
NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

SCHOOL OF SCIENCES
DEPARTMENT OF INFORMATICS AND TELECOMMUNICATIONS

BSc THESIS

Adjustable Publisher/Subscriber system with Machine
Learning

Ioannis G. Kalopisis

SUPERVISOR: Alexandros Ntoulas, Assistant Professor NKUA

ATHENS

October 2020

ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

Αυτορυθμιζόμενο σύστημα Eκδότη/Συνδρομητή με
Μηχανική Μάθηση

Ιωάννης Γ. Καλοπίσης

ΕΠΙΒΛΕΠΩΝ: Αλέξανδρος Ντούλας, Επίκουρος Καθηγητής ΕΚΠΑ

ΑΘΗΝΑ

Οκτώβριος 2020

BSc THESIS

Adjustable Publisher/Subscriber system with Machine Learning

Ioannis G. Kalopisis
SN: 1115201500059

SUPERVISOR: Alexandros Ntoulas, Assistant Professor NKUA

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

Αυτορυθμιζόμενο σύστημα Eκδότη/Συνδρομητή με Μηχανική Μάθηση

Ιωάννης Γ. Καλοπίσης
AM: 1115201500059

ΕΠΙΒΛΕΠΩΝ: Αλέξανδρος Ντούλας, Επίκουρος Καθηγητής ΕΚΠΑ

ABSTRACT

The rapid development of the Internet of Things-IoT leads to the development of many
distributed systems and smart applications. These applications generate and demand
huge amounts of data every day. It is therefore easily understood that a system is needed
to transfer this data. In order not to limit the development of large-scale applications, this
system should both be independent and have a decentralized character. This transfer
is undertaken by Publisher/Subscriber type messaging systems, such as Apache Kafka.
This system functions as the intermediate link between a producer and a consumer for
the transmission of messages.

These systems can be hosted on server clusters scattered around the world, depending on
the size of the application they serve and the size of the data stream. We can understand
that these are huge systems that adapt to the needs of the user. Therefore, the system
parameters must be adjusted each time according to their application, use, type and data
flow. However, apart from the tedious and time consuming process, the result does not
always lead to optimal system performance.

In this project we present an attempt to automate the process of automatically optimizing
system performance for pub/sub systems using ML. By using algorithms and Machine
Learning techniques such as regression and classification, we try to predict the parameters
of the Kafka Publisher/Subscriber system, aiming at specific system requirements.

You can find the code for this thesis, as well as the data, images, and results at the fol-
lowing link: https://github.com/GiannisKalopisis/Adjustable-pub-sub-system.

SUBJECT AREA: Machine Learning and Publisher/Subscriber systems optimization

KEYWORDS: Machine Learning, Kafka, Publisher/Subscriber, Regression, Classification

https://github.com/GiannisKalopisis/Adjustable-pub-sub-system

ΠΕΡΙΛΗΨΗ

Η ταχεία ανάπτυξη του Internet of Things-IoT οδήγεί στην ανάπτυξη πολλών κατανεμημέ-
νων συστημάτων και έξυπνων εφαρμογών. Οι εφαρμογές αυτές παράγουν αλλά και ζητάνε
τεράστιες ποσότητες δεδομένων καθημερινά. Γίνεται λοιπόν εύκολα αντιληπτό ότι χρειάζε-
ται ένα σύστημα για τη μεταφορά αυτών των δεδομένων. Για να μην περιορίζεται η ανάπτυ-
ξη των εφαρμογών μεγάλης κλίμακας, θα πρέπει το σύστημα αυτό να είναι ανεξάρτητο και
να έχει έναν αποκεντρωμένο χαρακτήρα. Τη μεταφορά αυτή αναλαμβάνουν συστήματα
μετάδοσης μηνυμάτων τύπου Eκδότη/Συνδρομητή, όπως το Kafka της Apache. Το σύστη-
μα αυτό αποτελεί τον ενδιάμεσο κρίκο, μεταξύ ενός παραγωγού και ενός καταναλωτή για
τη μετάδοση μηνυμάτων.

Τα συστήματα αυτά μπορούν να φιλοξενούνται σε συμπλέγματα διακομιστών, διασκορπισ-
μένα σε όλο τον κόσμο, ανάλογα με το μέγεθος της εφαρμογής που εξυπηρετούν αλλά και
το μέγεθος της ροής δεδομένων. Μπορούμε να καταλάβουμε ότι πρόκειται για τεράστια
συστήματα που προσαρμόζονται ανάλογα με τις ανάγκες του χρήστη. Έτσι λοιπόν θα
πρέπει κάθε φορά να ρυθμίζονται οι παράμετροι του συστήματος ανάλογα με την εφαρμο-
γή, τη χρήση, το είδος και τη ροή των δεδομένων. Εκτός όμως από επίπονη και χρονοβόρα
διαδικασία, το αποτελέσμα δεν οδηγεί πάντα στη βέλτιστη απόδοση του συστήματος.

Στην εργασία αυτή παρουσιάζουμε μία προσπάθεια αυτοματοποίησης αυτής της διαδικα-
σίας. Με τη χρήση αλγορίθμων και τεχνικών Μηχανικής Μάθησης, όπως η παλινδρόμηση
και η κατηγοριοποίηση, προσπαθούμε να προβλέψουμε τις τιμές των παραμέτρων του
συστήματος Eκδότη/Συνδρομητή Kafka, έχοντας ως στόχο συγκεκριμένες απαιτήσεις από
το σύστημα.

Μπορείτε να βρείτε τον κώδικα για αυτήν τη πτυχιακή, καθώς και τα δεδομένα, τις εικόνες
και τα αποτελέσματα στον ακόλουθο σύνδεσμο: https://github.com/GiannisKalopisis/Adjus
table-pub-sub-system.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Μηχανική Μάθηση και βελτιστοποίηση συστημάτων Eκδότη/Συν-
δρομητή

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: Μηχανική Μάθηση, Kafka, Eκδότη/Συνδρομητή, Παλινδρόμηση, Κατη-
γοριοποίηση

https://github.com/GiannisKalopisis/Adjustable-pub-sub-system
https://github.com/GiannisKalopisis/Adjustable-pub-sub-system

To my family and friends.

ACKNOWLEDGEMENTS

I would firstly like to thank my supervisor, Asst. Prof. Alexandros Ntoulas, who gave me
the opportunity to work on a very interesting and rapidly growing topic for my thesis. I am
deeply appreciative of his support throughout the elaboration of this project. I would also
like to thank him for the equipment and resources he has provided to me so that I can
carry out the necessary experiments and complete this thesis.

