
NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

SCHOOL OF SCIENCES

DEPARTMENT OF INFORMATICS AND TELECOMMUNICATIONS

PROGRAM OF POSTGRADUATE STUDIES

«DATA SCIENCE & INFORMATION TECHNOLOGIES»

SPECIALIZATION

«ARTIFICIAL INTELLIGENCE & BIG DATA»

Masters Thesis

Tensor Methods in Time Series Analysis

Dimitrios M. Aronis

ATHENS

February 2021



ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ

ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ

«ΕΠΙΣΤΗΜΗ ΔΕΔΟΜΕΝΩΝ & ΤΕΧΝΟΛΟΓΙΕΣ ΠΛΗΡΟΦΟΡΙΑΣ»

ΕΞΕΙΔΙΚΕΥΣΗ

«ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ & ΜΕΓΑΛΑ ΔΕΔΟΜΕΝΑ»

Διπλωματική Εργασία

Μέθοδοι Τανυστών στην Ανάλυση Χρονοσειρών

Δημήτριος Μ. Αρώνης

ΑΘΗΝΑ

Φεβρουάριος 2021



Masters Thesis

Tensor Methods in Time Series Analysis

Dimitrios M. Aronis

Α.Μ.: DS1180002

SUPERVISOR: EleftheriosKofidis, Associate Professor, University of Piraeus - Department

of Statistics and Insurance Science

CO-SUPERVISOR: Yannis Panagakis, Associate Professor, National and Kapodistrian

University of Athens - Department of Informatics and Telecommunications

EXAMINATION COMMITTEE:

Eleftherios Kofidis, Associate Professor, University of Piraeus - Department of

Statistics and Insurance Science

Yannis Panagakis, Associate Professor, National and Kapodistrian University of

Athens - Department of Informatics and Telecommunications

GeorgeAlexandropoulos, Assistant Professor, National and Kapodistrian University

of Athens - Department of Informatics and Telecommunications

February 2021



Διπλωματική Εργασία

Μέθοδοι Τανυστών στην Ανάλυση Χρονοσειρών

Δημήτριος Μ. Αρώνης

Α.Μ.: DS1180002

ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ: Ελευθέριος Κοφίδης, Αναπληρωτής Καθηγητής, Πανεπι-

στήμιο Πειραιώς - Τμήμα Στατιστικής και Ασφαλιστικής Επιστήμης

ΣΥΝΕΠΙΒΛΕΠΩΝΚΑΘΗΓΗΤΗΣ: Ιωάννης Παναγάκης, Αναπληρωτής Καθηγητής, Εθνι-

κό και Καποδιστριακό Πανεπιστήμιο Αθηνών - Τμήμα Πληροφορικής και Τηλεπικοινωνιών

ΕΞΕΤΑΣΤΙΚΗ ΕΠΙΤΡΟΠΗ:

Ελευθέριος Κοφίδης, Αναπληρωτής Καθηγητής, Πανεπιστήμιο Πειραιώς - Τμήμα

Στατιστικής και Ασφαλιστικής Επιστήμης

Ιωάννης Παναγάκης, Αναπληρωτής Καθηγητής, Εθνικό και Καποδιστριακό Πανε-

πιστήμιο Αθηνών - Τμήμα Πληροφορικής και Τηλεπικοινωνιών

Γεώργιος Αλεξανδρόπουλος, Επίκουρος Καθηγητής, Εθνικό και Καποδιστριακό

Πανεπιστήμιο Αθηνών - Department of Informatics and Telecommunications

Φεβρουάριος 2021



ABSTRACT

Time Series have been studied for decades, resulting in the creation of various models

with applications in many sciences. However, as we traverse the Big Data era, new chal-

lenges arise every day and existing models face certain difficulties. In many real world

applications, data appear in the form of matrices or tensors resulting in datasets with high

dimensionality structures. Taking into consideration not only the temporal but also any

spatial information that is present in these higher order structures, new algorithms and

methods were developed. In addition, in many cases we have limited access to a suf-

ficient amount of data because of the problem’s nature e.g predicting the market price

of a technology item with a relatively short lifespan. In such cases the time series are

referred to as Short Time Series. Modeling Short Time Series is challenging since tra-

ditional time series models generally perform better when provided with relatively large

training datasets. Additionally, in the Big Data setting, the dimensionality increases the

complexity even more. To address these problems we need to create new sophisticated

models that deal with the increased dimensionality in an efficient way and maximally utilize

any spatiotemporal correlations.

In recent years, different tensor decomposition methods were revisited in the context of

Tensor Time Series. Tucker Decomposition is one of the most commonly used methods.

It decomposes a tensor as a product of a core tensor with lower dimensions and a set

of factor matrices. The core tensor ultimately is a summary that captures the intrinsic

correlations of the data. Additionally, Tensorization, the process of embedding data into

higher order tensors, found its way into the Tensor Time Series setting. Hankelization is

a Tensorization method that uses data duplication combined with a folding step in order

to create higher order tensors. A Hankel Tensor contains different sub-windows of the

original data arranged in a symmetric way. This structure reveals local correlations that

were not easily accessible in the original form of the data. In addition, Hankelization has

been studied and utilized in various works, showing good results. In cases where low-rank

pre-exists in the data, Hankelization reveals it in a more clear way. In the aforementioned

works it has been shown experimentally, that such data, in their Hankel tensor form, can be

represented by low-rank or a smooth manifold in the embedded space. Therefore, Tucker

Decomposition can be very effective when combined with Hankelization and its assumed

low-rank property. That is because computing a tensor’s rank is an NP-hard task and

thus, decomposing a tensor in its original space can be computationally exhausting when

compared to decomposing its Hankelized form. In other words, Hankelization enables us

to obtain relatively low dimensional core tensors that capture the important information of

the data.

In this work, firstly we review some preliminary topics like Matrix and Tensor Algebra,

Tensor Decompositions and Tensorization methods in order to familiarize the reader with

the necessary concepts and operations and provide a general overview which is needed

in order to dive into the Tensor Time Series setting. Early approaches vectorized the

observations in order to make use of already existing models and methods. However, this

reforming resulted in increased time complexity and high memory demands.

Realizing the need for different approaches various works emerged that utilize tensor de-

compositions and/or tensorization methods. Here, we focus on the Block Hankel Ten-

sor Autoregression algorithm which combines Hankelization with Tucker Decomposition.



Firstly, the original time series is transformed into a higher-order Block Hankel Tensor.

Then Tucker decomposition is applied on all modes except for the temporal, in order to

obtain the core tensors and the jointly estimated factor matrices. This way we preserve

the temporal continuity of the core tensors in order to better capture their intrinsic temporal

correlations. In parallel, we use the obtained core tensors to train an autoregressive pro-

cess with scalar coefficients. Finally, we use the trained model to forecast the next core

tensor which is converted back in the original space via inverse Tucker Decomposition

and de-Hankelization.

In summary, the main idea behind Block Hankel Tensor Autoregression, is to extract the

most important information of the time series through low-rank Tucker decomposition.

Since the approximation of a tensor’s rank is a computationally exhausting problem, we

project the data in a higher-order embedded space and solve the low-rank minimization

problem in that space. Finally, we use the lower-rank core tensors to forecast the following

core tensor and then we convert the data back to their original framework. My contribution

is a first step towards the generalization of the algorithm. The scalar coefficients capture

the spatiotemporal correlations in a restricted way in cases where the data are described

by the more general matrix-coefficient model. Therefore, in an effort to make a first step to-

wards the generalized model they are replaced with matrices which can capture efficiently

the spatiotemporal correlations of the data, even in the more general case.

Finally, we evaluate Block Hankel Tensor Autoregression with scalar coefficients and its

proposed generalization. We compare them to other traditional models and Facebook’s

Prophet, in terms of prediction error vs training data volume, forecasting horizon and time

efficiency, measured as the total runtime of the training process.

SUBJECT AREA: Tensor Time Series

KEYWORDS: Tucker Decomposition, Hankelization, Autoregression



ΠΕΡΙΛΗΨΗ

Οι χρονοσειρές μελετώνται εδώ και δεκαετίες, με αποτέλεσμα τη δημιουργία πολλών μο-

ντέλων με εφαρμογές σε πολλές επιστήμες. Καθώς διανύουμε την εποχή τον μεγάλων

δεδομένων, νέες προκλήσεις εμφανίζονται καθημερινά και τα μοντέλα που υπάρχουν α-

ντιμετωπίζουν διάφορες δυσκολίες. Σε πολλές εφαρμογές τα δεδομένα έχουν τη δομή

πινάκων ή τανυστών με αποτέλεσμα να καλούμαστε να διαχειριστούμε σύνολα δεδομέ-

νων υψηλής διαστασιμότητας. Λαμβάνοντας υπ’όψην όχι μόνο την χρονική αλλά και την

χωρική εξάρτηση που πιθανόν να είναι διαθέσιμη σε αυτή τη σύνθετη μορφή δεδομένων

αναπτύχθηκαν νέοι αλγόριθμοι και μέθοδοι. Επιπλέον, σε πολλές εφαρμογές η συλλογή

πολλών χρονικών δεδομένων είναι δύσκολη λόγω της φύσης του προβλήματος, όπως

για παράδειγμα η πρόβλεψη της τιμής ενός προϊόντος τεχνολογίας με σχετικά μικρό διά-

στημα κυκλοφορίας. Τέτοιες περιπτώσεις χαρακτιρίζονται ως σύντομες χρονοσειρές. Η

μοντελοποίηση τους αποτελεί ένα δύσκολο εγχείρημα καθώς η απόδοση των παραδοσια-

κών μοντέλων σχετίζεται στενά με τον όγκο των δεδομένων στα οποία έχουν εκπαιδευτεί.

Επιπλέον, στην εποχή των Μεγάλων Δεδομένων η διαστασιμότητα των δεδομένων καθι-

στά ακόμα πιο περίπλοκη τη διαδικασία επιλογής και εκπαίδευσης ενός αποτελεσματικού

μοντέλου. Συνεπώς, προβάλει επιτακτική η ανάγκη για δημιουργία νέων και εκλεπτυσμέ-

νων μοντέλων και αλγόριθμων που θα διαχειρίζονται την αυξημένη διαστασιμότητα και θα

αξιοποιούν τις διαθέσιμες χωρικές αλληλεξαρτήσεις σε συνδυασμό με τις περιορισμένες

χρονικές για τη δημιουργία αποτελεσματικών μοντέλων.

Τα τελευταία χρόνια, πολλές γνωστές μέθοδοι αποσύνθεσης τανυστών επανεξετάστη-

καν στο πλαίσιο των Χρονοσειρών Τανυστών. Η Αποσύνθεση Tucker αποτελεί μια από

τις πιο δημοφιλείς μεθόδους αποσύνθεσης, κατά την οποία ένας Τανυστής αποσυνθέτε-

ται ως ένα γινόμενο ενός τανυστή-πυρήνα με ένα σύνολο από πίνακες-παράγοντες. Ο

τανυστής-πυρήνας καταγράφει τις εγγενείς συσχετίσεις των δεδομένων. Επιπλέον διά-

φορες μέθοδοι τάνυσης βρήκαν θέση σε πολλές εφαρμογές χρονοσειρών τανυστών. Η

μέθοδος Hankel είναι μια μέθοδος τάνυσης η οποία συνδυάζει ένα βήμα επαύξησης των

δεδομένων με αντίγραφα τους και ένα βήμα μετατροπής αυτής της επαυξημένης δομής

σε έναν τανυστή μεγαλύτερης τάξης. Ένας τανυστής Hankel αποτελείται από συλλογές

των αρχικών δεδομένων οργανωμένα σε μια συμμετρική δομή. Αυτή η ιδιαίτερη δομή

υποβοηθα στον εντοπισμό εξαρτήσεων που δεν ήταν εύκολα προσβάσιμες στην αρχική

μορφή των δεδομένων. Επιπλέον, η μέθοδος αυτή έχει μελετηθεί σε διάφορες εργασίες

στην πρόσφατη βιβλιογραφία με καλά αποτελέσματα. Όταν στα δεδομένα προϋπάρχει

μια δομή μικρού βαθμού η τάνυση Hankel την φέρνει στην επιφάνεια. Έχει αποδειχθεί

πειραματικά ότι για δεδομένα χαμηλού βαθμού ο αντίστοιχος τανυστής Hankel μπορεί

να αναπαρασταθεί με σχετικά μικρό βαθμό ή μια ομαλή πολλαπλότητα στον χώρο προ-

βολής. Συνεπώς, η αποσύνθεση Tucker μπορεί να συνδυαστεί με τη μέθοδο τάνυσης

Hankel πολύ αποτελεσματικά. Γνωρίζουμε ότι ο υπολογισμός του βαθμού ενός τανυστή

αποτελεί ένα πρόβλημα κλάσης NP και συνεπώς η αποσύνθεση του τανυστή στον αρ-

χικό χώρο μπορεί να αποτελέσει ένα υπολογιστικά κοστοβόρο πρόβλημα συγκριτικά με

την αποσύνθεση ενός τανυστή Hankel. Με άλλα λόγια η τάνυση Hankel μας επιτρέπει να

αποκτήσουμε τανυστές-πυρήνες, με σχετικά μικρές διαστάσεις, οι οποίοι περιλαμβάνουν

το πιο σημαντικό κομμάτι της πληροφορίας των δεδομένων.

Η εργασία αυτή ξεκινάει με μια ανασκόπηση επιλεγμένων προκαταρκτικών θεμάτων, ό-

πως η άλγεβρα πινάκων και τανυστών, οι αποσυνθέσεις τανυστών καθώς και οι διαδι-

κασίες τάνυσης. Στόχος αυτής της ανασκόπησης είναι να παρέχουμε στον αναγνώστη



τις απαραίτητες πληροφορίες που χρειάζεται για να αποκτήσει μια σφαιρική εικόνα του

πεδίου. Πρώιμες προσεγγίσεις στον χώρο των χρονοσειρών τανυστών μετέτρεπαν τους

τανυστές σε διανύσματα ώστε να χρησιμοποιηθούν τα υπάρχοντα μοντέλα. Αυτό οδήγησε

σε αύξηση της απαιτούμενης μνήμης και των χρονικών απαιτήσεων.

Αντιλαμβανόμενοι την ανάγκη για διαφορετικές προσεγγίσεις, προέκυψαν διάφορες εργα-

σίες που χρησιμοποιούν τις αποσυνθέσεις τανυστών και/ή τις μεθόδους τάνυσης. Στην

παρούσα εργασία θα εξετάσουμε τον αλγόριθμο Block Hankel Tensor Autoregression ο

οποίος συνδυάζει την αποσύνθεση Tucker και τη μέθοδο τάνυσης Hankel. Αρχικά, η

χρονοσειρά μετατρέπεται σε έναν τανυστή Hankel ανώτερου βαθμού. Στη συνέχεια ε-

φαρμόζουμε την αποσύνθεση Tucker σε όλες τις διαστάσεις εκτός της χρονικής για να

εκτιμήσουμε τους τανυστές-πυρήνες και τους πίνακες-παράγοντες. Με αυτό τον τρόπο

διατηρείται η χρονική συνέχεια μεταξύ των τανυστών-πυρήνων που έχει ως στόχο την

αποτελεσματική αποτύπωση των χρονικών εξαρτήσεων. Παράλληλα, χρησιμοποιούμε

τους τανυστές-πυρήνες για την εκπαίδευση ενός μοντέλου αυτοπαλινδρόμισης με ακέ-

ραιους συντελεστές. Τέλος, χρησιμοποιούμε το μοντέλο για να προβλέψουμε τον επόμενο

τανυστή-πυρήνα ο οποίος στη συνέχεια προβάλεται στον αρχικό χώρο του προβλήματος

μέσω των αντίστροφων διαδικασιών αποσύνθεσης Tucker και τάνυσης Hankel.

Συνοψίζοντας, ο αλγόριθμος που θα εξετάσουμε εξάγει την σημαντική εσωτερική πληρο-

φορία των δεδομένων μέσω της αποσύνθεσης Tucker. Επειδή η εκτίμηση του βαθμού

ενός τανυστή είναι μια υπολογιστικά κοστοβόρα διαδικασία, προβάλλουμε τα δεδομένα

σε έναν χώρο μεγαλύτερου βαθμου μέσω τάνυσης Hankel. Εκμεταλλευόμενοι τις ιδιό-

τητες ενός τανυστή Hankel λύνουμε το πρόβλημα ελαχιστοποίησης σε αυτό τον χώρο.

Παράλληλα χρησιμοποιούμε τους τανυστές-πυρήνες για την πρόβλεψη των επόμενων

τανυστών-πυρήνων και τέλος, χρησιμοποιούμε τις αντίστροφες διαδικασίες αποσύνθε-

σης και τάνυσης για να επαναφέρουμε τις προβλέψεις στον αρχικό χώρο. Η συνεισφορά

μου είναι ένα πρώτο βήμα για τη γενίκευση του παραπάνω αλγόριθμου. Οι πραγματικοί

συντελεστές αποτυπώνουν ελλειπώς τις χωρικές και χρονικές εξαρτήσεις των δεδομένων

όταν αυτά περιγράφονται από ένα μοντέλο με συντελεστές πίνακες. Έτσι, σε μια προσπά-

θεια να γενικευτεί το παραπάνω μοντέλο αντικαθιστούμε τους πραγματικούς συντελεστές

με πίνακες ώστε να μπορούμε να αποτυπώσουμε χωροχρονικές εξαρτήσεις δεδομένων

που περιγράφονται από το γενικότερο μοντέλο.

