at 𝑏′ is the default policy, then we can set
μ0(b

′)= l0(b
′). Otherwise, the optimal policy has size at least 1, and it follows from (4.1)

that 𝜇0(𝑏
′) =

|𝛷𝑏|

𝐾
 𝛾𝛥(𝑏)𝑈0(𝑏)-λ is an upper bound. So we have

𝜇0(𝑏) = max {𝑙0(𝑏),
|𝛷𝑏|

𝐾
 𝛾𝛥(𝑏)𝑈0(𝑏) − 𝜆} .

There are various ways to construct the initial empirical value bounds 𝑈0and 𝐿0. More
about this at [9] sections 4.3 and 4.4.

4.3.2 Termination of Exploration

We terminate the exploration at a node b under three conditions. First, Δ(b) > D, i.e., the
maximum tree height is exceeded. Second, E(b) < 0, indicating that the expected gap at

b is reached and further exploration from b onwards may be unprofitable. Finally, b is

blocked by an ancestor node b’:

|𝛷𝑏|

𝐾
 𝛾𝛥(𝑏′)(𝑈(𝑏′) − 𝐿0(𝑏

′)) ≤ 𝜆 𝑙(𝑏′, 𝑏)

where 𝑙(𝑏′, 𝑏)is the number of nodes on the path from b′ to 𝑏. The intuition behind this
condition is that there is insufficient number of sampled scenarios at the ancestor node

b′ . Further expanding b and thus enlarging the policy subtree at 𝑏′ . may cause overfitting
and reduce the regularized utility at b′ . We thus prune the search by applying the default

policy at b and setting the bounds accordingly.

4.3.3 Backup

When the exploration terminates, the anytime DESPOT algorithm traces the path back to
the root to perform backup on the bounds at each node b along the way, using Bellman’s
principle:

The Dynamic Defense of Network as POMDP and the DESPOT POMDP Solver

N. Karaiskakis 38

𝜇(𝑏) = max {𝑙0(𝑏), max
𝑢∈𝑈

{𝜌(𝑏, 𝑢) + ∑ 𝜇(𝑏′)

𝑦∈𝑌𝑏,𝑢

}} ,

𝑙(𝑏) = max {𝑙0(𝑏), max
𝑢∈𝑈

{𝜌(𝑏, 𝑢) + ∑ 𝑙(𝑏′)

𝑦∈𝑌𝑏,𝑢

}} ,

𝑈(𝑏) = max
𝑢∈𝑈

{
1

|𝛷𝑏|
∑ 𝑅(𝑠𝜑, 𝑢) + 𝛾

𝜑∈𝛷𝑏

∑
|𝛷𝑏′|

|𝛷𝑏|
𝑦∈𝑌𝑏,𝑢

𝑈(𝑏′)},

where b’ is a child of b with b’ = τ(b, u, y).

4.3.4 Complexity

The EXPLORE method [9] of the algorithm traverses a path from the root to a leaf node

of a DESPOT D, visiting at most D + K - 1 nodes along the way because a path has at

most D nodes, and at most K - 1 nodes not on the path can be added. At each node, the
following steps dominating the running time. Checking the condition for pruning takes

time O (𝐷2) in total and O (D) per node. Adding a new node to D and initializing the

bounds take time O (I). Choosing the action branch takes time O(|U|). Choosing the

observation branch takes time min{|Y|, K} ∈ O (K), which is loose because only the

sampled observation branches are involved. Thus, the running time at each node is O (D
+I + |U| + K). Assuming that the anytime search algorithm invokes EXPLORE method N

times, time complexity is O (N(D +I + |U| + K)).

As far as space complexity is concerned, the anytime search algorithm constructs a

partial DESPOT with at most N(D + K) nodes, while the dynamic programming algorithm
(section 4.2) constructs a DESPOT fully with O (|𝑈|𝐷KD) nodes. While the bounds are not

directly comparable, N(D + K) is typically much smaller than |𝑈|𝐷KD in many practical
settings. This is the main differentiator between the two algorithms.

4.4 DESPOT-alpha

DESPOT-alpha (DESPOT-α) (analyzed in detail in [10]) is a variation of the standard
DESPOT algorithm. It aims to surpass the state-of-the-art POMDP solvers by overcoming
the difficulties the latter face due to particle divergence, when it comes to problems with

large observation spaces. DESPOT- α improves the practical performance of online
planning for POMDPs with large observation as well as state spaces. Like DESPOT,

DESPOT- α uses the particle belief approximation and searches a determinized sparse

belief tree. To tackle large observation spaces, DESPOT- α shares sub-policies among
many observations during online policy computation.

DESPOT-α makes use of both a sparse sampling method and DESPOT. A sparse
sampling method by Kearns et al. [12] is an online algorithm which can potentially deal

with large observation spaces because it samples a fixed number of C observations for
each action branch resulting in tree size of O(𝐶𝐷|𝑈|𝐷).