CONTENTS

PREFACE 19

1 INTRODUCTION 20

2 RELATED WORK 22

3 BACKGROUND 23

3.1 Alternative Communications Systems - Predecessors 23

3.1.1 Message Passing . 23

3.1.2 Remote Procedure Call - RPC . 23

3.1.3 Notifications . 24

3.1.4 Shared Spaces . 24

3.1.5 Message Queuing . 24

3.1.6 Summary . 25

3.2 Publisher/Subscriber Systems . 26

3.2.1 What is a Publisher/Subscriber system? . 26

3.2.2 Why a Pub/Sub system? Pros and Cons. 27

3.2.3 Subscription Models . 28

3.2.3.1 Topic - Based Publisher/Subscriber . 28

3.2.3.2 Content - Based Publisher/Subscriber . 30

3.2.3.3 Type - Based Publisher/Subscriber . 30

3.2.3.4 Summary . 31

3.2.4 Quality of Service - QoS . 31

3.2.4.1 Reliability . 32

3.2.4.2 On-Time Delivery . 32

3.2.4.3 Security . 32

3.2.4.4 Summary . 33

3.3 Apache Kafka . 33

3.3.1 Introduction to Kafka . 33

3.3.2 System Architecture . 34

3.3.2.1 Main Parts of Kafka . 34

3.3.2.2 Abstractions and Terminology . 35

3.3.3 Zookeeper . 37

3.3.3.1 What is it and how does it work? . 37

3.3.3.2 Zookeeper and Apache Kafka . 37

4 DATA GATHERING 39

4.1 The importance of data . 39

4.2 Kafka setup and data gathering procedure . 39

4.3 Parameters tested/measured . 39

4.4 Procedure and code . 42

4.5 Machine specs . 44

5 REGRESSION ALGORITHMS 46

5.1 Linear Regression . 46

5.1.1 Linear Regression Performance . 47

5.1.2 Multiple Linear Regression . 48

5.2 Lasso Regression . 48

5.2.1 L1 Regularization . 48

5.2.2 Performing Lasso Regression . 49

5.3 LassoLARS Regression . 49

5.3.1 Pros and Cons of LARS algorithm . 49

5.3.2 Mathematical Formulation . 50

5.4 CART Regression . 50

5.4.1 Pros and Cons of CART algorithm . 51

6 CLASSIFICATION ALGORITHMS 53

6.1 K-NN Classification . 53

6.1.1 K-NN algorithm . 53

6.1.2 Parameter selection . 54

6.1.3 Distance functions . 55

6.2 SVM Classification . 56

6.2.0.1 Large-margin hyperplane . 56

6.2.0.2 Support Vectors . 57

6.2.1 Linear SVM Classification . 57

6.2.2 RBF SVM Classification . 59

6.2.2.1 Kernel Trick . 59

6.2.2.2 RBF SVM in practice . 60

6.3 Data splitting into categories . 60

7 IMPLEMENTATION AND RESULTS 62

7.1 Cross Validation . 62

7.2 Metrics . 64

7.2.1 Regression Algorithms Metrics . 64

7.2.1.1 Negative values of metrics . 66

7.2.2 Classification Algorithms Metrics . 67

7.3 Hyperparameter optimization . 68

7.3.1 Grid Search . 68

7.3.2 Algorithm parameters . 69

7.4 Model training and evaluation . 71

7.4.1 Predicted targets . 71

7.4.2 Regression Algorithms . 71

7.4.2.1 Records/sec results . 72

7.4.2.2 MB/sec results . 78

7.4.2.3 Avg Latency results . 84

7.4.2.4 Max Latency results . 90

7.4.2.5 General Results for Regression algorithms 96

7.4.3 Classification Algorithms . 97

7.4.3.1 k-NN algorithm . 97

7.4.3.2 Linear SVM algorithm . 109

7.4.3.3 RBF SVM algorithm . 121

7.4.3.4 General Results for Classification algorithms 137

8 CONCLUSIONS AND FUTURE WORK 139

8.1 Conclusions . 139

8.2 Future work . 139

ABBREVIATIONS - ACRONYMS 141

REFERENCES 142

LIST OF FIGURES

1.1 Publisher/Subscriber communication model 20

3.1 Two implementations of RPC model . 24
3.2 Example of simple Message Queue . 25
3.3 Topic hierarchy/tree model . 29
3.4 Type-based example in Java . 31
3.5 Multiple partitions of a Topic . 36
3.6 Kafka broker with multiple publishers and subscribers 37
3.7 Zookeeper and Kafka interaction scheme. 38

6.1 K-NN classification example . 54
6.2 SVM classification example . 56
6.3 Linear SVM maximum-margin hyperplane 58

7.1 K-fold Cross Validation . 63
7.2 Records/sec predicting accuracy using R2 metric with cross-validated data

(higher is better) . 73
7.3 Records/sec predicting accuracy using R2 metric with test set data (higher

is better) . 73
7.4 Records/sec predicting accuracy using Explained Variancemetric with cross-

validated data (higher is better) . 74
7.5 Records/sec predicting accuracy using Explained Variance metric with test

set data (higher is better) . 74
7.6 Records/sec predicting accuracy using Mean Absolute Error metric with

cross-validated data (lower is better) . 75
7.7 Records/sec predicting accuracy usingMean Absolute Error metric with test

set data (lower is better) . 76
7.8 Records/sec predicting accuracy using Mean Squared Error metric with

cross-validated data (lower is better) . 76
7.9 Records/sec predicting accuracy using Mean Squared Error metric with test

set data (lower is better) . 77
7.10 Records/sec predicting accuracy using Median Absolute Error metric with

cross-validated data (lower is better) . 77
7.11 Records/sec predicting accuracy using Median Absolute Error metric with

test set data (lower is better) . 78
7.12 MB/sec predicting accuracy usingR2metric with cross-validated data (higher

is better) . 79

7.13 MB/sec predicting accuracy usingR2 metric with test set data (higher is better) 79
7.14 MB/sec predicting accuracy using Explained Variance metric with cross-

validated data (higher is better) . 80
7.15 MB/sec predicting accuracy using Explained Variance metric with test set

data (higher is better) . 80
7.16 MB/sec predicting accuracy using Mean Absolute Error metric with cross-

validated data (lower is better) . 81
7.17 MB/sec predicting accuracy using Mean Absolute Error metric with test set

data (lower is better) . 82
7.18 MB/sec predicting accuracy using Mean Squared Error metric with cross-

validated data (lower is better) . 82
7.19 MB/sec predicting accuracy using Mean Squared Error metric with test set

data (lower is better) . 83
7.20 MB/sec predicting accuracy using Median Absolute Error metric with cross-

validated data (lower is better) . 83
7.21 MB/sec predicting accuracy using Median Absolute Error metric with test

set data (lower is better) . 84
7.22 Avg Latency predicting accuracy using R2 metric with cross-validated data

(higher is better) . 85
7.23 Avg Latency predicting accuracy using R2 metric with test set data (higher

is better) . 85
7.24 Avg Latency predicting accuracy using Explained Variancemetric with cross-

validated data (higher is better) . 86
7.25 Avg Latency predicting accuracy using Explained Variance metric with test

set data (higher is better) . 86
7.26 Avg Latency predicting accuracy using Mean Absolute Error metric with

cross-validated data (lower is better) . 87
7.27 Avg Latency predicting accuracy using Mean Absolute Error metric with test

set data (lower is better) . 88
7.28 Avg Latency predicting accuracy using Mean Squared Error metric with

cross-validated data (lower is better) . 88
7.29 Avg Latency predicting accuracy using Mean Squared Error metric with test

set data (lower is better) . 89
7.30 Avg Latency predicting accuracy using Median Absolute Error metric with

cross-validated data (lower is better) . 89
7.31 Avg Latency predicting accuracy using Median Absolute Error metric with

test set data (lower is better) . 90
7.32 Max Latency predicting accuracy using R2 metric with cross-validated data

(higher is better) . 91
7.33 Max Latency predicting accuracy using R2 metric with test set data (higher

is better) . 91
7.34 Max Latency predicting accuracy using Explained Variancemetric with cross-

validated data (higher is better) . 92

7.35 Max Latency predicting accuracy using Explained Variance metric with test
set data (higher is better) . 92

7.36 Max Latency predicting accuracy using Mean Absolute Error metric with
cross-validated data (lower is better) . 93

7.37 Max Latency predicting accuracy using Mean Absolute Error metric with
test set data (lower is better) . 94

7.38 Max Latency predicting accuracy using Mean Squared Error metric with
cross-validated data (lower is better) . 94

7.39 Max Latency predicting accuracy using Mean Squared Error metric with test
set data (lower is better) . 95

7.40 Max Latency predicting accuracy using Median Absolute Error metric with
cross-validated data (lower is better) . 95

7.41 Max Latency predicting accuracy using Median Absolute Error metric with
test set data (lower is better) . 96

7.42 Records/sec predicting accuracy using accuracymetric with cross-validated
data (higher is better) . 98

7.43 Records/sec predicting accuracy using f1 metric with cross-validated data
(higher is better) . 98

7.44 Records/sec predicting accuracy using precisionmetric with cross-validated
data (higher is better) . 99

7.45 Records/sec predicting accuracy using recall metric with cross-validated
data (higher is better) . 99

7.46 Parameter Neighbors for k-NN algorithm with ”Records/sec” predicted target100
7.47 MB/sec predicting accuracy using accuracymetric with cross-validated data

(higher is better) . 101
7.48 MB/sec predicting accuracy using f1metric with cross-validated data (higher

is better) . 101
7.49 MB/sec predicting accuracy using precisionmetric with cross-validated data

(higher is better) . 102
7.50 MB/sec predicting accuracy using recall metric with cross-validated data

(higher is better) . 102
7.51 Parameter Neighbors for k-NN algorithm with ”MB/sec” predicted target . . 103
7.52 Avg Latency predicting accuracy using accuracy metric with cross-validated

data (higher is better) . 104
7.53 Avg Latency predicting accuracy using f1 metric with cross-validated data

(higher is better) . 104
7.54 Avg Latency predicting accuracy using precision metric with cross-validated

data (higher is better) . 105
7.55 Avg Latency predicting accuracy using recall metric with cross-validated

data (higher is better) . 105
7.56 Parameter Neighbors for k-NN algorithm with ”Avg Latency” predicted target106
7.57 Max Latency predicting accuracy using accuracymetric with cross-validated

data (higher is better) . 107

7.58 Max Latency predicting accuracy using f1 metric with cross-validated data
(higher is better) . 107

7.59 Max Latency predicting accuracy using precisionmetric with cross-validated
data (higher is better) . 108

7.60 Max Latency predicting accuracy using recall metric with cross-validated
data (higher is better) . 108

7.61 Parameter Neighbors for k-NN algorithm with ”Max Latency” predicted target109
7.62 Records/sec predicting accuracy using accuracymetric with cross-validated

data (higher is better) . 110
7.63 Records/sec predicting accuracy using f1 metric with cross-validated data

(higher is better) . 110
7.64 Records/sec predicting accuracy using precisionmetric with cross-validated

data (higher is better) . 111
7.65 Records/sec predicting accuracy using recall metric with cross-validated

data (higher is better) . 111
7.66 Parameter C for Linear-SVM algorithm with ”Records/sec” predicted target 112
7.67 MB/sec predicting accuracy using accuracymetric with cross-validated data