Τέλος, αξιολογούμε τον αλγόριθμο και την προτεινόμενη γενίκευση του. Τους συγκρίνουμε

με άλλα κλασικά μοντέλα χρονοσειρών και τον Prophet του Facebook ως προς το σφάλμα

πρόβλεψης σε συνδυασμό με τον όγκο των δεδομένων που χρησιμοποιούνται για την

εκπαίδευση του μοντέλου, τον ορίζοντα πρόβλεψης καθώς και την χρονική αποδοτικότητα

η οποία αντιστοιχεί στη χρονική διάρκεια εκπαίδευσης.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Χρονοσειρές Τανυστών

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: Αποσύνθεση Tucker, Τάνυση κατά Hankel, Αυτοπαλινδρόμηση
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Tensor Methods in Time Series Analysis

1. INTRODUCTION

1.1 Motivation

Time series have been in the center of research for many decades. With new challenges

arising every day in the Big Data setting, it still remains a very popular research field. Their

applications can be found in various scientific fields. Supply chain optimization is a typical

example (e.g Forecasting supply and demand for inventory management and vehicle/-

transportation scheduling, topology planning etc). Other scientific fields with a plethora

of applications include Signal Processing (Audio, Speech, Radar, Biomedical etc), Op-

erational Research, Finance and Economics, Meteorology, Genomics, Psychometrics,

Chemometrics etc. Even though, forecasting is the first thing that comes to mind when

time series are mentioned, this is not the only task for which they can be utilized. Exam-

ples of other tasks include Signal Detection and Estimation, Clustering, Classification and

Anomaly Detection.

Traditional time series have been studied for many decades, resulting in the development

of models and methods that address various problems. However, as we traverse the

Big Data era these models face various difficulties. The volume and dimensionality of

the data are some of the characteristics that in many cases make existing models and

methods ineffective and/or time-consuming.

In various cases, the observations of a time series are not presented as scalars or vectors

but in the form of matrices or tensors. Tensors are in essence arrays of order greater than

2 and therefore constitute the generalization of matrices. For example, in atmospheric

temperature forecasting, at a given time point, the data are presented as a third-order

tensor whose dimensions correspond to latitude, longitude and elevation, giving rise to a

tensor-valued time series.

To address various tasks in which data are presented in this high-order structure, early

approaches reshaped the data as vectors in order to use existing models and methods.

However, this approach did not produce great results. This reforming resulted in high di-

mensional vectors which lead to increased time complexity, high memory demands and

loss of any intrinsic structure information that was present in the original tensor. For ex-

ample, adjacent cells of a matrix or a tensor may express spatial correlation (e.g adjacent

cells of a tensor that contains atmospheric temperature data) and thus this information

could be utilized for the benefit of a task.

Another approach was to maintain the tensor structure of the data and design new al-

gorithms that use this form to overcome the aforementioned problems and exploit any

additional information that is hidden in this structure. This idea presents us with a new

field of research, that of the Tensor Time Series Analysis. It is essential that one should

get familiar with Tensor Algebra and its notations as a first step towards understanding

the proposed methods. Tensor Algebra has many similarities with Matrix Algebra as well

as notable differences.

This thesis explores tensor methods in time series analysis. However, this area contains a

plethora of tasks and approaches which cannot be covered here in detail. In recent years

various works have risen regarding different tasks like forecasting, tensor completion and

clustering. Most of these works utilize a tensor decomposition model and its respective

benefits. Tensor Decompositions are in essence embeddings of high dimensional data in

a lower dimensional framework while maintaining the important intrinsic information that
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is present and removing problem-specific noise. Additionally, different methods can be

divided in two major groups with respect to the form of the data they process. In the first

group the data are presented naturally as tensors while in the second group they are ten-

sorized i.e they are embedded in a higher-order vector space. Different methods that use

Hankelization are studied and utilized to an increasing extent. Hankelization is a tensoriza-

tion technique that transforms lower-order data arrays into a higher-order Hankel tensor

via data duplication and a reshaping step. A Hankel tensor is symmetric and contains

different sub-windows of the original data. This enables the exploration of different areas

of data in order to discover local correlations that were not easily accessible originally.

Furthermore, it has been shown experimentally that for data with a hidden underlying low-

rank structure their produced Hankel tensor can be represented by low-rank or a smooth

manifold in the embedded space. In the time series setting, the correlations between the

data are strong. Therefore, this hidden low-rank structure is usually present in the data

and thus, Hankelization will reveal this low-rank structure in a more clear way.

In that context, we choose to focus on the task of multivariate short time series forecasting

via the Block Hankel Tensor Autoregression algorithm. In many real-world applications it

is not possible to have access to a lot of observations of a time series due to case specific

constraints. This may result in ineffective models since in the traditional time series setting

the accuracy of the model is closely correlated with the amount of the provided training

data. The main idea of the discussed method is the transformation of the data into a

higher order tensor via Hankelization. As mentioned previously, such a Hankel tensor

can be represented by low-rank or a smooth manifold in the embedded space and thus

its structure is ideal to be combined with low-rank tensor decomposition. For this task we

utilize Tucker decomposition. Tucker decomposition is applied in an iterative process that

estimates the core tensors and a joint factor matrix for every mode but the temporal. By

doing so, we preserve the temporal continuity of the core tensors in order to better capture

their intrinsic temporal correlations. In parallel an autoregressive process is trained on the

obtained core tensors. After obtaining the predicted core tensors we utilize the inverse

process of Tucker Decomposition and Hankelization to transform the prediction back into

the original framework.

Finally, my contribution is a first step towards the generalization of the algorithm. If a given

time series is described by a general autoregressive process with matrix coefficients then

an autoregressive process with scalar coefficients captures the spatiotemporal correla-

tions of the core tensors in a restricted way. Thus, by substituting the scalar coefficients

with matrices we can also capture the spatiotemporal correlations of the more general

case. The experimental results seem promising, providing lower forecasting error on 1

synthetic and 7 publicly available datasets.
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1.2 Thesis Outline

The remaining chapters of this work are organized as follows:

Chapter 2 covers various preliminary concepts, that the reader must be familiar with, such

as notations, matrix and tensor algebra, tensor decompositions and tensorization proce-

dures.

Chapter 3 provides an in-depth view of the tensorization method that will be applied in our

setting. It contains proofs and derivations leading to the equations that will be used as the

structural blocks of the algorithm and the proposed generalization.

Chapter 4 outlines the experiments that were conducted in order to evaluate the algorithm.

We focus on short time series and experiment on short and long forecasting horizons.

Chapter 5 contains a brief review of two additional works in order to provide a wider

overview of the field for the reader. Since the research field of tensor time series analysis

is vast we chose two works that are conceptually close to the rest of this thesis and thus

they can be easily grasped by the reader. Furthermore, they certainly pose a lot of inter-

est. In the first work the proposed method decomposes a tensor valued time series via CP

Decomposition and uses a 2-dimensional ARMA model for long-term prediction. Further-

more, they proposed another method that used tensor clustering and treated short-term

forecasting as tensor completion. Finally, the second work combines Hankelization and

Tensor Train decomposition for the task of time series reconstruction.

Finally, in Chapter 6 we conclude with a summary and review various ideas for the exten-

sion of this work in the future.
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2. PRELIMINARIES

In this chapter we are providing the notations, definitions, operations and basic properties

of matrices and tensors. Having a good understanding of this chapter’s material before

studying the rest of this thesis is vital. In the first section, basic notations and definitions are

introduced. The second section is dedicated to Matrix Algebra which includes several top-

ics such as the matrix rank, trace, various products and their properties. The third section

contains an overview of some basic Tensor Algebra operations and Tensor decomposi-

tions. Finally, the last section focuses on tensorization, the mapping or transformation of

lower-order data to higher-order representations.

2.1 Notations

Definition 2.1

In computer science an array is a structure or a collection of data that can be accessed

with a set of pointers.

Definition 2.2

Order of an array is the number of its dimensions. The dimensions can also be referred

to as ways or modes. [1]

In essence, vectors are one dimensional arrays, matrices are second order arrays and

tensors are arrays with three or moremodes. Throughout this thesis, the following notation

will be used to refer to vectors, matrices and tensors. Vectors will be denoted as bold

low-case letters, Matrices will be referred to with bold capital letters and Tensors will be

denoted with calligraphic capital letters. The letter N will be used to refer to the order of

a tensor and In will denote the dimension of the n-th mode where n = 1, 2, ..., N . To refer

to specific elements of vectors, matrices and tensors, italic low-case letters will be used

followed by the specified indices. The following table provides a visual representation of

the different notations.

Table 1: Notations

Array Notation Element Notation

Vector xxx ∈ RI1 xi

Matrix XXX ∈ RI1×I2 xij

Tensor X ∈ RI1×I2×...×IN xi1i2...iN
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Figure 1: Visualization of a third-order tensor X ∈ RI1×I2×I3

Definition 2.3

The in-th mode-n slice of a 3rd order tensor X ∈ RI1×I2×I3 is defined as the second order

tensor (matrix) obtained by fixing the n-th mode index of X to in.

The previous definition can be generalized to a N -th order tensor as follows.

Definition 2.4

The in-th mode-n slab of a tensor X ∈ RI1×I2×...×IN is defined as an (N−1)-th order tensor
obtained by fixing the n-th mode index of X to in.

We will use the symbol • to denote the non-fixed modes. For example, given a tensor

X ∈ RI1×I2×I3, a first mode slice is denoted as Xi1••. Given a time series in the form of

a tensor X ∈ RI1×I2×...×IN we assume, without loss of generality, that IN is the temporal

mode. For simplicity, the time series at a given time point t will be denoted as Xt instead

of X•...•t.

Figure 2: Visualization of different slices of a third order tensor X ∈ RI1×I2×I3

2.2 Vectors

Inner Product

The Inner Product of two vectors x, yx, yx, y ∈ RN is a scalar defined as:

〈xxx,yyy〉 =
N∑
i=1

xiyi (2.1)
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Outer Product

The Outer Product of two vectors xxx ∈ RN , yyy ∈ RM is a matrix ZZZ ∈ RN×M that contains the

product of each pair of elements of those vectors. It is denoted as:

ZZZ := xxx ◦ yyy =


x1y1 x1y2 . . . x1yM
x2y1 x2y2 . . . x2yM
...

... . . .
xNy1 xNy2 . . . xNyM

 (2.2)

2.3 Matrices

2.3.1 Trace

The trace of a square matrix XXX ∈ Rn×n is defined as the sum of elements on the main

diagonal ofXXX. It is denoted and formulated as tr(XXX) =
n∑

i=1

xii.

Useful Properties

• tr(XXX + YYY ) = tr(XXX) + tr(YYY ) forXXX,YYY ∈ Rn×n

• tr(cXXX) = c tr(XXX)

• tr(XXX) = tr(XXX>)

• tr(XXX>YYY ) = tr(XXXYYY >) = tr(YYYXXX>) = tr(YYY >XXX) forXXX,YYY ∈ Rn×m

• tr(XYXYXY ) 6= tr(XXX)tr(YYY ) in general.

• tr(XY ZXY ZXY Z) = tr(Y ZXY ZXY ZX) = tr(ZXYZXYZXY ) (Cyclic Property)

• tr(XXX ⊗ YYY ) = tr(XXX)tr(YYY )

2.3.2 Matrix Rank

The row rank of a matrix is defined as the dimension of the vector space that is spanned

by its rows (respectively column rank is the dimension of the vector space spanned by

its columns), which is equivalent to the maximum number of linearly independent rows

(respectively columns). In linear algebra, a fundamental result is that the row and column

ranks of a matrix are always equal and thus we will refer to them simply as rank. The rank

of a matrix AAA is denoted as rank(AAA). A matrix is full-rank if its rank equals the minimum of

its numbers of rows and columns. Finally, an important corollary of the above is that for a

given matrix AAA, rank(AAA) = rank(AAA>).

For example, the matrix AAA =

1 −1 0
0 1 1
1 −1 0

 has rank(AAA) = 2 since the 1st and 3rd columns

are linearly independent and the second column is a linear combination (c2 = c3 − c1) of
them.
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2.3.3 Matrix Products and their Properties

Hadamard Product

Given two matrices XXX,YYY ∈ RI×J their Hadamard product is defined [2] as their element-

wise multiplication and is denoted as:

XXX ∗ YYY :=


x11y11 x12y12 ... x1Jy1J
x21y21 x22y22 ... x2Jy2J

...
... ...

...

xI1yI1 xI2yI2 ... xIJyIJ


Kronecker Product

Given two matricesXXX ∈ RI×J and YYY ∈ RK×L, their Kronecker product is a IK×JLmatrix,

defined [3] as:

XXX ⊗ YYY :=


x11YYY x12YYY ... x1JYYY
x21YYY x22YYY ... x2JYYY
...

... ...
...

xI1YYY xI2YYY ... xIJYYY


For example, given the matricesXXX =

[
a b
c d

]
and YYY =

[
e f g
h i j

]
their Kronecker product

is:

XXX ⊗ YYY =

a
[
e f g
h i j

]
b

[
e f g
h i j

]
c

[
e f g
h i j

]
d

[
e f g
h i j

]
 =


ae af ag be bf bg
ah ai aj bh bi bj
ce cf cg de df dg
ch ci cj dh di dj


Khatri-Rao Product

Given two matricesXXX ∈ RI×K and YYY ∈ RJ×K , the Khatri-Rao product is a IJ ×K matrix,

defined [3] as:

XXX � YYY :=
[
XXX•1 ⊗ YYY •1 XXX•2 ⊗ YYY •2 ... XXX•K ⊗ YYY •K

]
For example, given the matricesXXX =

[
a b
c d

]
and YYY =

e f
g h
i j

 their Khatri-Rao product is:

XXX � YYY =

[a
c

]
⊗

eg
i

 [
b
d

]
⊗

fh
j

 =


a

eg
i

 b

fh
j


c

eg
i

 d

fh
j



 =


ae bf
ag bh
ai bj
ce df
cg dh
ci dj
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Useful Properties

• XXX ⊗ (YYY +ZZZ) =XXX ⊗ YYY +XXX ⊗ZZZ

• (YYY +ZZZ)⊗XXX = YYY ⊗XXX +ZZZ ⊗XXX

• (kXXX)⊗ YYY =XXX ⊗ (kYYY ) = k(XXX ⊗ YYY )

• (XXX ⊗ YYY )⊗ZZZ =XXX ⊗ (YYY ⊗ZZZ)

• XXX ⊗ 000 = 000⊗XXX = 000

• In general,XXX ⊗ YYY 6= YYY ⊗XXX but they are permutation equivalent.

• (XXX ⊗ YYY )(ZZZ ⊗PPP ) =XZXZXZ ⊗ Y PY PY P

• (XXX ⊗ YYY )−1 =XXX−1 ⊗ YYY −1 for invertibleX,YX, YX, Y (likewise for pseudo-inverse).

• (XXX ⊗ YYY )> =XXX> ⊗ YYY >

• ForXXX ∈ Rn×n,YYY ∈ Rm×m: det(XXX ⊗ YYY ) = det(XXX)mdet(YYY )n

• tr(XXX ⊗ YYY ) = tr(XXX)tr(YYY ), for square matricesXXX,YYY

• rank(XXX ⊗ YYY ) = rank(XXX)rank(YYY )

• (XXX � YYY )�ZZZ =XXX � (YYY �ZZZ)

• In general,XXX � YYY 6= YYY �XXX

• (XXX � YYY )>(XXX � YYY ) =XXX>XXX ∗ YYY >YYY

• (XXX ⊗ YYY )(ZZZ �PPP ) =XZXZXZ � Y PY PY P

• tr(XY ZXY ZXY Z) = tr(ZXYZXYZXY ) = tr(Y ZXY ZXY ZX)

• vec(XXX)>vec(YYY ) = tr(XXX>YYY )

• vec(XY ZXY ZXY Z) = (ZZZ> ⊗XXX)vec(YYY )

2.4 Tensors

2.4.1 Tensor Rank

A tensor X ∈ RI1×I2×...×IN is called rank-one if it can be expressed as the outer product of

N vectors. Each vector corresponds to a different mode.

X = xxx(1) ◦ xxx(2) ◦ ... ◦ xxx(N)

Given a tensor X ∈ RI1×I2×...×IN , its rank is denoted as rank(X ) and defined [1] as the

minimum number of rank-one tensors that sum up to the given tensor X .

rank(X ) := argmin{R ∈ N : X =
R∑
i=1

xxx
(1)
i ◦ xxx(2)

i ◦ ... ◦ xxx(N)
i }
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Determining the rank of a tensor is an NP-complete problem over any finite field and NP-

hard over rational numbers. As a result, various works studied the upper bounds of a

tensor’s rank. For example, for a general tensor X ∈ RI1×I2×...×IN its upper bound is given

bymax{I1, I2, ..., IN}N−1 while a 3rd order general tensor X ∈ RI1×I2×I3 is upper-bounded

by min{I1I2, I2I3, I1I3}.

2.4.2 Tensor Vectorization

Vectorization [1] is the process of converting a higher order tensor X ∈ RI1×I2×...×IN into

a vector xxx ∈ RI1I2...IN . The vector xxx is obtained by mapping each element xi1i2...iN of the

tensor to the vector’s element with index:

index = 1 +
N∑

n=1

(in − 1)
n−1∏
m=1

Im

For example, given a tensor X :

X••1 =

[
1 3
2 4

]
,X••2 =

[
5 7
6 8

]
The vectorization operator produces the following result.

vec(X ) =
[
1 2 3 4 5 6 7 8

]>
2.4.3 Tensor Matricization/Unfolding

Matricization orUnfolding is the process of converting a tensorX ∈ RI1×I2×...×IN withN > 2
into a matrix. The general operators that are used to denote this mapping are mat(X ) or
more commonly unfold(X ). This mapping can be achieved in N different ways, each

one producing a mode-n unfolding, denoted as XXX(n). A mode-n unfolding is defined as a

function

f : RI1×I2×...×IN → RIn×
∏

k 6=n Ik

that maps (as defined by Kolda & Bader [4]) each element xi1...in...iN of the tensor to the

index (in, j) of the unfolded matrix, where:

j = 1 +
∑
k 6=n

(ik − 1)
m<k∏
m6=n

Im

For example, given a tensor X ∈ R3×2×3 with frontal slices:

X••1 =

a d
b e
c f

 ,X••2 =

g j
h k
i l

 ,X••3 =

m p
n q
o r
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The mode-1 (row) unfolding produces the matrix:

XXX(1) =

a d g j m p
b e h k n q
c f i l o r


The mode-2 (column) unfolding produces the matrix:

XXX(2) =

[
a b c g h i m n o
d e f j k l p q r

]
The mode-3 (depth) unfolding produces the matrix:

XXX(3) =

 a b c d e f
g h i j k l
m n o p q r



Figure 3: Visualization of mode-1 unfolding of a tensor X ∈ RI1×I2×I3

Figure 4: Visualization of mode-2 unfolding of a tensor X ∈ RI1×I2×I3

Figure 5: Visualization of mode-3 unfolding of a tensor X ∈ RI1×I2×I3
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2.4.4 Tensor Multiplication

In this section we explore various tensor multiplication methods.