The Dynamic Defense of Network as POMDP and the DESPOT POMDP Solver

N. Karaiskakis 39

Figure 4.2: DESPOT search tree for small and large observation spaces

Figure 4.3: DESPOT-α search tree

K is much smaller than 𝐶𝐷 for many problems but DESPOT suffers from the particle
divergence problem when the observation space is large. The DESPOT-α variation

constructs a tree of size O(𝐶𝐷|𝑈|𝐷) like sparse sampling but use determinized scenarios

like DESPOT.
DESPOT-alpha (DESPOT-α) does a similar anytime forward search as standard
DESPOT through trials consisting of exploration and backup on sampled scenarios.
However instead of propagating only the particles producing the same observation to the
child of a belief-action node, this variation suggests that we propagate all the particles to
the child nodes (Figure 4.3) and update the weights of particles according to relative

likelihood of observation p(y | x, u). This is similar to a particle filter.
p(y |x, u) values are also generally available for particle filtering. For a belief b,

represented by the particle set 𝛷𝑏, with each particle having weight 𝑤𝑏(x), the weight of

particles in child belief node τ(b, u, y) is:

𝑤𝜏(𝑏,𝑢,𝑦)(𝑥
′) =

𝑝(𝑦 | 𝑥′, 𝑢)∑ 𝑝(𝑥′ | 𝑥, 𝑢)𝑤𝑏(x)𝑥∈𝛷𝑏

𝑝(𝑦 | 𝑏, 𝑢)
 (4.5)

where

𝑝(𝑦 | 𝑏, 𝑢) = ∑ 𝑝(𝑦 | 𝑥′, 𝑢)

𝑥′∈𝛷𝜏(𝑏,𝑢,𝑦)

 ∑ 𝑝(𝑥′ | 𝑥, 𝑢)𝑤𝑏(x)

𝑥∈𝛷𝑏

 (4.6)

In our determinized tree, a particle x transitions to only one particle x’ i.e. 𝛷𝑏 has one to
one correspondence with 𝛷𝜏(𝑏,𝑢,𝑦)). Let 𝑥′− be the particle in 𝛷𝑏 that transitions to particle

x’ and let 𝑥′+ be the particle in 𝛷𝜏(𝑏,𝑢,𝑦) to which particle x transitions. Then:

The Dynamic Defense of Network as POMDP and the DESPOT POMDP Solver

N. Karaiskakis 40

𝑝(𝑦 | 𝑏, 𝑢) = ∑ 𝑤𝑏(𝑥
′
−)𝑝(𝑦 | 𝑥′, 𝑢)

𝑥′∈𝛷𝜏(𝑏,𝑢,𝑦)

= ∑ 𝑤𝑏(x)𝑝(𝑦| 𝑥+, 𝑢)

𝑥∈𝛷𝑏

 (4.7)

and

𝑤𝜏(𝑏,𝑢,𝑦)(𝑥
′) =

𝑝(𝑦 | 𝑥′, 𝑢)𝑤𝑏(𝑥′
−)

𝑝(𝑦 | 𝑏, 𝑢)

The resulting tree is an approximation of the belief tree based on the DESPOT definition,
meaning a determinized sparse belief tree as it still contains only the observation
branches reachable by the K sampled scenarios. However, every belief-action node can

have up to C child belief nodes: as we do not use observations to decide which particles

will go into each child node, we can sample only C(≤ K) instead of K observations from K
scenarios by using only C out of K scenarios to generate observations. Always having C
child belief nodes prevents over optimistic evaluation of value of belief but also makes
the tree size (C|U|)𝐷.
Note that eventually after few information gathering actions, most of the weight would be
concentrated around a few particles in the search tree. Particle filters do re-sampling
when this happens. However, in the search tree, re-sampling is not required as we only
need to estimate the reward which gets discounted as depth increases.

4.5 HyP-DESPOT

The Hybrid Parallel DESPOT (HyP-DESPOT) is a variation of the DESPOT algorithm that
seeks to surpass the state-of-the-art algorithms for POMDPs by leveraging both CPU and
GPU parallelization in order to achieve near real-time online planning performance for
complex tasks with large state, action, and observation spaces.

HyP-DESPOT is a massively parallel online planning algorithm that integrates CPU and
GPU parallelism in a multi-level scheme. It performs parallel DESPOT tree search by
simultaneously traversing multiple independent paths using multi-core CPUs and
performs parallel Monte-Carlo simulations at the leaf nodes of the search tree using
GPUs. The research presented in [13] shows that HyP-DESPOT can speed up online
planning by up to several hundred times, compared with the original DESPOT algorithm,
in several challenging robotic tasks in simulation.