(higher is better) . 113
7.68 MB/sec predicting accuracy using f1metric with cross-validated data (higher

is better) . 113
7.69 MB/sec predicting accuracy using precisionmetric with cross-validated data

(higher is better) . 114
7.70 MB/sec predicting accuracy using recall metric with cross-validated data

(higher is better) . 114
7.71 Parameter C for Linear-SVM algorithm with ”MB/sec” predicted target . . . 115
7.72 Avg Latency predicting accuracy using accuracy metric with cross-validated

data (higher is better) . 116
7.73 Avg Latency predicting accuracy using f1 metric with cross-validated data

(higher is better) . 116
7.74 Avg Latency predicting accuracy using precision metric with cross-validated

data (higher is better) . 117
7.75 Avg Latency predicting accuracy using recall metric with cross-validated

data (higher is better) . 117
7.76 Parameter C for Linear-SVM algorithm with ”Avg Latency” predicted target 118
7.77 Max Latency predicting accuracy using accuracymetric with cross-validated

data (higher is better) . 119
7.78 Max Latency predicting accuracy using f1 metric with cross-validated data

(higher is better) . 119
7.79 Max Latency predicting accuracy using precisionmetric with cross-validated

data (higher is better) . 120
7.80 Max Latency predicting accuracy using recall metric with cross-validated

data (higher is better) . 120
7.81 Parameter C for Linear-SVM algorithm with ”Max Latency” predicted target 121

7.82 Records/sec predicting accuracy using accuracymetric with cross-validated
data (higher is better) . 122

7.83 Records/sec predicting accuracy using f1 metric with cross-validated data
(higher is better) . 122

7.84 Records/sec predicting accuracy using precisionmetric with cross-validated
data (higher is better) . 123

7.85 Records/sec predicting accuracy using recall metric with cross-validated
data (higher is better) . 123

7.86 Parameter C for RBF-SVM algorithm with ”Records/sec” predicted target . 124
7.87 Parameter Gamma for RBF-SVM algorithm with ”Records/sec” predicted

target . 125
7.88 MB/sec predicting accuracy using accuracymetric with cross-validated data

(higher is better) . 126
7.89 MB/sec predicting accuracy using f1metric with cross-validated data (higher

is better) . 126
7.90 MB/sec predicting accuracy using precisionmetric with cross-validated data

(higher is better) . 127
7.91 MB/sec predicting accuracy using recall metric with cross-validated data

(higher is better) . 127
7.92 Parameter C for RBF-SVM algorithm with ”MB/sec” predicted target 128
7.93 Parameter Gamma for RBF-SVM algorithm with ”MB/sec” predicted target . 129
7.94 Avg Latency predicting accuracy using accuracy metric with cross-validated

data (higher is better) . 130
7.95 Avg Latency predicting accuracy using f1 metric with cross-validated data

(higher is better) . 130
7.96 Avg Latency predicting accuracy using precision metric with cross-validated

data (higher is better) . 131
7.97 Avg Latency predicting accuracy using recall metric with cross-validated

data (higher is better) . 131
7.98 Parameter C for RBF-SVM algorithm with ”Avg Latency” predicted target . 132
7.99 Parameter Gamma for RBF-SVM algorithm with ”Avg Latency” predicted

target . 133
7.100Max Latency predicting accuracy using accuracymetric with cross-validated

data (higher is better) . 134
7.101Max Latency predicting accuracy using f1 metric with cross-validated data

(higher is better) . 134
7.102Max Latency predicting accuracy using precisionmetric with cross-validated

data (higher is better) . 135
7.103Max Latency predicting accuracy using recall metric with cross-validated

data (higher is better) . 135
7.104Parameter C for RBF-SVM algorithm with ”Max Latency” predicted target . 136
7.105Parameter Gamma for RBF-SVM algorithm with ”Max Latency” predicted

target . 137

LIST OF TABLES

4.1 Producer parameters tested . 40
4.2 Parameters and combinations tested . 42
4.3 Machine specs . 45

PREFACE

This project was developed in Athens, Greece between January 2020 and October 2020,
and constitutes my thesis. For the first part, it was important to get acquainted with the
messaging technologies, especially with the Publisher/Subscriber system Apache Kafka,
that we used. As a result, it was necessary to learn, in depth, how to use the tool so
as to best harvest measurements and data. However, the second part which dealt with
data processing and the application of Machine Learning algorithms on them, was equally
important, as we had to understand the data and interpret the results of the algorithms,
the same results that led us towards the next steps of the project.

Adjustable Publisher/Subscriber system with Machine Learning

1. INTRODUCTION

The development of the Internet has significantly changed the scale of distributed sys-
tems, which contain entities scattered around the world. The behavior and, obviously, the
location is different for each system. The advent of the Internet of Things, in addition to
development of distributed systems, brings with it a vast variety of smart applications.

The huge flow of data through applications and the nature of distributed systems, as men-
tioned earlier, led us to seek a solution for flexible communication and data transmission,
which reflects the dynamic and decentralized nature of applications. Individual point-to-
point and modern communication solutions make applications rigid, rendering the devel-
opment of dynamic large-scale applications impossible. It therefore becomes clear that
the burden of communication and data transfer from application designers should be re-
moved and transferred to an intermediate software infrastructure, based on an appropriate
communication format.

Many systems have been proposed since this problem became apparent. One of the most
dominant models today, is the Publisher/Subscriber. The Pub/Sub interaction scheme
provides the loosely linked interaction format required in such a large-scale communication
system.

A Publisher/Subscriber system allows subscribers to connect and express their interest
in a topic, content, etc. (depending on the subscription model of system), in order to be
notified of any event that suits their interests, and published from a publisher. Accordingly,
the publisher generates and publishes events and data on a software bus (or event man-
ager), which is the backbone of the system. Consumers connected to it subscribe to the
information they want to receive, depending on their interests. The central system is, es-
sentially, a notification management system that provides storage, efficient management
and promotion of data/events.

Figure 1.1: Publisher/Subscriber communication model

The power of such a system based on the interaction with events, is itself based on the
full decoupling of space, time and synchronization between the two parties; the publisher
and the subscriber.

Ι. Kalopisis 20

Adjustable Publisher/Subscriber system with Machine Learning

Aswe can easily understand, the extent of such an industrial-level system is large. In order
for the system to withstand time and the constant pressure exerted by the users’ submis-
sions, the ever-increasing flow of data through it, and its proper performance, regardless
of the host machine or machines, it should be able to do the appropriate adjustments.
Therefore, all Publisher/Subscriber systems, particularly the one we are studying in this
project, i.e., Apache Kafka, have many parameters that are adjusted accordingly, enabling
each user to achieve optimal performance for their requirements.

In recent years, the development of computer science has highlighted new fields that are
constantly evolving. Some of these fields include Machine Learning (ML) and Artificial
Intelligence (AI). These new fields are based on algorithms and a wealth of data that are
provided to them to train their ”mind” and be able to make decisions for us, or give us
solutions to problems more easily, dependably and much faster than the human mind.
As mentioned earlier, the development of the internet and technology provides us daily
with the abundance of data we need to continue advancing such fields and observing the
advantages they offer to humanity. The development of these fields itself gives us new
fields of science that we can explore, as well as new problems to solve.

This project is based on one of themost well-knownPublisher/Subscriber systems, Apache
Kafka. We firstly try to explain exactly what these systems are and how they work. The
next major pillar of this work regards data collection. In general, data collection is one of
the most basic parts of such studies, particularly when fields of science such as Data Min-
ing, Machine Learning and Artificial Intelligence, are involved. Alongside data collection,
other procedures such as visualizing and clearing data from possible noise, follow. Filling
in missing values from datasets is a common occurrence, as is turning their values into
useful and easy-to-process ones. Then, using various Machine Learning techniques such
as regression and classification, we try to navigate through the data and discover various
patterns that may exist within them. The ultimate goal of the thesis is to investigate the
feasibility of predicting the system parameter values automatically, for a set of given re-
quirements. This could predict parameters values much faster and more accurately than
exploring each user blindly to adjust the system to its optimal performance levels.

Ι. Kalopisis 21

Adjustable Publisher/Subscriber system with Machine Learning

2. RELATED WORK

In recent years, the development of the internet and distributed applications have pushed
Publisher/Subscriber systems to their limits. The rapid increase in traffic and data transfer-
ring has led many developers to look for new ways to increase data transfer performance.

As we have mentioned, Apache Kafka is one of the most well-known and widely used
Pub/Sub systems. Many users are trying to increase its performance. Generally, the
performance of such systems or similar systems are proposed having the corresponding
improvements. There are various studies and approaches to the subject. Some try to
increase its efficiency by studying and changing the network itself, such as by modifying
the network lines, i.e. the materials through which the information is transmitted, or the
protocols [1], [2]. Unfortunately, this has the disadvantage of the network not being the
same everywhere; therefore it does not provide a universal solution. Others, on the other
hand, attempt to increase performance through hardware adjustments and improvements.
The issue in this solution lies the fact that optimal performance is closely related to the
specific hardware. Likewise, this is not an efficient solution either, as not all users can
have the same hardware. Furthermore, the hardware itself is being improved at the same
rapid pace as the software.