Inner Product

The inner product z ∈ R of two tensors of the same order and size, X ,Y ∈ RI1×I2×...×IN is

defined as the inner product of their vectorizations and it is denoted as:

z = 〈X ,Y〉 := 〈vec(X ), vec(Y)〉 =
I1∑

i1=1

I2∑
i2=1

...

IN∑
iN=1

xi1i2...iNyi1i2...iN

Outer Product

The outer product of two tensors X ∈ RI1×I2×...×IN and Y ∈ RJ1×J2×...×JK is defined as

a function f that produces a new tensor Z ∈ RI1×I2×...×IN×J1×J2×...×JK . It is denoted as

Z = X ◦ Y and each element of Z is calculated as: zi1...iN j1...jK = xi1...iNyj1...jK

Tensor-Matrix Product

The Tensor-Matrix product is a process in which, given a matrix YYY ∈ RK×In and a tensor

X ∈ RI1×...×In×...×IN , they are multiplied producing the tensor Z ∈ RI1×...×K×...×IN . The

process requires the mode-n unfolding of X , which produces the matrix:

XXX(n) ∈ RIn×
∏N

q=1,q 6=n Iq

Then, YYY andXXX(n) are multiplied, producing the matrix:

ZZZ(n) ∈ RK×
∏N

q=1,q 6=n Iq

Finally, ZZZ(n) is converted into a tensor by folding (the reverse process of unfolding men-

tioned in 2.4.3).

Z = fold(ZZZ(n)) ∈ RI1×...×K×...×IN

The process described above is called the mode-n product and it is denoted as:

Z = X ×n YYY := fold(YYYXXX(n)) (2.3)

Each element of the tensor Z can be computed as:

zi1...in−1 k in+1...iN =
In∑

in=1

xi1...in...iNyk in (2.4)

Tensor Contraction

Given two tensors X ∈ RI1×...×IN×J1×...×JK and Y ∈ RI1×...×IN×JK+1×...×JM , their contraction

over N modes of the same size is a tensor Z ∈ RJ1×...×JM . The contraction is denoted as

X ∗©Y and its order is given by order(Z) = order(X ) + order(Y) − 2N . The elements of

tensor Z are calculated as

zj1...jKjK+1...jM =

I1∑
i1=1

I2∑
i2=1

...

IN∑
iN=1

xi1i2...iN j1j2...jKyi1...iN jK+1...jM (2.5)
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2.4.5 Frobenius Norm

The Frobenius norm of a tensor X ∈ RI1×I2×...×IN , is equal to the squared root of the sum

of the squared elements of the tensor and it is analogous to the Frobenius Norm of a

matrix.

‖X‖F :=
√

< X ,X > =

√√√√ I1∑
i1=1

I2∑
i2=1

...

IN∑
iN=1

x2
i1i2...iN

2.4.6 Tensor Decompositions

In this section we briefly discuss Tensor Decomposition (or Factorization), a process that

decomposes a tensor in lower-rank tensors. Two majorly used decompositions will be

presented, the Canonical Polyadic Decomposition and the Tucker Decomposition.

2.4.6.1 Canonical Polyadic Decomposition

The Canonical Polyadic Decomposition is a model in which, a tensor X ∈ RI1×I2×...×IN is

decomposed as a weighted sum of R rank-one tensors:

X ≈
R∑

r=1

λrxxx
(1)
r ◦ xxx(2)

r ◦ ... ◦ xxx(N)
r (2.6)

where R is the rank of the tensor, N is the number of modes, ◦ is the outer product, λr is

the scalar weight of the r-th factor and xxx
(n)
r ∈ RIn for n = 1, 2, ..., N are unit norm vectors.

The CP Decomposition is essentially a generalization of Singular Value Decomposition to

tensors. A visualization of the Canonical Polyadic Decomposition is presented below in

Figure 6.

Figure 6: Canonical Polyadic decomposition of a tensor X ∈ RI1×I2×I3

2.4.6.2 Tucker Decomposition

Tucker Decomposition [1] [4] is a model in which a tensor X ∈ RI1×I2×...×IN is decomposed

as a series of mode-n products between a core tensor G ∈ RR1×R2×...×RN and a set of factor

matrices UUU (n) ∈ RIn×Rn. The vector
[
R1 R2 ... RN

]
is called the multi-linear rank or the

Tucker Rank of X . The above definition is summarized asg:

X ≈ G ×1 UUU
(1) ×2 UUU

(2) ×3 ...×N UUU (N) (2.7)
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Each element of X is given by:

xi1i2...iN =

R1∑
r1=1

R2∑
r2=1

...

RN∑
rN=1

gi1i2...iNuuu
(1)
i1r1

uuu
(2)
i2r2

...uuu
(N)
iNrN

(2.8)

where uuu
(k)
ij is the element located at the position (i, j) in the factor matrix UUU (k).

Tucker Decomposition is visualized in Figure 7 below.

Figure 7: Visualization of Tucker Decomposition of a tensor X ∈ RI1×I2×I3

2.5 Tensorization

Tensorization is the process of mapping data presented as arrays of lower-order into a

higher-order structure. For example, a vector can be transformed into a matrix or tensor,

a matrix into a tensor and a tensor into a tensor of higher order.

2.5.1 Hankelization

While there are various tensorization procedures, Hankelization (named after Herman

Hankel) has been widely used in a variety of applications. Applying second order Han-

kelization on a vector results in a Hankel matrix i.e. all elements on each secondary

diagonal (or skew diagonal) are the same. When applied on a matrix or a tensor the

result is a higher-order tensor that contains slabs which are Hankel matrices. The Han-

kelization operator is denoted as H(·). De-Hankelization, the inverse process that trans-

forms a Hankelized array into its original form, is denoted as H−1(·). In general, apply-

ing K-th order Hankelization on the n-th mode of a tensor X ∈ RI1×...×In×...×IN results in

tensor V ∈ RI1×...×In−1×J1×...×JK×In+1×...×IN where In =
K∑
k=1

Jk − K + 1. The element at

position (i1, ..., in−1, j1, ..., jK , in+1, ..., iN) corresponds to the element of X at the position

(i1, ..., l, ..., iN) where l =
K∑
k=1

jk −K + 1. Below we present some examples.

Vector to Matrix

When second-order (K = 2) Hankelization is applied on a vector vvv ∈ RN , it is transformed

into a matrix VVV ∈ RI×J where N = I + J −K + 1 = I + J − 1.
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For example, given a vector vvv ∈ R7:

vvv = [1, 2, 3, 4, 5, 6, 7]>

applying second-order Hankelization with I = J = 4 produces the following matrix:

H(vvv) = VVV =


1 2 3 4
2 3 4 5
3 4 5 6
4 5 6 7


while applying second-order Hankelization with I = 3 and J = 5 would produce the fol-

lowing matrix:

H(vvv) = VVV =

1 2 3 4 5
2 3 4 5 6
3 4 5 6 7


Vector to Tensor

When K-th order Hankelization is applied on a vector vvv ∈ RN , it is transformed into a

tensor V ∈ RI1×I2×...×IK where N =
K∑
k=1

Ik − K + 1. For example, applying third-order

Hankelization on vvv = [1, 2, 3, 4, 5, 6, 7]> with I1 = I2 = I3 = 3 results in the tensor:

V••1 =

1 2 3
2 3 4
3 4 5

V••2 =

2 3 4
3 4 5
4 5 6

V••3 =

3 4 5
4 5 6
5 6 7


Matrix to Tensor

When applying Hankelization on a matrix, we need to specify the mode (or modes) on

which it will be applied. A K-th order Hankelization applied on the first mode would trans-

form amatrixVVV ∈ RIstart×J into a tensor V ∈ RI1×I2×...×IK×J . We remind that when applying

K-th order Hankelization on a mode the rule Istart =
K∑
k=1

Ik−K+1must be satisfied. Note

that when applying Hankelization on both modes, the order K can be different for each

mode.

For example given the matrix VVV ∈ R4×3

VVV =


1 5 9
2 6 10
3 7 11
4 8 12


applying second order (K = 2) Hankelization on the first mode we have:

I =
K∑
k=1

Ik −K + 1 =⇒
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4 =
2∑

k=1

Ik − 2 + 1 =⇒

I1 + I2 = 5

For I1 = 3 and I2 = 2, Hankelization results in the following tensor V ∈ R3×2×3

V••1 =

1 2
2 3
3 4

V••2 =

5 6
6 7
7 8

V••3 =

 9 10
10 11
11 12



2.5.2 Delay Embedding Transform

In this section we review the Delay Embedding Transform as it was defined by Yokota et

al [5] [6]. The Standard or Multi-way Delay Embedding Transform are specific cases of

the aforementioned Hankelization methods but it is important to lay out their definitions

since they will be utilized in the following algorithms.

2.5.2.1 Standard Delay Embedding Transform

The Standard Delay Embedding Transform is essentially a second-order Hankelization

on a single mode. As mentioned in 2.5.1, when applying K-th order Hankelization, the

values of Ik for k = 1, 2, ..., K must satisfy

K∑
k=1

Ik = Istart+K− 1. Thus, for a second order

Hankelization the equation becomes I1 + I2 = Istart + 1. The Standard Delay Embedding

Transform sets I1 = r, where r is a user-defined value and as a result I2 is calculated

by the formula I2 = Istart − r + 1. The Standard Delay Embedding Transform will be

denoted as Hr(·) and the reverse process will be denoted as H−1
r (·). Applying Standard

Delay Embedding Transform on a vector vvv ∈ RN results inHr(vvv) = VVV H ∈ Rr×(N−r+1). The

following equivalence holds:

vec(Hr(vvv)) = SvSvSv ⇐⇒ Hr(vvv) = fold(N,r)(SvSvSv)

where fold(N,r) : Rr(N−r+1) → Rr×(N−r+1) is a function that transforms a vector into a

matrix. One can equivalently describe this transformation as multiplying vector vvv with the

duplication matrix SSS ∈ Rr(N−r+1)×N followed by the folding operation. The duplication

matrix SSS consists of r identity matrices of size r × r stacked diagonally as shown In the

following example. Given a vector vvv =
[
1 2 3 4 5

]>
, we have N = 5. Setting r = 3

results in the following duplication matrix SSS ∈ R9×5:

SSS =



1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
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The product of the duplication matrix and the vector is:

SuSuSu =



1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1




1
2
3
4
5

 =



1
2
3
2
3
4
3
4
5


Finally, by applying the folding operation we obtain the Hankel matrix:

Hr(uuu) = VVV H = fold(5,3)(SuSuSu) =

1 2 3
2 3 4
3 4 5


De-Hankelization is essentially a series of inverse operations that result in the original

vector. Since the last step of Hankelization was the folding operation, the first step of De-

Hankelization is the vectorization of the matrix, which results inSuSuSu. Finally, we left-multiply

with the Moore-Penrose pseudo-inverse of SSS. This process is summarized as:

H−1
r (VVV H) = SSS†vec(VVV H)

The Standard Delay Embedding Transform can be also applied on matrices and tensors.

Applying Standard Delay Embedding Transform on the first mode of a matrix XXX ∈ RI1×I2

results in the tensor Hr(XXX) = XH ∈ Rr×(I1−r+1)×I2. In general, applying Standard Delay

Embedding Transform on the n-th mode of a tensor X ∈ RI1×I2×...×IN produces the tensor

Hr(X ) = XH ∈ RI1×I2×...×In−1×r×(In−r+1)×In+1×...×IN

The operation that produces the tensors in these two cases is denoted as:

Hr(X ) = XH = fold(In,r)(X ×n SSS)

while the inverse process can be written as:

H−1
r (XH) = unfold(In,r)(XH)×n SSS

†

where unfold(In,r)(·) is the inverse process of fold(In,r)(·). The following Figure visualizes
the procedure of the Standard Delay Embedding Transform. Firstly, matrixXXX is multiplied

with the duplication matrix SSS. Then, the folding step is applied on their product. A third

mode thus appears, increasing the order from 2 to 3.

Figure 8: Standard Delay Embedding Transform on the 1st mode of a matrixXXX ∈ RI1×I2
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2.5.2.2 Multi-way Delay Embedding Transform

The Multi-way Delay Embedding Transform (MDT) constitutes the generalization of the

Standard Delay Embedding Transform. Applying MDT on every mode of a N -th order

tensor X ∈ RI1×I2×...×IN requires N Hankelization parameters r =
(
r1, r2, ..., rN

)
and

N duplication matrices S1, S2, ..., SN . Applying MDT on specific modes is achieved by

setting their corresponding rn to the desired value and rn = 1 for the rest. By setting

rn = 1, each duplication matrix SSSd ∈ Rrn(In−rn+1)×In becomes SSSn ∈ RIn×In i.e an identity

matrix of size In. The procedure of MDT can be summarized as:

Hr(X ) = XH = fold(I,r)(X ×1 SSS1 ×2 ...×N SSSN) (2.9)

where I = I1 × I2 × ...× IN and fold is defined as a function:

fold(I,r)(·) : Rr1(I1−r1+1)×...×rN (IN−rN+1) → Rr1×(I1−r1+1)×...×rN×(IN−rN+1)

The inverse procedure is defined as:

H−1
r (XH) = unfold(I,r)(XH)×1 SSS

†
1 ×2 ...×N SSS†

N (2.10)

where unfold is the inverse process of the previously defined function fold. The following
Figure visualizes the procedure of the Multi-way Delay Embedding Transform on a matrix.

The matrix XXX is multiplied with the duplication matrices SSS1 and SSS2 followed by a folding

step. A third and fourth mode thus appear, increasing the order from 2 to 4.

Figure 9: Multi-way Delay Embedding Transform on both modes of a matrix X ∈ RI1×I2
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3. BLOCK HANKEL TENSOR AUTOREGRESSION

In this chapter, we focus on multivariate short time series forecasting. As mentioned in

Chapter 1 there is a need to overcome various disadvantages of early approaches (e.g

vectorization of data in the form of tensors). In addition, given the short aspect of the

time series, more problems arise. It is expected that traditional models will not perform

so well due to the dimensionality of the data and the fact that their accuracy is closely

correlated with the amount of data provided during the training process. On the other

hand, neural networks and their great expressive capabilities could be utilized in the tensor

time series setting. However, they usually require an even larger amount of data in the

training process which is not available in the short time series setting. Finally, applications

of tensorization and tensor decompositions in various studies and their promising results

paved the road for further research on such applications.

In this context we focus on the Block Hankel Tensor Autoregression algorithm. It based on

the Multilinear Orthogonal Autoregressive model proposed by Jing et al [7] and the work

of Shi et al [8], the Block Hankel Tensor ARIMA process. In their work, Jing et al. starting

with a tensor-valued time series, exploited the advantages of Tucker Decomposition in an

iterative process that estimated the semi-orthogonal projection matrices ÛUU
(n)

∈ RIn×Rn.

Using the estimated factor matrices they obtained the core tensors Ĝt. Finally, instead

of using the original tensors Xt, they used the obtained core tensors to estimate the co-

efficients of an Autoregressive process. Shi et al. expanded this method utilizing the

power of Hankelization and transforming lower-order data into a higher order Block Han-

kel Tensor (i.e. a block tensor whose entries are Hankel tensors). Each observation of

the Block Hankel tensor is essentially a sub-window on the original data that contains var-

ious timestamps. This structure could help capturing the temporal correlations of the data

in a more effective way. Furthermore, exploiting the Hankel tensor’s low-rank property,

they applied low-rank Tucker decomposition on the Hankelized tensor and estimated the

joint projection matrices ÛUU
(n)

and the core tensors Ĝt. The obtained core tensors were

used to estimate the coefficients of an ARIMA process. Finally, after forecasting on the

core tensor level the result is transformed back into the original framework. In the follow-

ing paragraphs we review each of the algorithm’s components in detail and provide the

necessary proofs.

3.1 Multi-way Delay Embedding Transform

In the first part of the algorithm we utilize MDT to transform the data into a higher-order ten-

sor. For a given tensor Xstart ∈ RJ1×J2×...×JM×Tstart , MDT is applied on the temporal mode,

resulting in the tensor X ∈ RI1×I2×...×IN×T where N = M + 1, J1 = I1, ..., JM = IN−1,

IN = r and T = Tstart − r + 1. In the following sections we denote this Hankelization

as Hr(·). This is achieved by a mode-n product between the tensor and the duplication

matrix SSS ∈ Rr(T−r+1)×T . The main benefit of applying MDT on time series data (where the

correlations are strong) is that the produced Block Hankel Tensor can be represented by

low-rank or a smooth manifold in the embedded space [5] [6]. Therefore, this property al-

lows us to exploit low-rank Tucker decomposition effectively in order to extract the intrinsic

local correlations of the data while ”compressing” the tensor. Finally, each temporal slab

of a Hankel tensor, is a sub-window that contains consecutive observations of the original

time series. This mapping could also boost the ability of the forecasting model to capture
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spatiotemporal correlations, especially in the short time series context.