The aim of HyP-DESPOT is to parallelize all key steps of the standard DESPOT
algorithm. The fact that these key steps exhibit different structural properties for
parallelization needs to be taken into consideration. The two tree search steps, forward
search and back-up, are irregular; leaf node initialization, which consists of many identical
Monte Carlo simulations with different initial states, is regular and embarrassingly parallel.
HyP-DESPOT builds a CPU-GPU hybrid parallel model to treat them separately. It uses
the more flexible CPU threads to handle the two irregular tree search steps. It uses
massively parallel GPU threads to handle the embarrassingly parallel Monte Carlo
simulations for leaf node initialization.

HyP-DESPOT integrates CPU-based parallel tree search and GPU-based parallel Monte
Carlo simulations in a multilevel scheme. Specifically, HyP-DESPOT launches multiple
CPU threads to simultaneously search different paths and discover leaf nodes. At the
same time, It relies on the GPU threads to takes over these leaf nodes, expand them,
and initialize their children through massively parallel Monte Carlo simulations. Further,
HyP-DESPOT factors the dynamics model and the observation model within a single
simulation step and simulates the factored elements in parallel, in order to maximally

The Dynamic Defense of Network as POMDP and the DESPOT POMDP Solver

N. Karaiskakis 41

exploit GPU parallelization. The reader can find an extensive analysis of the HyP-
DESPOT algorithm in [13].

The Dynamic Defense of Network as POMDP and the DESPOT POMDP Solver

N. Karaiskakis 42

TABLE OF TERMINLOGY

Ξενόγλωσσος όρος Ελληνικός Όρος

Markov Decision Process Μαρκοβιανή Διαδικασία Αποφάσεων

Partially Observed Markov Decision
Process

Μερικώς Παρατηρούμενη Μαρκοβιανή
Διαδικασία Αποφάσεων

Dynamic Defense of Network Αυτοματοποιημένη Ασφάλεια Δικτύου

The Dynamic Defense of Network as POMDP and the DESPOT POMDP Solver

N. Karaiskakis 43

ABBREVIATIONS – ACRONYMS

MDP Markov Decision Process

POMDP Partially Observed Markov Decision Process

PB Point-Based

DESPOT Determinized Sparse Partially Observable Trees

SC Security Condition

The Dynamic Defense of Network as POMDP and the DESPOT POMDP Solver

N. Karaiskakis 44

REFERENCES

[1] V. Krishnamurthy. Partially Observed Markov Decision Processes. Cambridge University Press

2016.

[2] D. Bertsekas. Dynamic Programming and Optimal Control (Vol I). Nashua, NH: Athena Scientific,

3rd edition edition, 2007.

[3] D. Bertsekas. Dynamic Programming and Optimal Control (Vol II). Nashua, NH: Athena Scientific,

3rd edition edition, 2007.

[4] E. J. Sondik, The Optimal Control of Partially Observed Markov Processes. PhD thesis, Electrical

Engineering, Stanford University, 1971.

[5] R. Bellman. Dynamic Programming. Princeton University Press, 1st edition edition, 1957.

[6] E. Miehling, M. Rasouli, and D. Teneketzis. A POMDP Approach to the Dynamic Defense of Large-

Scale Cyber Networks. IEEE Trans. Information Forensics and Security, 13(10):2490–2505, 2018.

[7] J. Pineau G. Shani and R. Kaplow. A Survey of Point-Based POMDP Solvers. Autonomous Agents
and Multi-Agent Systems, 27(1):1–51, 2013.

[8] S. Ross, J. Pineau, S. Paquet, and B. Chaib-draa. Online Planning Algorithms for POMDPs.
Journal of Artificial Intelligence Research, 32:663–704, 2008.

[9] N. Ye, A. Somani, D. Hsu, and W. Lee. DESPOT: Online POMDP Planning with Regularization.

Journal of Artificial Intelligence Reasearch, 58:231–266, 2017

[10] N. Priyadarshini Garg, D. Hsu, and W. Lee. DESPOT-Alpha: Online POMDP Planning with Large

State and Observation Spaces. In Robotics: Science and Systems XV, University of Freiburg,

Freiburg imBreisgau, Germany, June 22-26, 2019.

[11] B. Schneier, “Attack trees,” Dr. Dobb’s J., vol. 24, no. 12, pp. 21–29, 1999.

[12] Michael Kearns, Yishay Mansour, and Andrew Y. Ng. A sparse sampling algorithm for near-

optimal planning in large markov decision processes. Machine Learning, 49(2):193–208, Nov

2002. ISSN 1573-0565. doi: 10. 1023/A:1017932429737

[13] P. Cai, Y. Luo, D. Hsu, and W. Lee. HyP-Despot: A Hybrid Parallel Algorithm for Online Planning

under uncertainty. CoRR, abs/1802.06215, 2018