In another light, others try to study the system itself to find the best way to configure
it. Through studying its behavior, they attempt to adjust its parameters according to their
problem. Unfortunately, this method is also not efficient, as it can be both time-consuming,
as well as not being possible at all.

After thorough study, we decided to suggest an alternative way to solve this problem
through this thesis. We did not find any additional work that is related to the work in this
thesis. To the best of our knowledge, the combination of Machine Learning and Artificial
Intelligence techniques with Publisher/Subscriber systems, such as Kafka, for the sake
optimal configuration, is a relatively new field that has not been sufficiently studied.

Ι. Kalopisis 22

Adjustable Publisher/Subscriber system with Machine Learning

3. BACKGROUND

3.1 Alternative Communications Systems - Predecessors

Before the introduction of the Publisher/Subscriber scheme, many other communication
architectures had been proposed. All these models are, essentially, the predecessors of
the Publisher/Subscriber scheme, as they have all offered some of their features in its de-
velopment. They all had benefits and drawbacks, depending on their level of abstraction.
We will try to give a general assessment of the main communication models that were
proposed [3].

3.1.1 Message Passing

Μessage passing is a form of low-level communication in which the producer sends mes-
sages through a communication channel, asynchronously, and the consumer listens to
the channel synchronously, and receives the messages. We observe that the two sides
are coupled in space and time, as they must be active at the same time are aware of each
other. This model could be said to be the initial predecessor of distributed communications
[4], [5].

3.1.2 Remote Procedure Call - RPC

Remote Procedure Call, or RPC, is one of the most well-known forms of distributed com-
munication. In distributed systems, an RPC occurs when a program triggers the execution
of a subroutine on another computer (usually into a shared network). The call is encryp-
ted, as if it were a common case, i.e. originating from the local computer. The developer
does not implement the details of the remote communication; in other words, the code
remains the same regardless of whether the subroutine was local or remote. This form of
client-server interaction is typically implemented through a request-response messaging
system. By making remote interactions the same as local ones, the RPC model makes
distributed application development and scale up much easier and more efficient [6].

The RPC model implies a level of location opacity, i.e. local and remote calls are very
similar. However, they are not identical. Remote calls are usually slower and less reliable,
and need to be addressed explicitly. Various approaches have been proposed to deal with
this problem which, again, had both pros and cons.

In the first image, we observe the RPC model in which the customer does not receive
confirmation from the remote user. The second image features a variation of this model,
where the customer receives confirmation. This variant is very common in communication
systems and is often implemented by them, though it is up to the user whether to activate
it or not. This variant provides confidence in the transmission of requests/messages but
increases communication time. It is not suitable in cases where we are not so interested

Ι. Kalopisis 23

Adjustable Publisher/Subscriber system with Machine Learning

(a) RPC without acknowledge (b) RPC with acknowledge

Figure 3.1: Two implementations of RPC model

in the security of the messages, in contrast to the communication speed. The second
variant with the confirmation messages is also used by the TCP transfer protocol, which
guarantees the secure transfer of our data to the internet, unlike the UDP protocol, which
is interested in the speed of message transmission [7], [8], [9], [10].

3.1.3 Notifications

The purpose of this communication model is to achieve synchronization decoupling. It
achieves this by splitting the remote call into two asynchronous calls. The first call is sent
by the client to the server and contains information about what the client is requesting,
as well as information about callback to the client. The second part of the call is sent
from the server to the client, who simply returns the answer. Although we provided a
description of an one-to-one communication, the model can easily extend to many-to-
many communication as well [3].

3.1.4 Shared Spaces

Communication through shared memory is one of the oldest ways of communication. Cur-
rently, it is mainly used by operating systems for process communication. Distributed
shared memory (DSM) is a variation of this type of communication. Shared memory con-
sists of a distributed shared system, where participants synchronize and communicate
through access to shared data [11], [12].

This model provides space decoupling, as producers and consumers do not know who is
on the other side, and time decoupling, as both sides do not need to be connected at the
same time. Its main disadvantage is that it does not provide synchronization decouple; as
a result, the scalability of the model is limited [3].

3.1.5 Message Queuing

The message queue is the closest structure to a distributed Publisher/Subscriber sys-
tem. The message queue does not have a specific architecture, but primarily involves

Ι. Kalopisis 24

Adjustable Publisher/Subscriber system with Machine Learning

a protocol of communication between producer and consumer. Many times such com-
munication schemes are incorporated into Pub/Sub systems, forming a communication
structure known as Message-Oriented Middleware (MOM). The main pillar of communic-
ation in such systems is the messages, hence the name [13], [14].

Figure 3.2: Example of simple Message Queue

Message queues are essentially places where messages published by producers are
stored. Consumers receive the messages depending on the organization of the queue,
i.e. either in the order in which they came (first in first out - FIFO), or in some other priority-
based order provided by the queue. The system provides time and order guarantees to
users. It is also important to note the key difference between a message queue and a
Publisher/Subscriber system. As soon as a message is read/processed in the message
queue, it is deleted from the queue and cannot be read by anyone else, unlike a Publish-
er/Subscriber system, where the messages are retained for a period of time.

Finally, the system provides decoupling in space and time. This is due to the fact that
producers and consumers do not know who is on the other side and do not need to be
connected at the same time [3].

3.1.6 Summary

The different communication models we have described so far have a lot in common.
Typically, each new communication model proposed is either a variation of an older one,
or a feature combination of older models. The purpose of each new model is to im-
prove the pathogens of older systems. Thus, the Publisher/Subscriber system that we
will study in this project has been influenced by all these models we have made refer-
ence to. Moreover, it has improved some of their points so as to achieve faster message
transmission, easier to scaling, as well as adaptation to the needs of internet.

Ι. Kalopisis 25

Adjustable Publisher/Subscriber system with Machine Learning

3.2 Publisher/Subscriber Systems

In the previous chapter we identified several types of communication systems. They all
had advantages and disadvantages. In this chapter, we will further delve into what a
Publisher/Subscriber system is. We will also take a look at some alternative subscription
models. Finally, we will analyze the basic Publisher/Subscriber system Apache Kafka,
that we used as a main tool in this project.

3.2.1 What is a Publisher/Subscriber system?

The Publish/Subscribe pattern, also known as Pub/Sub, is an architectural design pattern
that provides a framework for exchanging messages between publishers and subscribers
[3], [15], [16], [17].

The three main parts of such architectures are the publishers, the subscribers and the
central system [15]. Let us take a closer look at what exactly each part of the system
does.

• Publisher: publishers are applications that connect to the central system and pub-
lish events with a specific topic or content, depending on the system subscription
model. In the modern age of the Cloud and the Internet of Things, these applica-
tions are made up of smaller, independent components that are easier to develop
and maintain. Publishers do not know who is interested in the event they have pub-
lished, or whether someone is connected to the other side to receive their message.
They can also be connected and disconnected from the system without requiring
any special procedure or burdening the system.

• Subscriber: subscribers, like publishers, are applications that also consist of smal-
ler independent components. Their main job is to process the events published by
the publishers. They log in to the system, indicate their interest in one (or more) top-
ics and, when an event is published on that topic, they are notified and process it as
soon as they receive it. Similarly to the publisher, the subscriber does not know who
the message came from, nor does he know when the next message will come. His
only job is to process the messages/events. The subscriber can essentially originate
from a simple event processing application, to a large external system or database.

• Eventmanager system: a Publisher/Subscriber systemmainly consists of a central
messaging system. Publishers and Subscribers are applications connected to it.
This central system accepts the events that are published and is responsible for
transmitting to different parts of the system asynchronously. This transmission is
done with the help of topics. A topic is a lightweight mechanism that resembles
message queues, which helps to convey messages in the form of events, as well
as connecting publishers and subscribers to the system. The difference between
the topic mechanism and the message queue is that the topic mechanism pushes

Ι. Kalopisis 26

Adjustable Publisher/Subscriber system with Machine Learning

events directly to subscribers, or with a slight delay. Additionally, when a message is
read by an interested party it is not deleted, but remains there so that all interested
parties on the same subject can receive it. Therefore, we can understand that the
central system is, in essence, an event management system. In the literature we
can also encounter it with this name [18].

The combination of these three parts provides us with a modern communication system
that satisfies the needs of modern applications, communications, as well as the Internet.

3.2.2 Why a Pub/Sub system? Pros and Cons.

The architecture of the Publisher/Subscriber systems has some special features that made
it stand out, compared to other messaging systems, and establish itself as one of the basic
messaging schemes. These features that provides are the decoupling in time, space and
synchronization [3]:

• Time Decoupling: the two sides do not need to be active at the same time. The
publisher can publish something that will be read when a subscriber logs in, and
the subscriber can be notified of a publish when the publisher is no longer logged
in. This may be because the publisher logged out immediately after publishing, or
because of the system settings, or because of an external application that processed
and redirected the message back to the system.