3.2 Block Hankel Tensor Autoregression with Scalar Coefficients

Starting with the tensorized time series X ∈ RI1×I2×...×IN×T , where the last mode cor-

responds to the temporal direction, applying Tucker Decomposition (2.7) on the first N
modes results in:

X ≈ Ĝ ×1 ÛUU
(1)

×2 ÛUU
(2)

×3 ...×N ÛUU
(N)

Then each temporal slab of the core tensor can be estimated as:

Ĝt ≈ Xt ×1 ÛUU
(1)†

×2 ÛUU
(2)†

×3 ...×N ÛUU
(N)†

(3.1)

where Ĝt are the estimated core tensor’s temporal slabs and ÛUU
(n)†

denotes the Moore-

Penrose inverse of the estimated factor matrix ÛUU
(n)

∈ RIn×Rn with In > Rn for n =
1, 2, ..., N . Additionally, the constraint of semi-orthogonality is applied on the projection

matrices. Thus, the following property must hold:

ÛUU
(n)>

ÛUU
(n)

= IIIRn (3.2)

Combining (3.2) and (3.1) we get:

Ĝt ≈ Xt ×1 ÛUU
(1)>

×2 ÛUU
(2)>

×3 ...×N ÛUU
(N)>

(3.3)

A core tensor contains a compressed representation of the intrinsic interactions of multiple

factors that are present in the original tensor. Furthermore, the factor matrices are esti-

mated jointly on all modes but the temporal in order to maximally preserve the temporal

continuity. This way the temporal correlations between the core tensors are maximally

preserved while we extract only the important information that is present in the rest of the

modes and remove case specific noise. Furthermore, the volume of the data is decreased

as we obtain the compressed core tensors. Thus, training a model on the temporal slabs

of the core tensors could be more promising in the scope of capturing the latent tempo-

ral correlations and intrinsic interactions among multiple time series when compared to a

model trained on the temporal slabs of the original tensor.

We remind that in the first step of the algorithm we utilized MDT to transform the original

data into a Block Hankel Tensor. Therefore, the autoregressive process that will be utilized

from this point forward is the following:

Xt =

p∑
i=1

aiXt−i + Ẽt (3.4)

where αi ∈ R are the scalar coefficients, Xt,Xt−i ∈ RI1×I2×...×IN are two observations of

the time series with lag i and Ẽt ∈ RI1×I2×...×IN corresponds to white noise. For simplicity

we assume that E[Xt] = 0. If E[Xt] 6= 0 then Xt is replaced by Yt = Xt − E[Xt].

Left-multiplying (3.4) with

N∏
n=1

×n ÛUU
(n)>

we get:

Xt

N∏
n=1

×n ÛUU
(n)>

=

(
p∑

i=1

aiXt−i

)
N∏

n=1

×n ÛUU
(n)>

+ Ẽt
N∏

n=1

×n ÛUU
(n)>

=⇒
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Xt

N∏
n=1

×n ÛUU
(n)>

=

(
p∑

i=1

aiXt−i

N∏
n=1

×n ÛUU
(n)>
)

+ Ẽt
N∏

n=1

×n ÛUU
(n)>

=⇒

Ĝt =

p∑
i=1

aiĜt−i + Et (3.5)

Our goal is to minimize the norm of the prediction error ‖Et‖F which corresponds to:

‖Et‖F = ‖Ĝt −
p∑

i=1

aiĜt−i‖F (3.6)

Furthermore, in order to minimize the noise produced by the inverse decomposition pro-

cedure we add the following term that corresponds to the inverse decomposition error.

‖Ĝt −Xt

N∏
n=1

×n ÛUU
(n)>

‖F (3.7)

subject to ÛUU
(n)>

ÛUU
(n)

= IIIRn for n = 1, 2, ..., N .

Finally, by combining both terms (3.6 & 3.7) the optimization problem is written as:

argmin

{Ĝt,ÛUU
(n)

,ai}

T∑
t=p+1

(
1

2
‖Ĝt −

p∑
i=1

aiĜt−i‖2F +
1

2
‖Ĝt −Xt

N∏
n=1

×n ÛUU
(n)>

‖2F

)

subject to ÛUU
(n)>

ÛUU
(n)

= IIIRn for n = 1, 2, ..., N .

To facilitate the differentiation of the above optimization problem, it is written as a sum of

N terms, each one corresponding to a mode-n unfolding.

argmin

{ĜGG
(n)

t ,ÛUU
(n)

,ai}

T∑
t=p+1

N∑
n=1

(
1

2
‖(ĜGG

(n)

t −
p∑

i=1

aiĜGG
(n)

t−i)‖2F +
1

2
‖ĜGG

(n)

t − ÛUU
(n)>

XXX
(n)
t ÛUU

(−n)>

‖2F

)
(3.8)

subject to ÛUU
(n)>

ÛUU
(n)

= IIIRn for n = 1, 2, ..., N

where ÛUU
(−n)

= ÛUU
(N)>

⊗ ...⊗ ÛUU
(n+1)>

⊗ ÛUU
(n−1)>

⊗ ...⊗ ÛUU
(1)>

∈ R
∏

j 6=n Rj×
∏

j 6=n Ij

3.2.1 Updating the core tensors

To compute the partial derivative of (3.8) both of the above norms are expressed as traces.

The first norm is written equivalently as:

‖ĜGG
(n)

t −
p∑

i=1

aiĜGG
(n)

t−i‖2F =

tr

(
(ĜGG

(n)

t −
p∑

i=1

aiĜGG
(n)

t−i)
>(ĜGG

(n)

t −
p∑

i=1

aiĜGG
(n)

t−i)

)
=
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tr

(
(ĜGG

(n)>

t − (

p∑
i=1

aiĜGG
(n)

t−i)
>)(ĜGG

(n)

t −
p∑

i=1

aiĜGG
(n)

t−i)

)
=

tr

(
ĜGG

(n)>

t ĜGG
(n)

t − ĜGG
(n)>

t

p∑
i=1

aiĜGG
(n)

t−i − (

p∑
i=1

aiĜGG
(n)

t−i)
>ĜGG

(n)

t + (

p∑
i=1

aiĜGG
(n)

t−i)
>(

p∑
i=1

aiĜGG
(n)

t−i)

)
=

tr

(
ĜGG

(n)>

t ĜGG
(n)

t − ĜGG
(n)>

t

p∑
i=1

aiĜGG
(n)

t−i − (ĜGG
(n)>

t

p∑
i=1

aiĜGG
(n)

t−i)
> + (

p∑
i=1

aiĜGG
(n)

t−i)
>(

p∑
i=1

aiĜGG
(n)

t−i)

)
(∗)
=

tr

(
ĜGG

(n)>

t ĜGG
(n)

t

)
− 2 tr

(
ĜGG

(n)>

t

p∑
i=1

aiĜGG
(n)

t−i

)
+ tr (BBB)

where BBB = (

p∑
i=1

aiĜGG
(n)

t−i)
>

p∑
j=1

ajĜGG
(n)

t−j

Note that in the last step we used the following property of traces: tr(AAA) = tr(AAA>)

The partial derivatives of the above traces are:

•
∂

∂ĜGG
(n)

t

tr

(
ĜGG

(n)>

t ĜGG
(n)

t

)
= 2ĜGG

(n)

t

•
∂

∂ĜGG
(n)

t

tr

(
ĜGG

(n)>

t

p∑
i=1

aiĜGG
(n)

t−i

)
=

p∑
i=1

aiĜGG
(n)

t−i

•
∂

∂ĜGG
(n)

t

tr (BBB) =
∂

∂ĜGG
(n)

t

tr

(
(

p∑
i=1

aiĜGG
(n)

t−i)
>

p∑
j=1

ajĜGG
(n)

t−j

)
= 0

The partial derivative of the first term with respect to ĜGG
(n)

t is:

∂

∂ĜGG
(n)

t

(
1

2
‖ĜGG

(n)

t −
p∑

i=1

aiĜGG
(n)

t−i‖2F

)
=

∂

∂ĜGG
(n)

t

(
1

2

(
tr

(
ĜGG

(n)>

t ĜGG
(n)

t

)
− 2 tr

(
ĜGG

(n)>

t

p∑
i=1

aiĜGG
(n)

t−i

)
+ tr (BBB)

))
=

∂

∂ĜGG
(n)

t

(
1

2
tr

(
ĜGG

(n)>

t ĜGG
(n)

t

)
− tr

(
ĜGG

(n)>

t

p∑
i=1

aiĜGG
(n)

t−i

)
+

1

2
tr (BBB)

)
=

1

2

∂

∂ĜGG
(n)

t

tr

(
ĜGG

(n)>

t ĜGG
(n)

t

)
−

∂

∂ĜGG
(n)

t

tr

(
ĜGG

(n)>

t

p∑
i=1

aiĜGG
(n)

t−i

)
+

1

2

∂

∂ĜGG
(n)

t

tr (BBB) =

ĜGG
(n)

t −
p∑

i=1

aiĜGG
(n)

t−i

Summarizing the above we have:

∂

∂ĜGG
(n)

t

(
1

2
‖ĜGG

(n)

t −
p∑

i=1

aiĜGG
(n)

t−i‖2F

)
= ĜGG

(n)

t −
p∑

i=1

aiĜGG
(n)

t−i (3.9)
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The second norm is written equivalently as:

‖ĜGG
(n)

t − ÛUU
(n)>

XXX
(n)
t ÛUU

(−n)>

‖2F =

tr

(
(ĜGG

(n)

t − ÛUU
(n)>

XXX
(n)
t ÛUU

(−n)>

)>(ĜGG
(n)

t − ÛUU
(n)>

XXX
(n)
t ÛUU

(−n)>

)

)
=

tr

(
(ĜGG

(n)>

t − ÛUU
(−n)

XXX
(n)>

t ÛUU
(n)

)(ĜGG
(n)

t − ÛUU
(n)>

XXX
(n)
t ÛUU

(−n)>

)

)
=

tr

(
ĜGG

(n)>

t ĜGG
(n)

t − ĜGG
(n)>

t ÛUU
(n)>

XXX
(n)
t ÛUU

(−n)>

− ÛUU
(−n)

XXX
(n)>

t ÛUU
(n)
ĜGG

(n)

t +CCC

)
=

tr

(
ĜGG

(n)>

t ĜGG
(n)

t

)
− tr

(
ĜGG

(n)>

t ÛUU
(n)>

XXX
(n)
t ÛUU

(−n)>
)
− tr

(
ÛUU

(−n)
XXX

(n)>

t ÛUU
(n)
ĜGG

(n)

t

)
+ tr (CCC) =

tr

(
ĜGG

(n)>

t ĜGG
(n)

t

)
− tr

(
ĜGG

(n)>

t ÛUU
(n)>

XXX
(n)
t ÛUU

(−n)>
)
− tr

(
(ĜGG

(n)>

t ÛUU
(n)>

XXX
(n)
t ÛUU

(−n)>

)>
)
+ tr (CCC) =

tr

(
ĜGG

(n)>

t ĜGG
(n)

t

)
− 2 tr

(
ĜGG

(n)>

t ÛUU
(n)>

XXX
(n)
t ÛUU

(−n)>
)
+ tr (CCC)

where CCC = ÛUU
(n)>

XXX
(n)
t ÛUU

(−n)>

ÛUU
(−n)

XXX
(n)>

t ÛUU
(n)

The partial derivatives of the above traces are:

•
∂

∂ĜGG
(n)

t

tr

(
ĜGG

(n)>

t ĜGG
(n)

t

)
= 2ĜGG

(n)

t

•
∂

∂ĜGG
(n)

t

tr

(
ĜGG

(n)>

t ÛUU
(n)>

XXX
(n)
t ÛUU

(−n)>
)

= ÛUU
(n)>

XXX
(n)
t ÛUU

(−n)>

•
∂

∂ĜGG
(n)

t

tr (CCC) =
∂

∂ĜGG
(n)

t

tr

(
ÛUU

(n)>

XXX
(n)
t ÛUU

(−n)>

ÛUU
(−n)

XXX
(n)>

t ÛUU
(n)
)

= 0

The partial derivative of the second term with respect to ĜGG
(n)

t is

∂

∂ĜGG
(n)

t

(
1

2
‖ĜGG

(n)

t − ÛUU
(n)>

XXX
(n)
t ÛUU

(−n)>

‖2F

)
=

∂

∂ĜGG
(n)

t

(
1

2

(
tr

(
ĜGG

(n)>

t ĜGG
(n)

t

)
− 2 tr

(
ĜGG

(n)>

t ÛUU
(n)>

XXX
(n)
t ÛUU

(−n)>
)
+ tr (CCC)

))
=

∂

∂ĜGG
(n)

t

(
1

2
tr

(
ĜGG

(n)>

t ĜGG
(n)

t

)
− tr

(
ĜGG

(n)>

t ÛUU
(n)>

XXX
(n)
t ÛUU

(−n)>
)
+

1

2
tr (CCC)

)
=

1

2

∂

∂ĜGG
(n)

t

tr

(
ĜGG

(n)>

t ĜGG
(n)

t

)
−

∂

∂ĜGG
(n)

t

tr

(
ĜGG

(n)>

t ÛUU
(n)>

XXX
(n)
t ÛUU

(−n)>
)
+

1

2

∂

∂ĜGG
(n)

t

tr (CCC) =

ĜGG
(n)

t − ÛUU
(n)>

XXX
(n)
t ÛUU

(−n)>

Summarizing the above we have:

∂

∂ĜGG
(n)

t

(
1

2
‖ĜGG

(n)

t − ÛUU
(n)>

XXX
(n)
t ÛUU

(−n)>

‖2F

)
= ĜGG

(n)

t − ÛUU
(n)>

XXX
(n)
t ÛUU

(−n)>

(3.10)
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Using (3.9) & (3.10) we compute the partial derivative of (3.8) with respect to ĜGG
(n)

t . By

setting it to zero we get:

T∑
t=p+1

(
ĜGG

(n)

t −
p∑

i=1

aiĜGG
(n)

t−i + ĜGG
(n)

t − ÛUU
(n)>

XXX
(n)
t ÛUU

(−n)>
)

= 0

T∑
t=p+1

(
2ĜGG

(n)

t −
p∑

i=1

aiĜGG
(n)

t−i − ÛUU
(n)>

XXX
(n)
t ÛUU

(−n)>
)

= 0

So, each ĜGG
(n)

t , n = 1, 2, ..., N is updated by:

ĜGG
(n)

t =
1

2

(
p∑

i=1

aiĜGG
(n)

t−i + ÛUU
(n)>

XXX
(n)
t ÛUU

(−n)>
)

(3.11)

After the unfolded matrices are updated, they are converted back to their tensor form by

Ĝt = fold(ĜGG
(n)

t )

3.2.2 Updating the factor matrices

(3.8) with respect to ÛUU
(n)

is:

argmin

{ÛUU
(n)

}

T∑
t=p+1

N∑
n=1

(
1

2
‖ĜGG

(n)

t − ÛUU
(n)>

XXX
(n)
t ÛUU

(−n)>

‖2F

)

subject to ÛUU
(n)>

ÛUU
(n)

= IIIRn for n = 1, 2, ..., N

Shang, Lie and Cheng in 2014 [9] have shown that the minimization of the quantity above

with respect to the factor matrices ÛUU
(n)

implies:

ÛUU
(n)

= argmax

{ÛUU
(n)

}

T∑
t=p+1

tr

(
ÛUU

(n)>

XXX
(n)
t ÛUU

(−n)>

ĜGG
(n)>

t

)
(3.12)

(3.12) corresponds to the orthogonality Procrustes problem. The global optimal solution

for this problem is given by the SVD of:

T∑
t=p+1

XXX
(n)
t ÛUU

(−n)>

ĜGG
(n)>

t ∈ RIn×Rn (3.13)

We conduct Singular Value Decomposition on (3.13) and keep only the non-zero singular

values. We obtain the matrices LLL ∈ RIn×Rn and RRR ∈ RRn×Rn whose columns are the left

and right singular vectors respectively. The following holds LLL>LLL = RRR>RRR = IIIRn. However,

sinceRRR is a square matrix with orthonormal columns it is orthogonal. Therefore, we have

RRRRRR> = IIIRn.

The factor matrices ÛUU
(n)

∈ RIn×Rn are updated by:

ÛUU
(n)

= LLLRRR> (3.14)

We can easily deduct that the estimation of ÛUU
(n)
, obtained by (3.13), is a semi-orthogonal

matrix with orthonormal columns since:

ÛUU
(n)>

ÛUU
(n)

= (LLLRRR>)>(LLLRRR>) = RRRLLL>LLLRRR> = RRRIIIRnRRR
> = RRRRRR> = IIIRn
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3.2.3 Estimating the scalar coefficients

The coefficients of the AR model are estimated on the core tensors, generalizing a Least

Squares modified Yule-Walker method that supports data in the form of tensors. We

calculate auto-correlation as

rp =

T−p∑
t=1

〈vec(Xt), vec(Xt+l)〉

T∑
t=1

〈vec(Xt), vec(Xt)〉

We estimate the coefficients by solving the following linear system, known as the Yule-

Walker equations.
r1
r2
...

rp−1

rp

 =


r0 r1 r2 . . . rp−2 rp−1

r1 r0 r1 . . . rp−3 rp−2
...

...
...

. . .
...

...

rp−2 rp−3 rp−4 . . . r0 r1
rp−1 rp−2 rp−3 . . . r1 r0




a1
a2
...

ap−1

ap

 ⇐⇒ rrr = RARARA

where rrr =


r1
r2
...

rp−1

rp

, RRR =


r0 r1 r2 . . . rp−2 rp−1

r1 r0 r1 . . . rp−3 rp−2
...

...
...

. . .
...

...

rp−2 rp−3 rp−4 . . . r0 r1
rp−1 rp−2 rp−3 . . . r1 r0

 and AAA =


a1
a2
...

ap−1

ap


The above system is well-posed since RRR is a symmetric, positive semi-definite matrix. Its

solution is given by ÂAA = RRR−1rrr.

3.2.4 Forecasting

Finally, after the coefficient estimation process is finished, the next core tensor is fore-

casted by:

ĜT+1 =

p∑
i=1

aiĜT−i+1 ∈ RR1×R2×...×RN

The forecast is concatenated with the rest of the observations along the temporal mode,

resulting in the tensor Ĝnew ∈ RR1×R2×...×RN×(T+1). After Ĝnew is obtained, the inverse

Tucker Decomposition is applied using the estimated factor matrices ÛUU
(n)

∈ RIn×Rn, to

re-map the data into the original space. Finally, the inverse MDT process is applied on

the Hankelized tensor X ∈ RI1×I2×...×IN×(T+1) to obtain the lower-order tensor Xstart ∈
RJ1×J2×...×JM×(Tstart+1) where M = N − 1.

3.2.5 The Algorithm

The algorithm requires as input the time series Xstart ∈ RJ1×...×JM×Tstart , the AR order p,

the maximum number of iterations max_iter, the MDT order r and the tolerance for the

stop criterion tol. Finally, to incorporate non-stationary time series we conduct d-th order

differencing.
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BHT_AR_SC

1. Apply MDT to get X̃ = Hr(Xstart) ∈ RI1×I2×...×IN×T , where T = Tstart − r + 1

2. Conduct d-order differencing on X̃ and get X ∈ RI1×I2×...×IN×(T−d)

3. Set the Tucker Decomposition ranks, Rn, n = 1, 2, ..., N

4. Set iter = 0 and initialize ÛUU
(n)
, n = 1, 2, ..., N randomly

5. While iter ≤ max_iter and convergence_value > tol

(a) Estimate Ĝt = Xt ×1 ÛUU
(1)>

×2 ÛUU
(2)>

×3 ...×N ÛUU
(n)>

, for t = 1, 2, ..., T − d

(b) Estimate the scalar coefficients ai for i = 1, 2, ..., p by solving the Yule-Walker

equations on the core tensors Ĝt, for t = 1, 2, ..., T − d.

(c) For n = 1, 2, ..., N

i. By (3.11) set ĜGG
(n)

t =
1

2

(
p∑

i=1

aiĜGG
(n)

t−i + ÛUU
(n)>

XXX
(n)
t ÛUU

(−n)>
)
for t = p+1, ..., T−d

ii. Restore tensor form Ĝt = Fold(ĜGG
(n)

t )

iii. old_ÛUU
(n)

= ÛUU
(n)

iv. By (3.14) set ÛUU
(n)

= LLLRRR>

(d) iter = iter + 1

(e) convergence_value =

∑N
n=1‖ÛUU

(n)
− old_ÛUU

(n)
‖2F∑N

n=1‖ÛUU
(n)

‖2F
6. Estimate ĜT−d+1 =

p∑
i=1

aiĜT−d−i

7. Compute XT−d+1 = ĜT−d+1

N∏
n=1

×n ÛUU
(n)

8. Conduct inverse differencing to obtain X̃ new ∈ RI1×I2×...×IN×(T+1)

9. Apply inverse MDT: H−1
r (X̃ new) = X new ∈ RJ1×J2×...×JM×(Tstart+1)

10. Return X new
T+1, the factor matrices ÛUU

(n)
and the scalar coefficients ai

3.3 Block Hankel Tensor Autoregression with Matrix Coefficients

The method that was discussed so far shows promising results that will be presented in

Chapter 4. This serves as a trigger for further experimentation on the algorithm, in order

to provide its generalization. As we have already mentioned, the algorithm’s main com-

ponents are Hankelization, Tucker Decomposition and the solution of an Autoregressive

model with scalar coefficients. Thus, in an effort to make the first step towards the gener-

alization of the algorithm, we substitute the scalar coefficients with matrices to extend its

applicability to AR series with matrix-valued coefficients.

In general, autoregression with scalar coefficients is a special case of the more general

model whose coefficients are matrix-valued. In the autoregression model that was con-

sidered so far, each coefficient can be interpreted as a weight that describes a previous

tensor’s contribution in the forecasted value. However, different elements of a tensor could

weigh in differently. Furthermore, in this model each element is expressed as a weighted
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summation of only the respective elements of the previous tensors. Thus, spatial corre-

lations are not fully taken into consideration. On the other hand, its generalization, i.e

Autoregression with matrix coefficients, is not bound by the aforementioned restrictions.

In this section, the goal is to derive a variation of the algorithm that overcomes the re-

strictions introduced by the scalar coefficient autoregressive process. We review autore-

gression with matrix coefficients and argue that this model overcomes these restrictions.

Finally, we present proof that, autoregression with matrix coefficients can substitute the

existing autoregressive model in the algorithm.

We have already mentioned that early approaches reshaped data of higher order struc-

tures into vectors. Such methods pose various disadvantages like increased time com-

plexity, high memory demands and obscuring of any intrinsic structure information that

was present in the data (in cases of matrices or tensors). However, in our case it is possi-

ble to overcome most of these disadvantages because Tucker Decomposition is utilized.

The matrix coefficients are estimated over the vectorized form of the core matrices and

as a result their size is greatly decreased compared to what it would have been if they

were estimated on the vectorized form of the original tensors. In addition, this leads to

a reduction of the number of estimated parameters. Thus, memory demands and time

complexity remain relatively low. Finally, any intrinsic structure that was originally present

in the data has already been modified in the Tucker decomposition step.

3.3.1 Vector Autoregression with Matrix Coefficients

This subsection is dedicated to Autoregression with matrix coefficients in order to provide

a better understanding of the differences between those two autoregressive processes. A

p-th order autoregressive process with scalar coefficients, for a vector valued time series

is defined as:

xxxt = a1xxxt−1 + a2xxxt−2 + ...+ apxxxt−p + eeet

where eeet is a vector that corresponds to white noise and ai are scalars. Therefore, given

a vector xxx, each element is written as a linear combination of the elements at the same

index i, on the previous p vectors, plus a white noise quantity. For a given vector xxxt =
(x1

t , ..., x
i
t, ..., x

n
t ) we have:

xi
t = a1x

i
t−1 + a2x

i
t−2 + ...+ apx

i
t−p + eit

This linear combination of elements at the same index does not take into consideration

spatial correlations between different indices that could be utilized to produce a more

representative model.

For simplicity, we focus on a second-order autoregression model and a vector-valued time

series with xxxt ∈ R2. For an autoregressive process with scalar coefficients we would write:[
x1
t

x2
t

]
=

[
a1x

1
t−1 + a2x

1
t−2

a1x
2
t−1 + a2x

2
t−2

]
+ eeet

The above equation shows that the value x1
t is written as a summation of a1x

1
t−1 and a2x

1
t−2

and so, any useful correlation between x1
t and x2

t−1, x
2
t−2 is not taken into consideration.

This is the essence of what thematrix coefficient autoregression introduces into themodel,
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by substituting the scalar coefficients with matrices. Autoregression with matrix coeffi-

cients for a vector-valued time series is defined [10] as:

xxxt = ccc+AAA1xxxt−1 +AAA2xxxt−2 + ...+AAApxxxt−p + eeet

where xxxt ∈ Rn are the time series observations, ccc = (III −
p∑

i=1

AAAi)E[xxxt] ∈ Rn serves as the

intercept, AAAi ∈ Rn×n are the matrix coefficients and eeet ∈ Rn corresponds to white noise.

Therefore, in the same setting as in the previous example, with p = 2, xxxt ∈ R2 and aijk the
element of the matrix AAAi located at (j, k) we have:[

x1
t

x2
t

]
=

[
c1
c2

]
+

[
a111 a112
a121 a122

] [
x1
t−1

x2
t−1

]
+

[
a211 a212
a221 a222

] [
x1
t−2

x2
t−2

]
+ eeet ⇒

[
x1
t

x2
t

]
=

[
c1
c2

]
+

[
a111x

1
t−1 + a112x

2
t−1

a121x
1
t−1 + a122x

2
t−1

]
+

[
a211x

1
t−2 + a212x

2
t−2

a221x
1
t−2 + a222x

2
t−2

]
+ eeet ⇒

[
x1
t

x2
t

]
=

[
c1 + a111x

1
t−1 + a112x

2
t−1 + a211x

1
t−2 + a212x

2
t−2

c2 + a121x
1
t−1 + a122x

2
t−1 + a221x

1
t−2 + a222x

2
t−2

]
+ eeet

As we can see, autoregression with matrix coefficients expresses each element of a

vector-valued time series at a given time point, as a combination of every element of

the previous p observations, regardless of index, plus the intercept and white noise. This

enables the model to capture correlations that otherwise would stay hidden. Note that

the matrix coefficient model is essentially a generalization of the scalar coefficient model.

Having zero-valued non diagonal elements and same-valued diagonal elements on a ma-

trix AAA leads to a scalar matrix which essentially is the scalar coefficient autoregressive

model.

3.3.2 Model Transformation

In this subsection it is shown that the Block Hankel Tensor Autoregression model with

scalar coefficients can be generalized to a model with matrix coefficients. MDT is applied

on the original time series to obtain its Hankelized form. Then, it is shown that an AR

process of a tensor-valued time series is equivalent with a process that uses its vectorized

form and therefore it can be generalized to an AR process that uses matrix coefficients.

Finally, it is shown that this model can be further transformed into one that uses the core

tensors obtained through Tucker Decomposition.

Xt =

p∑
i=1

aiXt−i + Et ⇐⇒

vec(Xt) =

p∑
i=1

aivec(Xt−i) + vec(Et) ⇐⇒

vec(Xt) =

p∑
i=1

aiIIIvec(Xt−i) + vec(Et) ⇐⇒

vec(Xt) =

p∑
i=1

ΦΦΦivec(Xt−i) + vec(Et)

D. Aronis 41



Tensor Methods in Time Series Analysis

where ΦΦΦi is a scalar matrix. Therefore, by replacing the scalar matrices ΦΦΦi we get the

Autoregressive model with matrix coefficients. The next step is to find the equivalent

model that utilizes the core tensors. For simplicity, we start with a third order tensor-

valued time series and a first-order autoregressive process before generalizing to a p-th
order autoregressive model for a N -th order tensor time series.

In the following proof each tensor is decomposed over a single mode. By repeating the

process for each mode we obtain the final core tensors. The tensors that are obtained in

each step can be interpreted as intermediate tensors between the original and the final

core tensors. The n-th intermediate tensor is denoted asMn
t ∈ RR1×...×Rn×In+1×...×IN . It is

straightforward that MN
t = Ĝt.

For simplicity, we start by providing the proof for a third order tensor-valued time series and

a first order autoregressive process. Then we generalize to an N -th order tensor-valued

time series and a p-th order autoregressive model. Let Xt ∈ RI1×I2×I3 a tensor-valued

time series, vec(Xt) ∈ RI1I2I3 its vectorization, ΦΦΦ ∈ RI1I2I3×I1I2I3 the coefficient matrix and

ÛUU
(1)

∈ RI1×R1, ÛUU
(2)

∈ RI2×R2 , ÛUU
(3)

∈ RI3×R3 the factor matrices.

In the following proof we will use the property vec(ABABAB) = (III ⊗AAA)vec(BBB)

Starting with the vectorized model we have:

vec(Xt) = ΦΦΦvec(Xt−1) + vec(Et)

The vectorization of a tensor is a equivalent to the vectorization of its 1-st mode unfolding.

Therefore, the above is equivalently written as:

vec(XXX
(1)
t ) = ΦΦΦvec(XXX

(1)
t−1) + vec(EEE

(1)
t ) ⇐⇒

(IIII2I3 ⊗ ÛUU
(1)>

)vec(XXX
(1)
t ) = (IIII2I3 ⊗ ÛUU

(1)>

)ΦΦΦvec(XXX
(1)
t−1) + (IIII2I3 ⊗ ÛUU

(1)>

)vec(EEE
(1)
t ) ⇐⇒

vec(ÛUU
(1)>

XXX
(1)
t ) = (IIII2I3 ⊗ ÛUU

(1)>

)ΦΦΦvec(ÛUU
(1)
MMM1(1)

t−1) + vec(ÛUU
(1)>

EEE
(1)
t ) ⇐⇒

vec(MMM1(1)

t ) = (IIII2I3 ⊗ ÛUU
(1)>

)ΦΦΦ(IIII2I3 ⊗ ÛUU
(1)
)vec(MMM1(1)

t−1) + vec(EEE1(1)

t ) ⇐⇒

vec(MMM1(1)

t ) = ΦΦΦ1vec(MMM1(1)

t−1) + vec(EEE1(1)

t ) (3.15)

where MMM1(1)

t ,MMM1(1)

t−1 ∈ RR1×I2I3 , ΦΦΦ1 = (IIII2I3 ⊗ ÛUU
(1)>

)ΦΦΦ(IIII2I3 ⊗ ÛUU
(1)
) ∈ RR1I2I3×R1I2I3 and

EEE1(1)

t = ÛUU
(1)>

EEE
(1)
t ∈ RR1×I2I3.

At this point we decompose over the second mode. Since vectorizations of different un-

foldings are not always equal we have to rearrange the elements of the first mode’s un-

folding to obtain the vectorized form of the second mode’s unfolding.

For a given pair of vectors uuu1,uuu2 where uuu2 is a permutation of uuu1 there exists an invertible

transition matrix TTT 12 such as TTT 12 uuu1 = uuu2 ⇐⇒ uuu1 = TTT 21 uuu2 where TTT 21 = TTT 12−1
.

In our context the transition matrix permutes the vectorization ofMMM1(1)

t in a way equivalent

to the following steps:

• FoldMMM1(1)

t to obtain M1
t

• Unfold over the second mode to obtainMMM1(2)

t

• Vectorize the unfolded matrixMMM1(2)

t
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The above can be summarized as:

TTT 12 vec(MMM1(1)) = vec(MMM1(2)) ⇐⇒ vec(MMM1(1)) = TTT 21 vec(MMM1(2)).

Left-Multiplying (3.15) with TTT 12 we get:

TTT 12vec(MMM1(1)

t ) = TTT 12ΦΦΦ1vec(MMM1(1)

t−1) + TTT 12vec(EEE1(1)

t )

vec(MMM1(2)

t ) = TTT 12ΦΦΦ1 TTT 21vec(MMM1(2)

t−1) + vec(EEE1(2)

t )

(IIIR1I3⊗ÛUU
(2)>

)vec(MMM1(2)

t ) = (IIIR1I3⊗ÛUU
(2)>

)TTT 12ΦΦΦ1 TTT 21vec(ÛUU
(2)
MMM2(2)

t−1)+(IIIR1I3⊗ÛUU
(2)>

)vec(EEE1(2)

t )

vec(ÛUU
(2)>

MMM1(2)

t ) = (IIIR1I3 ⊗ ÛUU
(2)>

)TTT 12ΦΦΦ1 TTT 21(IIIR1I3 ⊗ ÛUU
(2)
)vec(MMM2(2)

t−1) + vec(ÛUU
(2)>

EEE1(2)

t )

vec(MMM2(2)

t ) = ΦΦΦ2vec(MMM2(2)

t−1) + vec(EEE2(2)

t )

whereΦΦΦ2 = (IIIR1I3⊗ÛUU
(2)>

)TTT 12ΦΦΦ1 TTT 21(IIIR1I3⊗ÛUU
(2)
) ∈ RR1R2I3×R1R2I3 andEEE2(2)

t ,MMM2(2)

t ,MMM2(2)

t−1 ∈
RR2×R1I3.

Finally, left-multiplying with TTT 23 we get:

TTT 23vec(MMM2(2)

t ) = TTT 23ΦΦΦ2vec(MMM2(2)

t−1) + TTT 23vec(EEE2(2)

t )

vec(MMM2(3)

t ) = TTT 23ΦΦΦ2 TTT 32vec(MMM2(3)

t−1) + vec(EEE2(3)

t )

(IIIR1R2⊗ÛUU
(3)>

)vec(MMM2(3)

t ) = (IIIR1R2⊗ÛUU
(3)>

)TTT 23ΦΦΦ2 TTT 32vec(ÛUU
(3)
MMM3(3)

t−1)+(IIIR1R2⊗ÛUU
(3)>

)vec(EEE2(3)

t )

vec(ÛUU
(3)>

MMM2(3)

t ) = (IIIR1I3 ⊗ ÛUU
(3)>

)TTT 23ΦΦΦ2 TTT 32(IIIR1R2 ⊗ ÛUU
(3)
)vec(MMM3(3)

t−1) + vec(ÛUU
(3)>

EEE2(3)

t )

vec(MMM3(3)

t ) = ΦΦΦ3vec(MMM3(3)

t−1) + vec(EEE3(3)

t )

TTT 31vec(MMM3(3)

t ) = TTT 31ΦΦΦ3TTT 13vec(MMM3(1)

t−1) + TTT 31vec(EEE3(3)

t )

vec(MMM3(1)

t ) = AAAvec(MMM3(1)

t−1) + vec(EEE3(1)

t )

vec(ĜGG
(1)

t ) = AAAvec(ĜGG
(1)

t−1) + vec(EEE3(1)

t )

vec(Ĝt) = AAAvec(Ĝt−1) + vec(Et)

This process can be summarized as a left-multiplication of (3.15) with:

TTT 31(IIIR1R2 ⊗ ÛUU
(3)T

)TTT 23(IIIR1I3 ⊗ ÛUU
(2)T

)TTT 12(IIII2I3 ⊗ ÛUU
(1)T

) =
1∏

n=3

TTT n[(n+1)mod3](IIICn ⊗ ÛUU
(n)>

)

and writing vec(XXX
(1)
t−1) as:

vec(XXX
(1)
t−1) = (IIII2I3 ⊗ ÛUU

(1)
)TTT 21(IIIR1I3 ⊗ ÛUU

(2)
)TTT 32(IIIR1R2 ⊗ ÛUU

(3)
)TTT 13vec(ĜGG

(1)

t−1)

=
3∏

k=1

(IIICk
⊗ ÛUU

(k)
)TTT [(k+1)mod3]kvec(ĜGG

(1)

t−1)

where Cn =
n−1∏
i=1

Ri

N∏
j=n+1

Ij
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The above can be generalized to an N -th order tensor-valued time series and a p-th order
autoregressive process as a left-multiplication of (3.15) with:

F1F1F1 =
1∏

n=N

TTT n[(n+1)modN ](IIICn ⊗ ÛUU
(n)>

)

and expressing vec(XXX
(1)
t−i) as:

N∏
n=1

(IIICn ⊗ ÛUU
(n)

)TTT [(n+1)modN ]nvec(ĜGG
(1)

t−i) = F2F2F2vec(ĜGG
(1)

t−i)

where FFF 2 =
N∏

n=1

(IIICn ⊗ ÛUU
(n)

)TTT [(n+1)modN ]n.