• Space Decoupling: the interacting members are unaware of the existence of other
members. As described above, the publishers publish the events through the event
management system and, on the other hand, the subscribers process them. Pub-
lishers do not know how many and which subscribers process the events and, re-
spectively, subscribers usually do not know which publisher the event is from, how
many publishers post on the topic they are interested in, or when a new event will
come.

• Synchronization Decoupling: publishers and subscribers are not blocked from
producing or consuming new events. This is possible because these processes
take place at the ends of the system and not in its main body.

• Clean Design and Scalability its design is simple and clean. This leads developers
to design applications without taking into account the burden of communication. Its
design also makes it easily scalable and customizable, as adding or removing sys-
tem parts is a relatively easy and straight-forward process.

The features we have described make the system easily scalable. They also remove a
large part of the implementation from the applications and, thus, make the system suitable
for applications relying on document-centric communication and distributed environments
such as the Cloud and the Internet of Things. Despite these advantages that make it a

Ι. Kalopisis 27

Adjustable Publisher/Subscriber system with Machine Learning

basic communication system of the modern era, there are some drawbacks that are worth
noting:

• Poor-consistency: a Publisher/Subscriber system is definitely not suitable for crit-
ical systems such as those of military or financial nature due to the partial lack of
guarantees in messaging. The possible loss of messages and the lack of guaran-
tees for the delivery of messages make the system additionally unsuitable for ap-
plications that require accuracy and high consistency in the delivery of messages.

• Increased Latency: the intermediate level of communication (event management
system) adds delay to communication time. Moreover, as publishers and consumers
increase, it becomes more and more difficult for the system to provide time guaran-
tees for the delivery of messages.

• Security: due to the loose nature of the system, it can become vulnerable to attacks.
Intruders, i.e. malicious publishers, can invade the system and breach it. Τhis can
lead to bad messages being published and subscribers having access to messages
that they should not normally receive [17].

We acknowledge that these downsides are due to the loose nature of the system in terms
of time, space and synchronization. Though, again, we detect in practice that the ad-
vantages of a Publisher/Subscriber system have gained the trust of developers, making
it, thus, a key pillar of communication of applications on the Internet. Of course, many
systems, such as Kafka, eliminate these drawbacks with a variety of user-enabled fea-
tures, sacrificing some of the advantages of the Publisher/Subscriber architecture during
this process.

3.2.3 Subscription Models

The main members of a Publisher/Subscriber system are the publishers, the subscribers
and, in particular, a central system that essentially constitutes an event management sys-
tem. Subscribers connect to the system and express their interest in the events produced
by the publishers. This interest can be expressed in many ways, depending on the archi-
tecture of the chosen system. Subscriptions architecture is, at heart, a way of categorizing
events that are published, as well as showing the interest of subscribers. Depending on
the subscription model, events are processed via the event management system and dis-
tributed within it. We will take a look at some of the most basic ones in the following
sections.

3.2.3.1 Topic - Based Publisher/Subscriber

One of the first Publisher/Subscriber programs was based on the Topic concept, which
is an extension of the group concept. According to the former, the interested parties—
publishers and subscribers—express their respective interest for various specific topics,

Ι. Kalopisis 28

Adjustable Publisher/Subscriber system with Machine Learning

not necessarily one. The publishers, when they publish an event, identify the topic to
which the event belongs; the subscribers, when connecting to the system, identify the
topics that interest them in the meantime [15].

Topics, in essence, constitute an abstract tool to share the ”space” of the system with
users. Each topic is a part of the system that is dedicated to its service. Of course, it is not
the perfect solution. Unfortunately, although it can be a good solution for sharing the space
of application or event processing by infrastructure, or the production and consumption of
events by publishers and subscribers, it takes away much of the expressiveness of the
users, either producers or consumers [2].

Various solutions have been proposed for this issue; one of them being the combination
of the topic system with other systems, which we will cover below, such as content-based
systems. Another solution is to add hierarchies to the organization of topics. This organ-
ization is usually executed by the developers. All modern topic-based systems offer this
solution. In essence, we are talking about a tree-type structure, where each node is a
topic; the higher the node is (on the structure/tree), the more general the topic it contains,
is. Underneath this node exist topics that are perfectly related to the topic of the original
node, though they are more specialized. When a subscription is made to a node in the
hierarchy/tree, this then implies that there is interest in all the topics that exist under this
node [3].

Figure 3.3: Topic hierarchy/tree model

We assume that a subscriber has shown interest in the topic ”North America”, as we see
in the picture. This means that the subscriber automatically showed interest for the topics
”Smart Phones”, ”Feature Phones” and everything else included below that. Therefore,
when a producer publishes an event for the topic of ”Smart Phones”, our subscriber will
have expressed interest for this topic as well.

Ι. Kalopisis 29

Adjustable Publisher/Subscriber system with Machine Learning

3.2.3.2 Content - Based Publisher/Subscriber

In practice, researchers have found that, even with some improvements proposed for the
topic-based Publisher/Subscriber system, it was sometimes not enough to merely improve
the limited expressiveness of such systems. This is why some variations of this model
began to be proposed.

One of them was the content-based Publisher/Subscriber scheme. This format routes
messages based on their content rather than a specific destination IP address, or a strictly
predefined topic. That is, the properties/content of the message itself determine which
subscriber will receive it.

Subscribers, when connecting to the system, can set some types of filters that can be
applied to messages. These filters constitute data restrictions and determine which mes-
sages will reach subscribers. For example, such filters can be logical or numerical on data
or message fields. In essence, the subscriber interest that goes through the filters is a set
of topics, similar to those we saw in the previous section [1].

However, as was the case before, this scheme does not only have advantages. The ap-
plication of the restrictions and filters we have mentioned, unfortunately, puts a brake on
the response time of the system. The calculations needed at each node to find the path
that the message will follow are complex and time-consuming. For this reason, such sys-
tems are not used in applications that require a very fast response or real-time response
[3].

3.2.3.3 Type - Based Publisher/Subscriber

Through the use of Publisher/Subscriber systems, we have noticed that topic-based sys-
tems have events with similarities not only in content, but also in structure. This led to the
creation of a new scheme for the Publisher/Subscriber systems oriented to the type ofmes-
sages. By structure we mean the code structure given by the developers as they define
the messages. This can be done using various techniques and abstractions provided by
the respective language used by the developers for the application. We will provide an
example to make it more understandable.

In the example 3.4, we observe a subscription based on the type of message, which is
buying the car. We notice from the code that there are many different types in which a
user/buyermay be interested. It seems that the subtyping offered by Java is a powerful tool
for the user to express their interest for more than one type of message. Other languages,
such as C and C++, offer similar capabilities.

It is becoming apparent that type-based events closely link the programming language to
the messaging system. This can offer many advantages, such as the security provided
by the language, in terms of types, perhaps in the speed of message processing, but also
giving the necessary expressiveness to the user [3], [19].

Ι. Kalopisis 30

Adjustable Publisher/Subscriber system with Machine Learning

Figure 3.4: Type-based example in Java

3.2.3.4 Summary

In this section we referred to some of the most basic Publisher/Subscriber systems. As
noted above, topic-based systems are static but very efficient, as they offer high speeds
due to the short processing time they need, making them suitable for applications sensitive
to response time. On the other hand, content-based systems can be more dynamic and
with more expressive capability, though they add a lot of burden to the response time,
as they need a lot of processing to get the messages routed properly. Finally, exploiting
message types can increase the expressiveness of topic-based systems and reduce the
time complexity of content-based systems.

Naturally, there are many variations and combinations, either on research or industrial
level, and others are constantly being suggested. Thus, we understand that choosing the
right system is not a cure-all. Everyone can customize or choose the system according to
their needs.

3.2.4 Quality of Service - QoS

When looking at a Publisher/Subscriber messaging system, one of the key criteria for its
suitability, especially when it comes to a large-scale industrial use system, is the quality
of the services it offers. The end-to-end evaluation of QοS characteristics of a Publisher-
/Subscriber system proves to be a challenge, as the loose connection of publishers and
subscribers to the central system makes it difficult to define a single QοS measurement
policy. In addition to the disconnection of the publisher and the subscriber from the sys-
tem, a problem is the disconnection of system nodes from the central system due to its
distributed nature. Consequently, we see that the non-deterministic behavior of the sys-
tem introduces a lot of unreliability into the system, and its exact behavior is difficult to
determine and measure. Nevertheless, we will attempt to introduce three key aspects of
service quality: reliable messaging, on-time delivery and security [3], [14], [20].

Ι. Kalopisis 31

Adjustable Publisher/Subscriber system with Machine Learning

3.2.4.1 Reliability

Reliability is one of the most important features of a distributed messaging system. It
is imperative that strong guarantees exist for the sake of reliable data transfer within the
system. Reliability is, substantially, a guarantee that subscribers will receive the published
event. The processing of events that take place within the system, as well as the network
hops that each data packet makes due to the distributed system architecture, adds an
additional possible source of non-determinism, since each node of the system is likely be
unavailable due to overload or general network uncertainty.