We have:

vec(Xt) =

p∑
i=1

ΦΦΦivec(Xt−i) + vec(Et) ⇐⇒

vec(XXX
(1)
t ) =

p∑
i=1

ΦΦΦivec(XXX
(1)
t−i) + vec(EEE

(1)
t ) ⇐⇒

FFF 1vec(XXX
(1)
t ) = FFF 1

p∑
i=1

ΦΦΦiF2F2F2vec(ĜGG
(1)

t−i) +FFF 1vec(EEE
(1)
t ) ⇐⇒

vec(ĜGG
(1)

t ) =

p∑
i=1

FFF 1ΦΦΦiF2F2F2vec(ĜGG
(1)

t−i) + vec(E ′E ′E ′(1)
t ) ⇐⇒

vec(ĜGG
(1)

t ) =

p∑
i=1

AAAivec(ĜGG
(1)

t−i) + vec(E ′E ′E ′(1)
t ) ⇐⇒

vec(Ĝt) =

p∑
i=1

AAAivec(Ĝt−i) + vec(E ′
t) ⇐⇒

Ĝt = fold(

p∑
i=1

AAAivec(Ĝt−i)) + E ′
t ⇐⇒

Ĝt =

p∑
i=1

fold(AAAivec(Ĝt−i)) + E ′
t

Therefore, the optimization problem of (3.8) can be written as:

T∑
t=p+1

N∑
n=1

(
1

2
‖ĜGG

(n)

t −
p∑

i=1

fold(AAAi vec(Ĝt−i))
(n)‖2F +

1

2
‖ĜGG

(n)

t − ÛUU
(n)>

XXX
(n)
t ÛUU

(−n)>

‖2F

)
(3.16)

3.3.3 Updating the core tensors

To compute the partial derivative of (3.16) with respect to ĜGG
(n)

t we write both norms as

traces and follow the same procedure as in 3.2.1. The first norm is written equivalently as

‖ĜGG
(n)

t −
p∑

i=1

fold(AAAi vec(Ĝt−i))
(n)‖2F =

tr
(
(ĜGG

(n)

t −
p∑

i=1

fold(AAAi vec(Ĝt−i))
(n))>(ĜGG

(n)

t −
p∑

j=1

fold(AAAj vec(Ĝt−j))
(n))
)
=
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tr
(
(ĜGG

(n)>

t − (

p∑
i=1

fold(AAAi vec(Ĝt−i))
(n))>)(ĜGG

(n)

t −
p∑

j=1

fold(AAAj vec(Ĝt−j))
(n))
)
=

tr
(
ĜGG

(n)>

t ĜGG
(n)

t − ĜGG
(n)>

t

p∑
j=1

fold(AAAj vec(Ĝt−j))
(n) − (

p∑
i=1

fold(AAAi vec(Ĝt−i))
(n))>ĜGG

(n)

t

+ (

p∑
i=1

fold(AAAi vec(Ĝt−i))
(n))>(

p∑
j=1

fold(AAAj vec(Ĝt−j))
(n))
)
=

tr
(
ĜGG

(n)>

t ĜGG
(n)

t − ĜGG
(n)>

t

p∑
j=1

fold(AAAj vec(Ĝt−j))
(n) − (ĜGG

(n)>

t

p∑
i=1

fold(AAAi vec(Ĝt−i))
(n))> +BBB

)
(∗)
=

tr
(
ĜGG

(n)>

t ĜGG
(n)

t

)
− 2 tr

(
ĜGG

(n)>

t

p∑
j=1

fold(AAAj vec(Ĝt−j))
(n)
)
+ tr(BBB)

where BBB = (

p∑
i=1

fold(AAAi vec(Ĝt−i))
(n))>(

p∑
j=1

fold(AAAj vec(Ĝt−j))
(n))

Note that in the last step we used the following property of traces: tr(AAA) = tr(AAA>)

The partial derivatives of the traces above are:

•
∂

∂ĜGG
(n)

t

tr

(
ĜGG

(n)>

t ĜGG
(n)

t

)
= 2ĜGG

(n)

t

•
∂

∂ĜGG
(n)

t

tr

(
ĜGG

(n)>

t

p∑
j=1

fold(AAAj vec(Ĝt−j))
(n)

)
=

p∑
j=1

fold(AAAj vec(Ĝt−j))
(n)

•
∂

∂ĜGG
(n)

t

tr (BBB) =
∂

∂ĜGG
(n)

t

tr

(
(

p∑
i=1

fold(AAAi vec(Ĝt−i))
(n))>(

p∑
j=1

fold(AAAj vec(Ĝt−j))
(n))

)
= 0

The partial derivative of the first term with respect to ĜGG
(n)

t is:

∂

∂ĜGG
(n)

t

(
1

2
‖ĜGG

(n)

t −
p∑

i=1

fold(AAAi vec(Ĝt−i))
(n)‖2F

)
=

∂

∂ĜGG
(n)

t

(
1

2

(
tr
(
ĜGG

(n)>

t ĜGG
(n)

t

)
− 2 tr

(
ĜGG

(n)>

t

p∑
j=1

fold(AAAj vec(Ĝt−j))
(n)
)
+ tr(BBB)

))
=

∂

∂ĜGG
(n)

t

(1
2
tr
(
ĜGG

(n)>

t ĜGG
(n)

t

)
− tr

(
ĜGG

(n)>

t

p∑
j=1

fold(AAAj vec(Ĝt−j))
(n)
)
+

1

2
tr(BBB)

)
=

1

2

∂

∂ĜGG
(n)

t

tr
(
ĜGG

(n)>

t ĜGG
(n)

t

)
−

∂

∂ĜGG
(n)

t

tr
(
ĜGG

(n)>

t

p∑
j=1

fold(AAAj vec(Ĝt−j))
(n)
)
+

1

2

∂

∂ĜGG
(n)

t

tr (BBB) =

ĜGG
(n)

t −
p∑

j=1

fold(AAAj vec(Ĝt−j))
(n)
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Summarizing the above we have:

∂

∂ĜGG
(n)

t

(
1

2
‖ĜGG

(n)

t −
p∑

i=1

fold(AAAi vec(Ĝt−i))
(n)‖2F

)
= ĜGG

(n)

t −
p∑

j=1

fold(AAAj vec(Ĝt−j))
(n) (3.17)

The partial derivative of the second norm as calculated in (3.2.1) is:

∂

∂ĜGG
(n)

t

(
1

2
‖ĜGG

(n)

t − ÛUU
(n)>

XXX
(n)
t ÛUU

(−n)>

‖2F

)
= ĜGG

(n)

t − ÛUU
(n)>

XXX
(n)
t ÛUU

(−n)>

(3.18)

Using (3.17) & (3.18) we compute the partial derivative of (3.16) with respect to ĜGG
(n)

t . By

setting it to zero we get:

T∑
t=p+1

(
ĜGG

(n)

t −
p∑

j=1

fold(AAAj vec(Ĝt−j))
(n) + ĜGG

(n)

t − ÛUU
(n)>

XXX
(n)
t ÛUU

(−n)>
)

= 0 ⇐⇒

T∑
t=p+1

(
2ĜGG

(n)

t −
p∑

j=1

fold(AAAj vec(Ĝt−j))
(n) − ÛUU

(n)>

XXX
(n)
t ÛUU

(−n)>
)

= 0 ⇐⇒

ĜGG
(n)

t =
1

2

(
p∑

j=1

fold(AAAj vec(Ĝt−j))
(n) + ÛUU

(n)>

XXX
(n)
t ÛUU

(−n)>
)

(3.19)

3.3.4 Updating the factor matrices

(3.16) with respect to ÛUU
(n)

is:

argmin

{ÛUU
(n)

}

T∑
t=p+1

N∑
n=1

(
1

2
‖ĜGG

(n)

t − ÛUU
(n)>

XXX
(n)
t ÛUU

(−n)>

‖2F

)

subject to ÛUU
(n)>

ÛUU
(n)

= IIIRn for n = 1, 2, ..., N

which is minimized by (3.14) as shown in section 3.2.2

3.3.5 Estimating the Matrix Coefficients

A p-th order autoregressive process with n variables and T+1 observations can be written
in a matrix concise form asXXX = AAAZZZ +EEE

whereXXX = [xxxp,xxxp+1, ...,xxxT ] ∈ Rn×(T−p+1), AAA = [c,AAA1, ...,AAAp] ∈ Rn×(np+1),

ZZZ =


1 1 ... 1

xxxp−1 xxxp ... xxxT−1

xxxp−2 xxxp−1 ... xxxT−2
...

...
. . .

...

xxx0 xxx1 ... xxxT−p

 ∈ R(np+1)×(T−p+1) and EEE = [eeep, eeep+1...., eeeT ] ∈ Rn×(T−p+1)
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Using a Multivariate Least Squares approach we estimate AAA by minimizing the following:

‖EEE‖2F = ‖XXX −AZAZAZ‖2F
= tr

(
(XXX −AZAZAZ)>(XXX −AZAZAZ)

)
= tr

(
(XXX> − (AZAZAZ)>)(XXX −AZAZAZ)

)
= tr

(
XXX>XXX −XXX>AZAZAZ − (AZAZAZ)>XXX + (AZAZAZ)>AZAZAZ

)
= tr

(
XXX>XXX

)
− tr

(
XXX>AZAZAZ

)
− tr

(
(AZAZAZ)>XXX

)
+ tr

(
(AZAZAZ)>AZAZAZ

)
= tr

(
XXX>XXX

)
− tr

(
XXX>AZAZAZ

)
− tr

(
(XXX>AZAZAZ)>

)
+ tr

(
ZZZ>AAA>AZAZAZ

)
= tr

(
XXX>XXX

)
− 2tr

(
XXX>AZAZAZ

)
+ tr

(
AAA>AZAZAZZZZ>

)
Computing the partial derivative with respect to AAA we have:

•
∂

∂AAA
tr
(
XXX>XXX

)
= 0

•
∂

∂AAA
tr
(
XXX>AZAZAZ

)
= (XXX>)>ZZZ> =XXXZZZ>

•
∂

∂AAA
tr
(
AAA>AZAZAZZZZ>) = AAA(ZZZZZZ>)> +AAAZZZZZZ> = AAA(ZZZ>)>ZZZ> +AAAZZZZZZ> = 2AAAZZZZZZ>

Thus, we have:
∂

∂AAA
‖XXX −AZAZAZ‖2F = −2XXXZZZ> + 2AAAZZZZZZ>

By setting it to zero we get:

−2XXXZZZ> + 2AAAZZZZZZ> = 0

AAAZZZZZZ> =XXXZZZ> (3.20)

Provided that ZZZZZZ> is invertible (i.e the rows of ZZZ are linearly independent) we estimate AAA
by:

ÂAA =XXXZZZ>(ZZZZZZ>)−1 (3.21)

If ZZZZZZ> is not invertible the optimal solution of (3.20) in a least squares manner is given

by:

ÂAA =XXXZZZ>(ZZZZZZ>)† (3.22)

3.3.6 Forecasting

Finally, after the coefficient estimation process is finished, the next core tensor is fore-

casted as:

ĜT+1 =

p∑
i=1

fold(AAAivec(ĜT−i+1)) ∈ RR1×R2×...×RN

The forecast is concatenated with the rest of the core tensors along the temporal mode,

resulting in the tensor Ĝnew ∈ RR1×R2×...×RN×(T+1). After Ĝnew is obtained, it is transformed

back into the tensor X ∈ RI1×I2×...×IN×(T+1) using the estimated factor matrices ÛUU
(n)

∈
RIn×Rn, n = 1, 2, ..., N . Finally, the inverse process of MDT is applied on the Hankelized

tensor X to obtain the original time series Xstart ∈ RJ1×J2×...×JM×(Tstart+1).
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3.3.7 The Algorithm

The algorithm requires as input the time series Xstart ∈ RJ1×...×JM×Tstart , the AR order p,

the maximum number of iterations max_iter, the MDT order r and the tolerance for the

stop criterion tol. Finally, to incorporate non-stationary time series we conduct d-th order

differencing.

BHT_AR_MC

1. Apply MDT to get X̃ = Hr(Xstart) ∈ RI1×I2×...IN×T , where T = Tstart − r + 1

2. Conduct d-order differencing on X̃ and get X ∈ RI1×I2×...×IN×(T−d)

3. Set the Tucker Decomposition Ranks, Rn, n = 1, 2, ..., N

4. Set iter = 0 and initialize ÛUU
(n)
, n = 1, 2, ..., N randomly

5. While iter ≤ max_iter and convergence_value > tol

(a) Estimate Ĝt = Xt

N∏
n=1

×n ÛUU
(n)>

, for t = 1, 2, ..., T − d

(b) Estimate the matrix coefficients AAAi by (3.22) using vec(Ĝt), for t = 1, 2, ..., T − d

(c) For n = 1, 2, ..., N

i. By (3.19) update ĜGG
(n)

t =
1

2

(
p∑

i=1

fold(AAAi vec(Ĝt−i))
(n) ++ÛUU

(n)>

XXX
(n)
t ÛUU

(−n)>
)

for t = p+ 1, ..., T − d

ii. old_ÛUU
(n)

= ÛUU
(n)

iii. By (3.14) update ÛUU
(n)

= LLLRRR>

(d) iter ++

(e) convergence_value =

∑N
n=1‖ÛUU

(n)
− old_ÛUU

(n)
‖2F∑N

n=1‖ÛUU
(n)

‖2F

6. Estimate ĜT−d+1 =

p∑
i=1

fold(AAAivec(ĜT−d+1−i))

7. Compute XT−d+1 = ĜT−d+1

N∏
n=1

×n ÛUU
(n)

8. Conduct inverse differencing to obtain X̃ new ∈ RI1×I2×...×IN×(T+1)

9. Apply inverse MDT: H−1
r (X̃ new) = X new ∈ RJ1×J2×...×JM×(Tstart+1)

10. Return X new
T+1, the factor matrices ÛUU

(n)
and the matrix coefficients AAAi
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4. EXPERIMENTAL SETUP

In this section, we present and discuss the results of the experiments that were conducted

for the evaluation of the Block Hankel Tensor Autoregression algorithm (with scalar coef-

ficients) and its matrix coefficient generalization.

4.1 Datasets

In the evaluation process, a series of experiments are conducted on 1 synthetic and 7

publicly available datasets. Each dataset is further described in the following paragraphs.

Synthetic Data

As a starting point and in order to conduct experiments with some control over the data,

we generate a first order, vector-valued autoregressive process with matrix-valued coef-

ficients utilizing the following model:

xxxt = ccc+AAAxxxt−1 + eeet (4.1)

where xxxt,xxxt−1 ∈ R3 are two consecutive observations of the time series, ccc ∈ R3 is the

intercept, AAA ∈ R3×3 is the coefficient matrix and eeet ∈ R3 corresponds to white noise.

Figure 10: Sample of 500 observations for the generated time series

To generate a stable first-order Autoregressive process with matrix coefficients [11] we

set
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ccc =

73.2367.59
67.46

 and AAA =

 .46 −.36 .10
−.24 .49 −.13
−.12 −.48 .58


on (4.1) and generate eeet as a sample of white noise. Finally, to obtain a sample of N
observations, we generate 30%more and keep only the lastN observations. By doing so,

we discard the initialization part of the generated data, which will not be representative of

the time series.

United States Macroeconomic Dataset

The dataset contains 203 observations of a vector-valued time series with the following

12 variables.

- realgdp: Real gross domestic product

- realcons: Real personal consumption expenditures

- realinv: Real gross private domestic investment

- realgovt: Real federal consumption expenditures & gross investment

- realdpi: Real private disposable income

- cpi: End of the quarter consumer price index for all urban consumers

- m1: End of the quarter M1 nominal money stock (Seasonally adjusted)

- tbilrate: Quarterly monthly average of the monthly 3-month treasury bill

- unemp: Seasonally adjusted unemployment rate %

- pop: End of the quarter total population

- infl: Inflation rate

- realint: Real interest rate

Figure 11: The US Macroeconomic Dataset
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Figure 12: US Macroeconomic Individual Time Series

El Nino - Sea Surface Temperatures Dataset

The dataset contains 61 observations of a vector-valued time series with 12 variables.

Each variable corresponds to a month of the year. Thus, forecasting 1 step into the future

equals to forecasting the temperature of the sea surface for each month of the next year.

Figure 13: The El-Nino dataset
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Figure 14: El-Nino Individual Time Series

Stack Loss Dataset

The dataset contains 21 measurements from a plant’s oxidation of ammonia to nitric acid.

The observations form a vector-valued time series with the following 4 variables.

- stackloss: 10 times the percentage of ammonia going into the plant that escapes

from the absorption column

- airflow: Rate of operation of the plant

- watertemp: Cooling water temperature in the absorption tower

- acidconc: Acid concentration of circulating acid minus 50 times 10

Figure 15: The Stack Loss Dataset
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Figure 16: Stack Loss Individual Time Series

Ozone Dataset

The dataset contains 203 observations of a vector-valued time series with the following 8

variables.

- ozone reading: The Ozone level value that was observed

- wind speed: The speed in which wind travels

- humidity: The levels of humidity

- temperature Sandburg: The temperature that was observed in Sandburg, California

- temperature El Monte: The temperature that was observed in El Monte, California

- pressure gradient: The observed pressure gradient value

- inversion temperature: The observed inversion temperature value

- visibility: The observed visibility value

Figure 17: The Ozone Dataset
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Figure 18: Individual Time Series of the Ozone Dataset

Night Visitors Dataset

The dataset contains 56 observations of a vector-valued time series representing the num-

ber of overnight tourism visitors in various regions of Australia from 2006/07 to 2014/15.

It contains the following 8 variables.

- Sydney: The number of passengers that visited Sydney

- NSW: The number of passengers that visited the New South Wales state

- Melbourne: The number of passengers that visited Melbourne

- VIC: The number of passengers that visited the Victoria State

- BrisbaneGC: The number of passengers that visited Gold Coast south of Brisbane

- QLD: The number of passengers that visited the state of Queensland

- Capitals: The number of passengers that visited a capital city

- Other: The number of passengers that visited other cities

Figure 19: The Night Visitors dataset
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Figure 20: Individual Time Series of the Night Visitors Dataset

NASDAQ Dataset

The NASDAQ dataset contains data for 82 of the largest domestic and international non-

financial securities based on market capitalization listed on the stock market [7]. The

dataset contains 40560 observations for each entity. The following Figures visualize the

first 100 observations of the dataset.

Figure 21: The NASDAQ dataset - Part 1
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Figure 22: The NASDAQ dataset - Part 2

Figure 23: The NASDAQ dataset - Part 3
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Figure 24: The NASDAQ dataset - Part 4

Yahoo Dataset

The Yahoo dataset contains 2469 observations of the Yahoo daily stock providing informa-

tion over the following variables. The first 100 observations are presented in the Figures

below.

- VIX.Open: The opening value of the stock on the Volatile Index

- VIX.High: The highest value of the stock on the Volatile Index

- VIX.Low: The lowest value of the stock on the Volatile Index

- VIX.Close: The closing value of the stock on the Volatile Index

Figure 25: The Yahoo Stock dataset
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Figure 26: The Yahoo Stock Individual Time Series

Stationarity

For each dataset we ensure stationarity by utilizing the Augmented Dickey-Fuller test

on a significance level of 5% . Note that in the case of the Block Hankel Tensor Autore-

gression variations we are interested in the stationarity of the Hankelized form of the data.

The Augmented Dickey-Fuller test shows that there is not enough statistical evidence to

ensure stationarity for the 7 public datasets in their original forms. Thus, we conduct dif-

ferencing to obtain a stationary form of each time series. The differencing parameter d will
be included in the grid search that will be conducted for each algorithm.

4.2 Compared Algorithms

To provide an accurate evaluation, we compare Block Hankel Tensor Autoregression with

scalar and matrix coefficients with other important and widely used models like Vector

Autoregression with scalar and matrix coefficients and Facebook’s Prophet. Note that

the last three algorithms do not receive as input the Block Hankel Tensor form of the

data. For each algorithm, a grid search is conducted to determine the optimal set of

hyperparameters.

4.3 Experiments

In the following experiments, the algorithms are evaluated over several important factors.

Firstly, we focus on time series with very few observations and experiment with short and

long forecasting horizons. Additionally, we evaluate the algorithms over different volumes

of training data to determine the effectiveness on longer time series as well. Finally, a
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runtime comparison between the algorithms will be conducted since time efficiency is a

usual and important restriction in real world applications.

The evaluation procedure in the following experiments is conducted as follows. First,

each dataset is split in three time-consecutive sets for the purposes of training, validating

and testing each algorithm. The training and validation sets are utilized to estimate the

optimal set of hyperparameters and the autoregression coefficients. Finally, we measure

the forecasting error on the test set using the chosen set of hyperparameters and the

estimated coefficients.

The metric that will be used, to measure the forecasting error in the following experiments,

is the Normalized Root Mean Squared Error. While the RMSE is a reliable metric, it lacks

the ability to facilitate comparison betweenmodels of different scales. This is what NRMSE

achieves by applying a normalization technique. While there are various ways to normalize

RMSE, in the context of this thesis NRMSE is defined as:

NRMSE =
RMSE

X

where RMSE =

√√√√√√
‖X − X̂‖2F

N∏
n=1

In

and X =

I1∑
i1=1

I2∑
i2=1

...

IN∑
iN=1

|xi1i2...iN |

N∏
n=1

In

4.3.1 Parameter & Convergence Analysis

In this section, we study the sensitivity of Block Hankel Tensor Autoregression towards

the MDT order r and the Tucker Decomposition Ranks R1, R2. Furthermore, we study the

convergence of the algorithms in terms of the quantity:

N∑
n=1

‖UUU (n) − old_UUU (n)‖2F

N∑
n=1

‖UUU (n)‖2F

We start by conducting a grid search over the aforementioned parameters on the synthetic

dataset. More specifically, we generate 3 samples of 21, 25 and 30 observations. In each

case the first 20 observations are used as the training set and the remaining observations

serve as the validation set. The results of the grid search process are presented in the

tables 2, 3, 4, 5, 6 and 7. Each table contains the sets of parameters that resulted in the

lowest NRMSE value for each validation. The row in bold contains the set of parameters

that produces the lowest NRMSE on the validation set. As we can see in each valida-

tion, the obtained parameters and the NRMSE values vary. This shows a high-sensitivity

towards the training data and their volume since even an addition of 4 or 9 observations

affects the results to an extent. On the other hand, in each validation we can see that

the obtained NRMSEs are close-valued and thus there is no need to carefully tune the

hyper-parameter set.
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Table 2: Sample of Grid Search Results for BHT_AR_SC on 21 observations

Block Hankel Tensor AR - Scalar Coefficients

rrr R1R1R1 R2R2R2 NRMSE

8 3 4 0.013154

10 2 3 0.013682

7 3 3 0.013999

7 2 2 0.014009

9 3 4 0.014126

Table 3: Sample of Grid Search Results for BHT_AR_MC on 21 observations

Block Hankel Tensor AR - Matrix Coefficients

rrr R1R1R1 R2R2R2 NRMSE

8 2 4 0.003173

8 3 8 0.004098

7 2 7 0.005350

7 3 8 0.005651

Table 4: Sample of Grid Search Results for BHT_AR_SC on 25 observations

Block Hankel Tensor AR - Scalar Coefficients

rrr R1R1R1 R2R2R2 NRMSE

9 3 5 0.021681

9 3 8 0.022208

2 3 2 0.022208

9 3 9 0.022097

9 3 7 0.022343

Table 5: Sample of Grid Search Results for BHT_AR_MC on 25 observations

Block Hankel Tensor AR - Matrix Coefficients

rrr R1R1R1 R2R2R2 NRMSE

7 3 5 0.020156

2 3 2 0.020586

10 2 8 0.021617

10 2 10 0.021785

1 3 6 0.021898
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Table 6: Sample of Grid Search Results for BHT_AR_SC on 30 observations

Block Hankel Tensor AR - Scalar Coefficients

rrr R1R1R1 R2R2R2 NRMSE

3 2 3 0.020653

3 2 2 0.020884

10 3 2 0.022179

10 2 2 0.022158

10 3 3 0.022363

Table 7: Sample of Grid Search Results for BHT_AR_MC on 30 observations

Block Hankel Tensor AR - Matrix Coefficients

rrr R1R1R1 R2R2R2 NRMSE

5 2 5 0.019599

5 3 5 0.019987

9 2 8 0.020337

9 3 8 0.020675

8 2 7 0.020756

To analyse the convergence of the algorithms, we generate 9 samples. The first 5 samples

contain training sets of 20 observations and validation sets of 1, 3, 5, 7 and 9 observa-

tions respectively. The remaining 4 samples contain training sets of 150 observations and

validation sets of 1, 5, 10 and 15 observations respectively. As we can see in the Figures

below (27, 28, 29, 30, 31, 32, 33, 34, 35), both algorithms converge really fast. In only a

few iterations, the convergence quantity reaches and maintains a small value indicating

that the changes of the factor matrices UUU are very small for the remaining iterations. It

should be noted that in all cases the convergence value of the BHT_AR_MC stabilizes at

a value close to zero and as a result the changes of the factor matrices UUU are impercepti-

ble. Furthermore, we can see that in most of the cases, the NRMSE of the BHT_AR_MC

decreases smoothly and stabilizes near a very small value. On the other hand the NRMSE

of BHT_AR_SC shows a relatively less stable behaviour.
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Figure 27: Convergence & NRMSE Comparison on a 1-point Validation set

Figure 28: Convergence & NRMSE Comparison on a 3-point Validation set
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Figure 29: Convergence & NRMSE Comparison on a 5-point Validation set

Figure 30: Convergence & NRMSE Comparison on a 7-point Validation set
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Figure 31: Convergence & NRMSE Comparison on a 9-point Validation set

Figure 32: Convergence & NRMSE Comparison on an 1-point Validation set
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Figure 33: Convergence & NRMSE Comparison on a 5-point Validation set

Figure 34: Convergence & NRMSE Comparison on a 10-point Validation set
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Figure 35: Convergence & NRMSE Comparison on a 15-point Validation set

4.3.2 Experiments on Forecasting Horizon

In this section we evaluate the algorithms over their ability to maintain their performance

while the forecasting horizon increases. Following the same procedure as in the previ-

ous experiment we generate 10 samples of synthetic data. Each training set contains 20

observations while the validation and test sets have equal volumes varying from 1 to 10

observations. In addition, we generate 4 training samples with 150 observations and val-

idation/test sets of 1, 5, 10 and 15 observations. In each case, the algorithms are trained

using the respective training set. We select the set of hyperparameters that results in the

lowest NRMSE on the validation set while monitoring the convergence and total runtime

of the training process. Finally, we compute the NRMSE on the test set in order to obtain

an unbiased assessment of the performance of the algorithms. The results are shown in

the Figures (36, 37) and tables (8, 9) below. The results of autoregression with scalar

coefficients are truncated in the Figures.

D. Aronis 66



Tensor Methods in Time Series Analysis

Figure 36: NRMSE vs forecasting horizon on a 20-point training set

Figure 37: NRMSE vs forecasting horizon on a 150-point training set
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Table 8: Experimental Forecasting Results on Synthetic Data

Short Time Series Forecasting NRMSE

Partitioning AR_SC AR_MC Prophet BHT_AR_SC BHT_AR_MC

20 - 1 - 1 0.1304 0.0154 0.0182 0.0195 0.0085

20 - 2 - 2 0.1342 0.0348 0.0350 0.0346 0.0268

20 - 3 - 3 0.1393 0.0502 0.0209 0.0472 0.0298

20 - 4 - 4 0.1379 0.0469 0.0226 0.0263 0.0193

20 - 5 - 5 0.1397 0.0534 0.0221 0.0451 0.0276

20 - 6 - 6 0.1480 0.0690 0.0252 0.0245 0.0223

20 - 7 - 7 0.1284 0.0286 0.0283 0.0477 0.0203

20 - 8 - 8 0.1281 0.0239 0.0211 0.0219 0.0198

20 - 9 - 9 0.1478 0.0745 0.0307 0.0208 0.0204

20 - 10 - 10 0.1498 0.0887 0.0464 0.0230 0.0201

Long Time Series Forecasting NRMSE

150 - 1 - 1 0.4390 0.0124 0.0142 0.0159 0.0092

150 - 5 - 5 0.4348 0.0128 0.0123 0.0171 0.0105

150 - 10 - 10 0.5346 0.0210 0.0226 0.0217 0.0182

150 - 15 - 15 0.4370 0.0186 0.0205 0.0199 0.0205

Table 9: Synthetic Data - Training Runtime in seconds

Training Runtime

Partitioning AR_SC AR_MC Prophet BHT_AR_SC BHT_AR_MC

20 - 1 - 1 0.0006 0.0007 6.0825 0.1110 0.0581

20 - 2 - 2 0.0003 0.0003 6.2098 0.0559 0.0766

20 - 3 - 3 0.0004 0.0004 6.3582 0.0387 0.0659

20 - 4 - 4 0.0007 0.0002 6.2495 0.0430 0.0732

20 - 5 - 5 0.0006 0.0002 7.0670 0.0686 0.1354

20 - 6 - 6 0.0008 0.0001 6.6102 0.0610 0.0803

20 - 7 - 7 0.0007 0.00007 6.3104 0.0406 0.0665

20 - 8 - 8 0.0009 0.0002 6.5736 0.0430 0.0667

20 - 9 - 9 0.0006 0.0003 6.7177 0.0702 0.0740

20 - 10 - 10 0.0007 0.0004 7.3967 0.1087 0.2341

150 - 1 - 1 0.0042 0.0002 6.4954 0.7224 0.8137

150 - 5 - 5 0.0042 0.0003 6.4101 0.3994 0.3810

150 - 10 - 10 0.0040 0.0002 7.7392 0.3333 0.4016

150 - 15 - 15 0.0042 0.0002 6.5440 0.4171 0.3469

As we can see, in most cases, Block Hankel Tensor Autoregression with matrix coeffi-

cients outperforms the rest of the algorithms. Furthermore, in the short time series frame-

work it manages to maintain a stable performance regardless the forecasting horizon.

Finally, while the training time for the Block Hankel Tensor Autoregression algorithms is

higher compared with the traditional autoregression algorithms, it is lower than the training

runtime of Prophet. Thus, the proposed algorithms manage to achieve great results while

maintaining low runtime levels which makes them an efficient and competitive choice in

the context of short time series forecasting.
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4.3.3 Short-term Forecasting Experiments

In this section we focus on a short forecasting horizon of 1 observation and study the

performance of the algorithms on short time series. In addition, we study the effects of

data reduction during the training process. For this purpose we use the Stack Loss, US

macroeconomic, El-Nino, Ozone and Night Visitors datasets. We start by training and

evaluating each algorithm on the datasets using every observation. For each dataset with

size N we use N − 2 observations as the training set and the last 2 observations are

the validation and test sets. Since the Stack Loss dataset contains 21 observations it is

excluded from the rest of the experiment. For the remaining 4 datasets each algorithm is

re-evaluated on 75%, 50% and 25% of the original volume of each dataset. The results

are grouped by dataset and summarized in the following tables (10, 11, 12, 13 and 14)

and Figures (38, 39, 40 and 41)

Table 10: Experimental Short Forecasting Results - Stack Loss Dataset

Stack Loss - Short Forecasting NRMSE

AR_SC AR_MC Prophet BHT_AR_SC BHT_AR_MC

0.1585 0.1515 0.2110 0.1237 0.0867

Table 11: Experimental Short Forecasting Results - US Macroeconomic Dataset

US Macroeconomic - Short Forecasting NRMSE

Dataset Size AR_SC AR_MC Prophet BHT_AR_SC BHT_AR_MC

100% 0.0150 0.0066 0.0179 0.0078 0.0057

75% 0.0056 0.0045 0.0095 0.0046 0.0025

50% 0.0087 0.0085 0.0086 0.0052 0.0032

25% 0.0053 0.0079 0.0070 0.0080 0.0037

Figure 38: NRMSE vs Training Volume on the US Macroeconomic Dataset

D. Aronis 69



Tensor Methods in Time Series Analysis

Table 12: Experimental Short Forecasting Results - El-Nino Dataset

El-Nino - Short Forecasting NRMSE

Dataset Size AR_SC AR_MC Prophet BHT_AR_SC BHT_AR_MC

100% 0.0259 0.0334 0.0218 0.0160 0.0164

75% 0.0236 0.0326 0.1515 0.0245 0.0103

50% 0.0196 0.0332 0.0454 0.0104 0.0093

25% 0.0198 0.0392 0.0131 0.0114 0.0107

Figure 39: NRMSE vs Training Volume on the El-Nino Dataset

Table 13: Experimental Short Forecasting Results - Ozone Dataset

Ozone - Short Forecasting NRMSE

Dataset Size AR_SC AR_MC Prophet BHT_AR_SC BHT_AR_MC

100% 0.6900 0.2908 0.3077 0.3052 0.1707

75% 0.0734 0.1062 0.4138 0.0587 0.0416

50% 0.2089 0.2354 0.2734 0.1038 0.1127

25% 0.4789 0.4007 0.3045 0.2941 0.1947
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Figure 40: NRMSE vs Training Volume on the Ozone Dataset

Table 14: Experimental Short Forecasting Results - Night Visitors Dataset

Night Visitors - Short Forecasting NRMSE

Dataset Size AR_SC AR_MC Prophet BHT_AR_SC BHT_AR_MC

100% 0.0680 0.1310 0.1865 0.0453 0.0826

75% 0.0880 0.0813 0.2802 0.0950 0.0705

50% 0.0830 0.0720 0.2028 0.1074 0.0546

25% 0.2657 0.4195 0.2226 0.1192 0.0718

Figure 41: NRMSE vs Training Volume on the Night Visitors Dataset

As we can see in the Figures, both BHT_AR_SC and BHT_AR_MC show stability with

regards to NRMSE as the volume of training data is reduced. BHT_AR_MC manages to

maintain a more stable performance, with smaller increases in forecasting error as the
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volume of the training set is reduced. Furthermore, it achieves the lowest NRMSE value

in most of the experiments.

4.3.4 Long-term Forecasting experiments

Finally, we evaluate BHT_AR_SC and BHT_AR_MC over relatively longer forecasting

horizons. We experiment on Yahoo Stocks and NASDAQ datasets by taking a sample of

50 observations as training set and 4 validation/test sets with varying volumes of 1, 5, 10

and 15 observations. Following the same procedure as in the previous experiments, we

estimate the optimal set of hyperparameters on the validation sets and then measure the

forecasting error on the test sets.

As we can see in table 15 and Figure 42 as the forecasting horizon increases all algorithms’

forecasts result in higher NRMSEs on the Yahoo Stock dataset. Both BHT_AR_SC and

BHT_AR_MC perform relatively well. BHT_AR_SC shows a more stable behaviour as the

forecasting horizon increases. On the other hand, on the NASDAQ dataset (table 16 and

Figure 43) BHT_AR_MC performs the best overall with low NRMSE values and a stable

behaviour as the forecasting horizon increases.

Table 15: Experimental Forecasting Results - Yahoo Stock Dataset

Yahoo Stocks - Forecasting NRMSE

Forecasting

Horizon
AR_SC AR_MC Prophet BHT_AR_SC BHT_AR_MC

1 0.0510 0.0314 0.0432 0.0551 0.0276

5 0.1223 0.1244 0.0986 0.1286 0.0878

10 0.1383 0.1470 0.1254 0.1320 0.1530

15 0.1626 0.1818 0.1345 0.1294 0.1415

Figure 42: NRMSE vs Forecasting Horizon on the Yahoo Stocks Dataset
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Table 16: Experimental Forecasting Results - NASDAQ Dataset

NASDAQ - Forecasting NRMSE

Forecasting

Horizon
AR_SC AR_MC Prophet BHT_AR_SC BHT_AR_MC

1 0.2046 0.2191 0.1998 0.2141 0.1938

5 0.2205 0.2373 0.2014 0.2143 0.2046

10 2.3643 1.6568 0.2112 0.2321 0.2022

15 3.8674 2.1464 0.2353 0.2237 0.2031

Figure 43: NRMSE vs Forecasting Horizon on the NASDAQ Dataset
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5. RELATED WORK

In this chapter we provide a brief review of two additional works in order to provide a wider

overview of the vast research field that is tensor time series analysis. We chose two works

that pose a lot of interest and are conceptually similar with the rest of this thesis and thus

they can be easily grasped by the reader.

Li et al [12] worked on tensor-based prediction with applications on manufacturing and

transportation systems, where the spatiotemporal correlations between the data are strong.