The persistence of events, their long stay in the system, their retransmission, and the exist-
ence of copies in the system, are techniques to reduce uncertainty and non-determinism.
In general, the longer the event remains in the system, the lower the risk of losing it. Hav-
ing copies can also be tricky, as it can overload the system and lead to adverse results. As
a result, we understand that the balance is delicate. We conclude that the longer the mes-
sage remains in the system, the less non-determinism decreases. Many systems, such
as the one we are considering (Kafka), provide storage via files where we can establish
their size and duration of stay. This technique completely eliminates the non-determinism
of the system, as the message cannot be lost in the system.

3.2.4.2 On-Time Delivery

Many applications that use messaging systems are real-time and have strict requirements
for controlling the delivery time of messages to consumers. Applications that require such
restrictions have specialized Publisher/Subscriber systems and strictly defined environ-
ments that are relatively controlled. But to have such systems, there must be specialized
point-to-point connections so that delays can be controlled. The connections and dis-
connections of publishers and subscribers should also be checked so that the network
balance is maintained. These limitations, however, eliminate the advantages of the Pub-
lisher/Subscriber networks mentioned above.

3.2.4.3 Security

The security of a Publisher/Subscriber system is one of the most important issues faced
by both the creators and the users of such systems.

The most obvious problem is giving the system access to authorized users. These users
can belong to producers and consumers, making the issue even more complex. Due to
the distributed architecture of such applications and their extent, usually, control over who
connects and disconnects from the system ranges from difficult to almost impossible. This
problem could be reduced by forcing users to use special security codes and keys, or for
infrastructure nodes to run on dedicated servers where access from either producers or
consumers is more precisely controlled. It is important to mention the aforementioned
solutions merely reduce the problem; they do not eliminate it.

Ι. Kalopisis 32

Adjustable Publisher/Subscriber system with Machine Learning

Another important problem that arises which may not be obvious, as the scale of the
infrastructure is small but becomes quite obvious as it grows, is the trust between publisher
and subscriber—the two ends of communication. On one hand, the subscriber wants to
be certain of the authenticity of the message, as well as its content, i.e. that it will not
contain malicious information or data that may have been altered. On the other hand, the
system will want to receive data from trusted subscribers and have guarantees that the
subscribers themselves will not try to negatively affect the system for their own benefit.
Similarly, the system should make sure that publishers do not try to affect the system by
overloading it, or modifying it in any other way. These problems stem in part from the
uncertainty about who is connected to the system mentioned above.

We generally understand that the larger the system, the greater the number of nodes
contained in the infrastructure. This fact, in addition to the uncertainty it adds for the secure
transmission of the message, forces publishers and subscribers to rely on more nodes for
the transmission of messages and subscriptions respectively. To be able to deal with this,
it is very likely that we will sacrifice some of the advantages of the Publisher/Subscriber
systems, as we noted in Section 3.2.2.

3.2.4.4 Summary

From what we have seen, we, therefore, understand that a Publisher/Subscriber system
like Kafka should provide a consistent quality of service, especially when it comes to in-
dustrial use. Fluctuations in the performance of the data stream are not acceptable. The
system should be able to maintain a steady rate of data transmission when the prevailing
conditions do not change. It should also provide guarantees to users for the security of
the transmission of messages.

3.3 Apache Kafka

After a careful look at some older messaging schemes, as well as several key points of a
Publisher /Subscriber scheme, it is time to analyze and pay attention to the main parts of
the Publisher/Subscriber system we used as a tool for this project, the Apache Kafka [15],
[21].

3.3.1 Introduction to Kafka

Since the beginning of the internet, we have been writing and using programs that store
information in Databases. Databases treat the world as objects that have a state, which
is their information, stored in the system. This worked quite well for years, although, little
by little, we realized that it is more efficient, instead of thinking of information as states of
the world, to treat it as events.

Ι. Kalopisis 33

Adjustable Publisher/Subscriber system with Machine Learning

Events are, basically, an indication in time of the state of the object. Though instead of
storing events in databases, which is not efficient, we store them in logs. Logs practically
refer to an ordered sequence of events. When an event occurs, it is written in one, or
sometimes more, log. The structure we described above can very easily be scaled up
and distributed to servers around the world. At heart, Apache Kafka is a system that
manages these logs, but in Kafka’s language the logs are called topics. Management
includes many things such as:

• publish events in the system

• subscribe to events

• store them for as long as needed, either for a short period of time or permanently

• process events from various applications connected to the system

• distribute events correctly to users

Kafka is not a monolithic application. The topics it manages can be distributed across
multiple servers around the world, depending on the needs of the user and the application.
These servers can be physical machines, specialized hardware or even virtual machines.
Developers can write many small standalone programs that interact with topics managed
by Kafka, as well as consume or generate events from them. These programs can also
perform functions on events such as real-time analysis, storage, editing, etc. All of this is
done through an API provided by the system.

3.3.2 System Architecture

3.3.2.1 Main Parts of Kafka

Apache Kafka is a distributed messaging system with a topic-based architecture. We
could say that the system is divided into 2 logical main parts, the servers that make up
the system and do the basic work, and the clients that interact with the system. We note
that the terminology is the same as that of the server-client system, the logic behind the
process being quite similar since, in essence, the same type of interaction takes place.
More specifically:

• The servers can be a cluster, small or large, depending on the needs of the users.
These servers are, in simple terms, the backbone of the system. Some of them are
called brokers and are responsible for maintaining the logs we mentioned before.
Others are responsible for the communication of Kafka with external systems, such
as another user system, a database etc.

Ι. Kalopisis 34

Adjustable Publisher/Subscriber system with Machine Learning

• Clients are essentially programs and interfaces with which users can interact with
Kafka. This communication can be achieved through distributed applications and
microservices written by the developers.

The connection of these two parts gives us the messaging system called Kafka.

3.3.2.2 Abstractions and Terminology

In order to have a well-structured distributed system that can be scaled up and easily used
by developers, the appropriate logical abstractions from its architecture must be made. If
the system were complex and allowed many things to be implemented by the developer,
its widespread use (i.e. Kafka), would range from being difficult to impossible. Thus, we
present the most basic abstractions of Kafka, alongside how they are combined with each
other to make the system function.

• Events: every interaction with the system takes the form of events. Every event is
a registration in the system that indicates that ”something happened” in the outside
world. The main parts of an event, which characterize its uniqueness, are a key that
usually consists of a number, a value or information and the time stamp for when it
took place.

• Producers and Consumers: producers are a type of client that we mentioned in
the previous section, who interact with Kafka through events, like everyone else. In
essence, producers are applications that publish events to the system. Consumers,
on the other hand, subscribe to the system so that they have the opportunity to read
the events that are published and interest them. As with most Publisher/Subscriber
systems, Kafka publishers and subscribers are completely decoupled in time, space,
and synchronization. In practice, the producers can log in and publish events on the
system, and the consumers can read it whenever they want. Typically, both sides
are completely unaware of the existence of the other side. Producers simply pub-
lish events on the system and do not care about whether they will be consumed;
likewise, the consumers merely read and process events without concern on who
published them.

• Topics: as we mentioned in the introduction, events are stored in logs which, in
Kafka’s language, are called topics. Topics are essentially an ordered list of events.
In essence, Kafka topics are a distributed file system. There is no limit to how many
producers can publish on a topic, nor to how many consumers can subscribe to a
topic. Even a zero number of producers and consumers is acceptable. Moreover,
the processing of an event by a consumer does not delete the event from the topic,
as would be the case with a classic message queue. Instead, events are retained in
the topic until a specific amount of time—established by the system administrator—
has elapsed, or they might forever exist in the topic.

Ι. Kalopisis 35

Adjustable Publisher/Subscriber system with Machine Learning

• Partitioning: a topic can be distributed across multiple servers called brokers. This
automatically means that the log we described as an unbroken log can consist of
many smaller logs distributed across multiple servers. At heart, it constitutes a large
file which is simply distributed. The chronological order of events within the log,
when distributed, is maintained for each log separately and not for the entire log as
a whole.

Figure 3.5: Multiple partitions of a Topic

The topic partition we have described is one of the most important features of Kafka.
This distribution of data/events is a key factor in scaling the system, as both publish-
ers and subscribers can interact with multiple brokers at the same time. The events
that are published and have the same key are written in the same partition, i.e. in
the same broker, and Kafka guarantees that those who read from this partition will
read the events exactly in the order in which they were published.

• Replication: errors are very likely to occur at messaging systems and particularly
in distributed systems such as Kafka. These errors usually lead to data loss. To
keep the data safe and the system fault-tolerant, Kafka creates copies/replications
of the data in multiple brokers spread across the system, or even in databases. A
common replication factor is 3, which denotes that there are 3 copies of the data in
the system.