They focused on short and long term prediction of passenger flow for an Urban Rapid Tran-

sit system. For the short-term prediction task they proposed a tensor completion method

based on tensor clustering while for the long-term prediction task they proposed a method

that combines tensor decomposition and the solution of a 2-dimensional Autoregressive

Moving Average model. The spatial dependencies between stations are studied over two

aspects. The first aspect is the geographical position of each station since a station’s

passenger flow is usually affected by its neighbours. The second aspect corresponds to

the contextual similarities (e.g school, industrial area etc). The temporal correlations are

studied over two scales, weekly and daily. On the weekly scale an observation is corre-

lated with observations of the same day on previous weeks while on the daily scale it is

correlated with observations of the previous days.

The two approaches will be outlined in the following paragraphs. The data are represented

as a tensor X ∈ RL×T×P where L corresponds to the location of 120 stations, T is the

temporal mode which corresponds to 59 days and P corresponds to 247 observations

recorded over a day with a 5-minute sampling period. Thus, a forecasting horizon of t
days would result in the tensor X ∈ RL×(T+t)×P .

2-step Tensor Long-Term Prediction

This method combines CP Decomposition with the solution of a 2D-ARMA model. The

first step is to decompose X ∈ RL×T×P as a summation of R rank-one tensors:

X ≈
R∑

r=1

λruuu
(1)
r ◦ uuu(2)

r ◦ uuu(3)
r

where uuu
(k)
r ∈ RIk is a unit vector. Additionally, UUU (k) ∈ RIk×R is defined as the matrix

obtained by stacking the R column-vectors that correspond to the k-th dimension. For

simplicity we will refer to them as UUUL,UUUT and UUUP . At this point we utilize the 2D-ARMA

model to forecast t observations. The 2D-ARMA process is applied on UUUT ∈ RT×R as

follows:

For each uuur ∈ RT , r = 1, 2, ..., R, corresponding to the r-th column of UUUT for r = 1, 2, ..., R,
do the following:

• Reshape uuur as a 2D matrix VVV r, where each row represents a day of the week and each

column the seven days of the week. Note that VVV r ∈ RD×W with DW ≥ R

• Apply 2D-ARMA iteratively to forecast t values into the future. In each iteration VVV r is

updated to include the new predicted value.

• When every VVV r has been updated to include the t predicted values, they are vectorized
into uuu

′
r ∈ RT+t. These column-vectors are stacked to generate UUUT+t ∈ R(T+t)×R

• Finally, use UUUL,UUUT+t and UUUP to reconstruct the tensor X ∈ RL×(T+t)×P
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2D-ARMA: Each VVV r can be seen as a random field v[d, w]. The 2D-ARMA model uses

the values located inside a rectangle positioned such as to contain the to-be forecasted

value at the lower right corner. More formally, a 2D-ARMA(p1, p2, q1, q2) model uses the

elements of the random field whose indices satisfy 0 ≤ d ≤ D − 1 and 0 ≤ w ≤ W − 1. It
is described by the following equation:

p1∑
i=0

p2∑
j=0

aijv[d− i, w − j] =

q1∑
i=0

q2∑
j=0

bije[d− i, w − j]

where a00 = 1, e[d, w] is a stationary white noise random field, aij, bij the coefficients of

the model, p1, p2 are the time lags for the random field v and q1, q2 are the time lags for the

random field e. The coefficient estimation process can be found in the work of Bouaynaya

et al [13].

Another challenge that was addressed in the long-term prediction setting, was the effi-

cient updating of the prediction as new data arrived throughout the day. Suppose that

the predictions for the following day have already been made, resulting in a tensor X ∈
RL×(T+1)×P . The procedure of updating efficiently the forecast is the following:

• Apply CP Decomposition to X and obtain UUUL,UUUT and UUUP . The updates take place on

dimension L.

• Update tensor X with the new data and keep the rest of the predicted values. Use the

following formula to update UUUL.

U ′U ′U ′
L =XXX(0)(UUUT �UUUP )(UUU

T
TUUUT ∗UUUT

PUUUP )
†

WhereXXX(0) is the unfolding of tensor X over dimension L, � is the Khatri-Rao product, ∗
is the Hadamard product and † denotes the Moore-Penrose inverse of a matrix.

• Finally, reconstruct X using U ′U ′U ′
L, UUUT and UUUP .

1-step Tensor Short-Term Prediction

For the short-term prediction task they proposed a method based on Tensor Completion.

Tensor Completion was originally used as a way to estimate and fill a tensor’s missing

data. This problem is formulated as the minimization of the quantity ‖XΩ − YΩ‖ + α‖Y‖∗
over Y, where X is the incomplete tensor and Y is the completed output. To ensure low-

rank nuclear norm is used (‖.‖∗). Finally Ω is a mask that ”hides” the missing elements of

tensor X . This is achieved by enabling only the indices of X that contained an element.

They treated the sequence of data as observed values and the horizon to be predicted as

missing. They utilized the Bayesian Low-Rank Tensor Completion framework, originally

proposed by Zhao et al [14]. Utilizing the factor matrices UUU , the log-joint distribution and

the posterior distribution this framework estimates the missing values by: P (YΩC |YΩ) =∫
P (YΩC |Θ)P (Θ|YΩ). However, this method is suited for low-rank tensors. This prereq-

uisite is assumed to be violated in the case of a URT since there is an observed diversity

in the data over different stations. To overcome this obstacle they used tensor cluster-

ing [15] [16] to group similar elements of UUUL in clusters and then apply Bayesian LRTC in

each cluster separately.

The whole process can be summarized by the following steps:

• Apply CP decomposition to obtain UUUL.

• Conduct Principal Components Analysis to reduce the dimension R.
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• Cluster the data by using k-means, Hierarchical clustering or other clustering algorithms.

• Since each row of UUUT is assigned to a cluster, the Bayesian LRTC can be conducted

by modifying mask Ω to include only the elements that are grouped together in the same

cluster.

Sedighin et al [17] addressed the problem of time series reconstruction in a multi-way

delay embedded space through Tensor Train decomposition. In many problems data

may be incomplete or corrupted by outliers or noise. Completion is the problem where

an algorithm has to estimate these values using only the available or uncorrupted values.

Hankelization has been utilized in various settings, since it is expected to result in a higher

order tensor with relatively low rank. In this thesis, we have already seen Hankelization

based on individual elements. However, an alternative Hankelization procedure was uti-

lized in this paper that uses blocks of elements. This Hankelization variation allows us to

exploit local correlations between neighbouring sub-windows of time series in addition to

the local correlations of elements. For the tensor completion task, Tensor Train Decompo-

sition was utilized since it usually provides better representations for higher order tensors

compared to Tucker or CP Decomposition. Furthermore, Tensor Train decomposition is

more stable and does not suffer from the curse of dimensionality. In Tensor Train a tensor

X ∈ RI1×I2×...×Ik is decomposed as a set of N interconnected third order core tensors

G(n) ∈ RRn×In×Rn+1 where R1 = RN+1 = 1.

The Hankelization Technique

As mentioned, the Hankelization technique used in this work transforms the data into a

block Hankel tensor using blocks of elements. Suppose that we are given a scalar time

series. If the temporal mode is taken into account the dataset takes the form of a vector

vvv. The steps that lead to that tensorization are summarized below:

• Transform vvv into a Hankel matrix VVV .

• Multiply VVV by two block duplication matrices. Each duplication matrix is similar with the

one described in 3.1. It contains smaller identity matrices of size PTk × PTk, where Tk is

the window size and P is the block size. Another difference with the procedure described

in 3.1 is that two consecutive identity matrices are shifted by P columns in the duplication

matrix SSS. The Block Hankel matrix VVV H ∈ RPT1(I1/P−T1+1)×PT2(I2/p−T2+1) is calculated as:

VVV H = SSS1VVVSSS
T
2 where SSSk ∈ RPTk(Ik/P−Tk+1)×Ik . Note that when Ik/P is not an integer, then

zero-padding is applied on VVV so that Ik/P becomes an integer.

• Fold VVV H to obtain the 6-th order tensor VH ∈ RP×P×T1×(I1/P−T1+1)×T2×(I2/P−T2+1).

The Algorithm

The objective is to complete tensor VH using Tensor Train decomposition. This is formu-

lated as the minimization of J(θ) = ‖Ω∗ (VH −V̂H(θ))‖2F where Ω is a tensor-mask that has

1 in the positions where a value is observed in VH and 0 otherwise. V̂H(θ) is the estima-

tion of the tensor through the core tensors θ = (G(1),G(2), ...,G(N)). Using a Majorization

Minimaization approach, the objective is reformulated as the minimization of the auxiliary

function J(θ|θk) = ‖Ω ∗ (VH − V̂H(θ))‖2F + ‖(111 − Ω) ∗ (V̂H(θ
k) − V̂H(θ))‖2F where 111 is a

6-th order tensor whose elements are all equal to 1. Since the two masked tensors inside

these two Frobenius norms do not have elements in overlapping positions, the function

can be rewritten as:

J(θ|θk) = ‖Ω ∗ (VH − V̂H(θ))‖2F + ‖(111− Ω) ∗ (V̂H(θ
k)− V̂H(θ))‖2F ⇒

J(θ|θk) = ‖Ω ∗ (VH − V̂H(θ)) + (111− Ω) ∗ (V̂H(θ
k)− V̂H(θ))‖2F ⇒
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J(θ|θk) = ‖Ω ∗ (VH − V̂H(θ)) + 111 ∗ (V̂H(θ
k)− V̂H(θ))− Ω ∗ (V̂H(θ

k)− V̂H(θ))‖2F ⇒

J(θ|θk) = ‖Ω ∗ (VH − V̂H(θ)− V̂H(θ
k) + V̂H(θ)) + 111 ∗ (V̂H(θ

k)− V̂H(θ))‖2F ⇒

J(θ|θk) = ‖Ω ∗ VH − Ω ∗ V̂H(θ
k)) + 111 ∗ V̂H(θ

k)− 111 ∗ V̂H(θ)‖2F ⇒

J(θ|θk) = ‖Ω ∗ VH + (111− Ω) ∗ V̂H(θ
k))− V̂H(θ)‖2F

The above cost function is minimized using an Alternating Least Squares approach. Ini-

tially the core tensors are initialized randomly. In each iteration a new estimation of the

core tensors is produced which then serves as their initialization on the next iteration. For

the core tensors a rank incremental strategy is followed in which the elements of the cores

whose rank will be increased take new random values.

It is important to determine the ranks of the core tensors G(n). The rank incremental strat-

egy that was proposed began with low ranks on the core tensors and gradually increased

the rank of the core tensor that produced the largest approximation error.

The matricization of the estimated tensor V̂̂V̂V H(θ) := V̂̂V̂V H over the n-th mode can be written

as V̂H(n) = GGG
(n)
(2)

(
GGG>n

(1) ⊗GGG<n
(n)

)
[18] where:

• GGG>n
(1) ∈ RRn+1×In+1...IN is the 1-st mode unfolding of the tensor

GGG>n =� GGG(n+1),GGG(n+2), ...,GGG(N) �∈ RRn+1×In+1×...×IN

• GGG<n
(n) ∈ RRn×I1...In−1 is the n-th mode unfolding of the tensor

GGG<n =� GGG(1),GGG(2), ...,GGG(n−1) �∈ RI1×...×In−1×Rn

• GGG
(n)
(2) ∈ RIn×RnRn+1 is the 2-nd mode unfolding of the tensor

GGG(n) ∈ RRn×In×Rn+1

• GGG>N = GGG<1 = 1

The approximation error of the n-th core can be estimated by the following formula.

e(n) = ‖GGG(n)
(2)

†
(ΩΩΩ(n) ∗ (VVV H(n) − V̂̂V̂V H(n)))‖2F

In each iteration we estimate the approximation error for each core tensor and update

the one with the highest approximation error. The ranks are updated using the following

formula.

Rnew
n = min(Rn + step,Rn−1In−1, InRn+1)

Note that when a tensor G(n) ∈ RRn×In×Rn+1 is chosen to be updated, the updates take

place on both ranks Rn and Rn+1. In addition, its neighbouring core tensors G(n−1) ∈
RRn−1×In−1×Rn and G(n+1) ∈ RRn+1×In+1×Rn+2 ranks Rn and Rn+1 should be updated as

well. Furthermore, this update mechanism can be used simultaneously on various non-

consecutive core tensors, whose approximation errors are the highest.

After the completion of the tensor is finished, a de-Hankelization techniquemust be applied

to transform the data back into their original framework. In this work, the tensor is de-

Hankelized using an averaging step on the blocks that correspond to a specific block in the

original tensor. This process results in a Hankel matrix which is then used to reconstruct

the time series.
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6. CONCLUSION & FUTURE WORK

We conclude this thesis by providing a summary of this work, presenting our results and

highlighting various paths that we would like to explore in the future in order to improve it.

We focus on the Block Hankel Tensor Autoregression algorithm which is essentially a

combination of 3 major parts. The first part of the algorithm is Hankelization, a tensoriza-

tion method that maps the data as a tensor of a symmetric structure that constitutes the

generalization of the Hankel matrix. In our case, Hankelization is applied on the temporal

mode. Various works have studied Hankelization and it has been shown experimentally,

that for data with an underlying hidden low-rank structure, their produced Hankel tensor

can be represented by low-rank or a smooth manifold in the embedded space. The sec-

ond vital part of the algorithm is low-rank Tucker Decomposition, a process in which a

tensor is decomposed as a core tensor with lower dimensions that captures the intrinsic

correlations of the data and a set of jointly used factor matrices. We apply Tucker De-

composition on every mode but the temporal and use the obtained core tensors to train

an autoregressive forecasting model which constitutes the third part of the algorithm. Fi-

nally, in an effort to provide the first step towards the generalization of the algorithm we

substitute the scalar coefficients of the forecasting model with matrices.

To evaluate the performance of Block Hankel Tensor Autoregression and its generaliza-

tion, we conducted experiments on 1 synthetically generated and 7 publicly available

datasets. To provide a reliable evaluation, they were compared with other widely-used

models like autoregression with scalar and matrix coefficients and Facebook’s Prophet.

The chosen metric that measured the performance of each algorithm was the NRMSE.

We conducted an analysis on the convergence of the algorithms and their sensitivity to-

wards the user defined hyperparameters. Additionally, we experimented on short time

series. The algorithms were evaluated with regards to their time efficiency and forecast-

ing error on various cases of short and long term forecasting. Furthermore, we conducted

an experiment where we measured the NRMSE while training each algorithm on subsets

of different volumes. This experiment’s goal is to evaluate and provide a better under-

standing about the effects of training each algorithm on fewer observations.

Our findings suggest that both BHT_AR_SC & BHT_AR_MC converge really fast, under

only a few iterations. They show high sensitivity towards the parameters’ choice even in

evaluations with slightly different data. At the same time they show small need for careful

parameter picking, as different sets of parameters provide similar results within the same

evaluation. In the short time series setting they show great forecasting results. However

the matrix coefficient variation shows a more stable behaviour both for short and long term

forecasting. Furthermore, the performance of BHT_AR_MC does not seem to be affected

when the training set volume is greatly reduced which indicates a great performance even

on very short time series. Additionally, when dealing with longer forecasting horizons both

variations perform well but they do not show the previously described stability. However,

this is something that was expected since they were designed for time series with very few

observations and shorter forecasting horizons. Finally, both BHT_AR_SC & BHT_AR_MC

are time efficient which means that they can be applied in various real world applications.

While we would like to conduct more experiments and test various different ideas we are

limited by the constraint of time. In the following paragraphs we mention some of these

ideas and encourage the readers to implement and evaluate, in addition to their own ideas,

those that seem more interesting in order to contribute in the advancement of the tensor

time series analysis research field.
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As mentioned Block Hankel Tensor Autoregression is constructed using 3 key parts. As

a first step towards experimentation we could try different choices and combinations for

these parts. For example, we can try to substitute the existing Hankelization method. As

mentioned in the related works section, Sedighin et al [17] utilized a variation of Hanke-

lization which could prove to be useful in our setting. Furthermore, in our work we utilized

Hankelization on the temporal mode only. In future works we would like to experiment

by applying Hankelization on other modes as well. However, applying Hankelization on

every mode could result in tensors of very high orders which could affect the performance

of the algorithm. Therefore, we should proceed by monitoring the trade-off between the

benefits of Hankelization and the performance of the algorithm.

Another path that should be explored is that of the forecasting model. In this thesis we

substitute the scalar coefficients with matrices. The first path that we would like to explore

in the future is the effect of Hankelization on the model. It is possible that Hankelization

affects the coefficient matrices, forcing a specific structure on them. Therefore, it is impor-

tant to explore this possibility and adjust the algorithm accordingly. In addition, we would

like to extend the algorithm by substituting the current forecasting process with a VARIMA

model. Recently Chen et al [19] proposed a bilinear model for matrix valued time series

which could be utilized in our setting as well.

Apparently, the path that seems to show the least potential for improvement, is that of the

decomposition process. While there are various tensor decomposition methods, it is not

straightforward how they could be utilized in our setting. In a variation of the algorithm we

could utilize Tensor Train Decomposition to obtain a set of interconnected core tensors.

Using these core tensors we can train in parallel different forecasting processes, one for

each tensor respectively. Finally, the forecasted core tensors would be used in the inverse

process to reconstruct the predicted tensor in the original space. Note that tensor train

decomposition can be combined harmonically with the matrix coefficient autoregression

model since these core tensors would have smaller sizes compared to the core tensor

obtained by Tucker Decomposition.

Finally, an important step towards establishing these algorithms as an industrial standard,

is their ability to update the forecasting process in real time which is not a straightforward

task but it is surely a path that is worth experimenting on.
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ABBREVIATIONS - ACRONYMS

SVD Singular Value Decomposition

PCA Principal Component Analysis

CPD Canonical Polyadic Decomposition

MDT Multi-way Delay Transform

AR Autoregression

VAR Vector Autoregression

BHT Block Hankel Tensor

BHT_AR_SC Block Hankel Tensor Autoregression with Scalar Coefficients

BHT_AR_MC Block Hankel Tensor Autoregression with Matrix Coefficients
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