• Broker: a Kafka broker, a Kafka server and a Kafka node all refer to the same
concept and are synonyms. A Kafka broker is a server that hosts multiple topics.
Kafka can combine many brokers by transferring data between them and create a
cluster, with the help of Zookeeper. This cluster hosts various partitions of one topic
or more.
A Kafka notice receives messages from publishers on various topics and saves them
on disk with a unique offset. It respectively allows subscribers to receive these mes-
sages depending on the topic and partition they are interested in. In essence, as

Ι. Kalopisis 36

Adjustable Publisher/Subscriber system with Machine Learning

Figure 3.6: Kafka broker with multiple publishers and subscribers

in the real sense of the broker, a Kafka broker is the mechanism that mediates the
communication between publisher and subscriber.

3.3.3 Zookeeper

3.3.3.1 What is it and how does it work?

Zookeeper is software developed by Apache and is used to configure and synchronize
distributed systems such as Kafka. Zookeeper watches the status of Kafka’s brokers,
topics and partitions, etc. It is, practically, the administrator who allows the simultaneous
readings and subscriptions of the publishers and subscribers of the system. The Zoo-
keeper Atomic Broadcast(ZAB) protocol is the actual mechanism that allows the software
to control the entire system [22].

The data within Zookeeper is split into several nodes to achieve the consistency required
by the system. In case one node fails, Zookeeper automatically selects another, in real
time, so communication is not disrupted .

3.3.3.2 Zookeeper and Apache Kafka

Having overall observed what Zookeeper is and how it works, let us proceed to how it
combines with Kafka to give us the ultimate reliable and flexible system, and what tasks it
takes on.

• Controller-Leader Election: the controller is one of Kafka’s key broker entities and
is responsible for maintaining the leader-follower relationship for all partitions on
each topic. Each partition has a broker that is the partition leader and is the one who

Ι. Kalopisis 37

Adjustable Publisher/Subscriber system with Machine Learning

Figure 3.7: Zookeeper and Kafka interaction scheme.

manages all the read and write requests for the partition, while the follower passively
reproduces the leader. If, for any reason, a node is terminated, the controller-leader
is responsible for telling the followers to act as leaders in order to perform the tasks
of the node that terminated, until it elects someone else and ensures that there is
only one controller node.

• Topic configuration: Zookeeper manages the entire list of topics and everything
related to it. It deals with the partitions of each topic and in which broker they are
hosted; it also knows where to find the replicas of the data, which node is the most
suitable leader for each topic, etc.

• Members of cluster: Zookeeper also knows which brokers the system consists of
so that, in case of a broker shutdown, it can maintain the functionality of the system
and maintain its performance.

In closing, we consider it mandatory to mention that Zookeeper is an integral tool for the
operation of Kafka as, in order to be able to perform any Kafka service, we must first run
a Zookeeper server [23].

Ι. Kalopisis 38

Adjustable Publisher/Subscriber system with Machine Learning

4. DATA GATHERING

4.1 The importance of data

Machine Learning data analysis uses algorithms to continuously improve itself over time,
though quality data is necessary for these models to operate efficiently. A single row of
dataset is called an instance. Datasets are a collection of instances that all share a com-
mon attribute. Machine learning models will generally contain several different datasets,
each used to fulfill various roles in the system.

For machine learning models to understand how to perform various actions, training data-
sets must first be fed into the machine learning algorithm, followed by validation datasets
(or testing datasets) to ensure that the model is interpreting this data accurately. Once we
feed these training and validation (or test) sets into the system, subsequent datasets can
then be used to improve one’s machine learning model going forward. The more data we
feed into the ML system, the faster that model can learn and improve [24], [25].

4.2 Kafka setup and data gathering procedure

As in most Machine Learning systems, the main problem we faced in this thesis was data
collection. It was one of the most important aspects of this project, as well as one of the
most time-consuming ones.

We first had to understand how Kafka works in order to be able to use it. The next step was
to see how we could set up the system to test it and do the necessary experiments. We
initially experimented to seek an efficient and correct way to set up the system. Through
tests, we discovered various Kafka devices that were sufficient to perform experiments
and take representative measurements. Each time, the cluster served only 1 topic and
consisted of 1, 2 or 5 brokers/servers that represented the replication factor of the topic.
Thus, for each broker (1, 2, or 5) and topic, we attempted different partitions of the topic
(1, 2, or 5) in order to eventually obtain a wide range of measurements.

4.3 Parameters tested/measured

In order to assess how the system reacts to different configurations for different parameter
values and, then, to be able to predict its performance for different parameter values, we
had to test many parameters. Hence, the setup we discussed in the previous section
remained the same in every parameter we checked so as to achieve objective results.

In this work we focused primarily on the producer; particularly, how the parameters of the
producer affect the system [26]. As we will mention at the end, future work or an extension
of this work could be the study of how the parameters of brokers or consumers can also

Ι. Kalopisis 39

Adjustable Publisher/Subscriber system with Machine Learning

affect performance.

To that end, the parameters we chose to change and test how they affect system perform-
ance include [27], [28]:

Table 4.1: Producer parameters tested

Parameter Values
message size [10, 20, 50, 100, 200, 500, 1000]
batch.size [16384, 50000, 100000, 200000, 500000]
linger.ms [0, 1, 2, 5, 10]
max.request.size [500000, 1048576, 2000000, 5000000, 10000000]
buffer.memory [10000000, 33554432, 100000000, 200000000]
acks [-1, 0, 1]

It is necessary, however, for better understanding of the work, to see what each parameter
essentially represents. This way, we can better understand how their changes affect per-
formance. The parameters of the producers, therefore, regard:

• message size: This parameter is one of the most important parameters of the sys-
tem. It involves the size of the messages/data that the producer will send. Of course,
the server has its own parameter, which also limits the size of the messages and can
differ from that of the producer.
The parameter type is integer and has a range of [1, . . .].

• batch.size: The producer will attempt to batch records together into fewer requests
whenever multiple records are being sent to the same partition. This helps perform-
ance on both the client and the server. This configuration controls the default batch
size in bytes.
No attempt will be made to batch records larger than this size.
Requests sent to brokers will contain multiple batches, one for each partition with
data available to be sent.
A small batch size will make batching less common and may reduce throughput (a
batch size of zero will disable batching entirely). A very large batch size may use
memory a bit more wastefully, as we will always allocate a buffer of the specified
batch size in anticipation of additional records.
The parameter type is integer; it has a default value of 16384 bytes and a range of
[0, . . .].

• linger.ms: The producer groups together any records that arrive in between request
transmissions into a single batched request. Normally, this occurs only under load
when records arrive faster than they can be sent out. However, in some circum-
stances the client may want to reduce the number of requests even under moderate
load. This setting accomplishes this by adding a small amount of artificial delay;

Ι. Kalopisis 40

Adjustable Publisher/Subscriber system with Machine Learning

that is, rather than immediately sending out a record, the producer will wait for up to
the given delay to allow other records to be sent, so that the sends can be batched
together. This setting gives the upper bound on the delay for batching: once we get
batch.size worth of records for a partition, it will be sent immediately regardless of
this setting; however, if we have fewer than this many bytes accumulated for this
partition, we will linger for the specified time waiting for more records to show up.
Setting linger.ms=5, for example, would have the effect of reducing the number of
requests sent but would add up to 5ms of latency to records sent in the absence of
load.
The parameter type is long, has a default value of 0 milliseconds and a range of [0,
. . .]. The default value 0 means no delay.

• max.request.size: Themaximum size of a request in bytes. This setting will limit the
number of record batches the producer will send in a single request to avoid sending
huge requests. This is also effectively a cap on the maximum uncompressed record
batch size. Note that the server has its own cap on the record batch size (after com-
pression if compression is enabled), which may be different from max.request.size.
The parameter type is integer, has a default value of 1048576 bytes and a range of
[0, . . .].

• buffer.memory: The total bytes of memory the producer can use to buffer records
waiting to be sent to the server. If records are sent faster than they can be delivered
to the server, the producer will block for max.block.ms, after which it will throw an
exception.
This setting should correspond roughly to the total memory the producer will use,
but is not a hard bound since not all memory the producer uses is used for buffering.
Some additional memory will be used for compression (if compression is enabled),
as well as for maintaining in-flight requests.

• acks: The number of acknowledgments the producer requires the leader to have re-
ceived before considering a request complete. This controls the durability of records
that are sent. The following settings are allowed:

• acks=0: If set to zero, then the producer will not wait for any acknowledgment
from the server at all. The record will be immediately added to the socket buffer
and considered sent. No guarantee can be made that the server has received
the record in this case, and the retries configuration will not take effect (as the
client won’t generally know of any failures). The offset given back for each
record will always be set to -1.

• acks=1: This will mean the leader will write the record to its local log but will
respond without awaiting full acknowledgement from all followers. In this case,
should the leader fail immediately after acknowledging the record but before
the followers have replicated it, then the record will be lost.

Ι. Kalopisis 41

Adjustable Publisher/Subscriber system with Machine Learning

• acks=all: This means the leader will wait for the full set of in-sync replicas to
acknowledge the record. This guarantees that the record will not be lost as long
as at least one in-sync replica remains alive. This is the strongest available
guarantee. This is equivalent to the acks=-1 setting.

The parameter type is string, has a default value of 1 and a range of [all, -1, 0, 1].

We initially tested these parameters one by one to examine how the system is affected by
each parameter. Then, we combined variables in pairs to see how the system is affected if
we change two variables at the same time. That is, for each variable and pair of variables,
we repeated the measurements as described in Section 4.2. Furthermore, the variable
acks was so important that we were compelled to include it in all the measurements. In
other words, for eachmeasurement, whether a separate variable or a combination thereof,
we repeated the process for all three values of the variable acks (-1, 0, 1) and recorded
them in the same file to facilitate comparisons. Consequently, the variables and their pairs
we measured include:

Table 4.2: Parameters and combinations tested

1 Parameter 2 Parameters
message.size batch.size + buffer.memory
batch.size batch.size + linger.ms
linger.ms batch.size + max.request.size

max.request.size buffer.memory + linger.ms
buffer.memory linger.ms + max.request.size

Each entry in the table is a separate file with measurements made for each parameter
listed in the table.

The measurements of these parameters, essentially, show us how the system reacts to
the different values of the parameters, or even by combining these values. By system
reaction, we mean how its performance is affected. So with these measurements as
a guide, we will try to make ML models, which by taking values for these parameters,
as training data, will try to predict what will be the possible performance of the system.
These forecast will cover four specific targets. The first two targets will be ”Records/sec”
and ”MB/sec”, which show us the performance of the system in terms of the amount of
information it can transmit, and the other two will be the ”Avg Latency” and ”Max Latency”,
that show us the delay in data transmission.

4.4 Procedure and code

We believe it is necessary to offer a few words on the code with which the measurements
were created. Kafka itself provides shell scripts intended for brokers and the zookeeper

Ι. Kalopisis 42

Adjustable Publisher/Subscriber system with Machine Learning

server [29]. We also utilized the script provided by Kafka to test the performance of the pro-
ducer. This generates random messages/data and sends them into the system according
to the settings of producers, consumers and brokers.

The procedure we followed to carry out the experiments, as well as a sample of the com-
mands we used, are presented as such:

• Start Zookeeper Server: We must first start the Zookeeper server. If Zookeeper
does not work, neither will Kafka, as the former is a necessary element of the latter’s
architecture.

1 # Starting server
2 $ bin/zookeeper -server -start.sh config/zookeeper.properties
3

4 # Killing server
5 $ bin/zookeeper -server -stop.sh

• Start Kafka Server: After starting Zookeeper, we can start as many Kafka broker-
s/servers we want:

1 # Starting broker
2 # server.properties is the properties file of the server
3 $ bin/kafka -server -start.sh server.properties

• Topic handling: These commands are for topic management:
1 # Create Topic
2 $ bin/kafka -topics.sh --create zookeeper localhost:2181 --replication

-factor {num} --partitions {num} --topic {my-topic}
3

4 # Delete Topic
5 $ bin/kafka -topics.sh --delete --zookeeper localhost:2181 --topic {

my-topic}
6

7 # Describe Topic
8 $./bin/kafka -topics.sh --describe --zookeeper localhost:2181 {

Optional: --topic {my-topic}}
9

10 # Listing Topic
11 $ bin/kafka -topics.sh --list --zookeeper localhost:2181 {Optional: --

topic {my-topic}}

• Producer Performance Test: This command is the script provided by Kafka to test
the performance of the producer. It produces statistics for every X bytes it sends
and, at the end, it calculates the average of statistics:

1 # producer.properties is the properties file of the producer
2 $ bin/kafka -producer -perf-test.sh --topic {my-topic} --num-records {

num} --record -size {num} --throughput {-1, 0, 1} --producer.config
producer.properties

3

Ι. Kalopisis 43

Adjustable Publisher/Subscriber system with Machine Learning

4 # Example: (The last row is the average statistics and the others
rows are the statistics for every batch)

5

6 $ bin/kafka -producer -perf-test.sh --topic test-topic --num-records
5000000 --record -size 100 --throughput 0 --producer.config producer.
properties

7

8 $ 3289742 records sent, 657948.4 records/sec (62.75 MB/sec), 280.0 ms
avg latency , 590.0 ms max latency.

9 $ 5000000 records sent, 781860.828772 records/sec (74.56 MB/sec),
184.33 ms avg latency , 590.00 ms max latency , 1 ms 50th, 543 ms 95th,

575 ms 99th, 588 ms 99.9th.

Additionally, to add to the automation of the process, we formulated some python scripts
in order to automatically create the commands, transfer data from .txt file to excel file and
edit them. To make the measurements more accurate, we repeat the same measurement
3 times (i.e. with the same configurations) and then we calculate their average with a
Python script.

4.5 Machine specs

For the measurements we utilized the server provided by my supervisor, Mr. Doulas.
Every broker of the system, as well as the zookeeper server, were running in a different
virtual machine on the server. The technical specs of the server were:

Ι. Kalopisis 44

Adjustable Publisher/Subscriber system with Machine Learning

Table 4.3: Machine specs

Part Value
CPU Intel(R) Core(TM) i7-6700 CPU @ 3.40GHz

Architecture x86_64
Max Boost 4GHz

Cores/Threads 4/8
L1d 32K
L1i 32K
L2 256K
L3 8MB
RAM 32GB

RAM speed 2400 MHz
RAM type DDR4
Disk 1 type SSD

Disk 1 capacity 256GB
Disk 2 type HDD

Disk 2 capacity 1TB
Network speed 1Gbit/s

OS Ubuntu 18.04.5 LTS
Kernel version GNU/Linux 4.15.0-101-generic

Ι. Kalopisis 45

Adjustable Publisher/Subscriber system with Machine Learning

5. REGRESSION ALGORITHMS

Regression algorithms belong to the family of supervised Machine Learning algorithms,
which is a subset of Machine Learning algorithms. One of the main features of supervised
learning algorithms is that they model dependencies and relationships between the target
output and input attributes to predict the value for new data. The purpose of regression
is to predict the value of one or more continuous target variables t when we are given
the value of a D-dimensional vector x of input variables. The methodology regards the
algorithm that builds a model based on the characteristics of training data and uses that
model to predict the value for new data [30], [31].

For a given set of learningN elements observations xn, where n = 1, 2, . . . , N together with
the corresponding target values tn, our aim will be to predict the value of t for a new value
of x. In the simplest approach, this can be done by constructing a suitable function Y (x),
whose values for new entries are predictions for the corresponding values of t. In general,
from a probabilistic point of view, we aim to model the predictive distribution p(t|x), as it
expresses our uncertainty about the value of t for each value of x. From this conditional
distribution we can make predictions t, for each value of x, in such a way as to minimize
the expected value of the loss function [32].

In this chapter, therefore, we will examine some basic regression models that we used in
this thesis to predict new values for Kafka.

5.1 Linear Regression

Linear regression is likely one of the most important and widely used regression tech-
niques. It is also one of the simplest methods of regression. One of its main advantages
is the ease of interpreting the results.

When we implement the linear regression algorithm of a partially dependent variable y,
the set of independent variables x = (x1, x2, . . . , xr), where r is the number of predictors,
we consider a linear relationship between the unknown variable y and the variables x.
This relationship is described by the regression equation: y = b0 + b1x1 + . . . + brxr + ϵ.
The parts that make up the equation are:

• b0, b1, . . . , br: the regression coefficients

• x1, x2 . . . , xr: the independent variables x

• ϵ: the random error or noise that is added so that we do not have overfitting

The regression coefficients together with the independent variables give us a linear com-
bination that is the value of the predicted variable y. The noise or random error ϵ is added
to the predicted value to counterbalance the possibility of overfitting the data. Sometimes
ϵ is omitted.

Ι. Kalopisis 46

Adjustable Publisher/Subscriber system with Machine Learning

Linear regression calculates the estimators of the regression coefficients b0, b1, . . . , br which,
in essence, are the predicted weights of the independent variables x1, x2, . . . , xr. Thus,
we can derive a regression function that records the dependence between inputs and
outputs: f(x) = b0 + b1x1 + . . . + brxr. The estimated or predicted response, f(xi), for
each observation i = 1, 2, . . . , n, must be as close as possible to the corresponding actual
response yi. The differences yi − f(xi) for all observations i = 1, 2, . . . , n, are called re-
siduals. Regression refers to the determination of the optimal predicted weights, i.e. the
weights corresponding to the smallest residuals [33], [34], [35].

5.1.1 Linear Regression Performance

To get the best weights, we usually minimize the sum of squared residuals (SSR) for all
observations i = 1, 2, . . . , n:

SSR =
n∑

i=1

(yi − f(xi))
2 (5.1)

This approach is called the method of ordinary least squares.

The coefficient of determination, denoted by R2, tells us how much of the variance in y
can be explained by the dependence of the values on x, for each linear regression model.
But first, let us consider how the formula of R2 emerges:

• The average value of the observed data:

ȳ =
1

n

n∑
i=1

yi (5.2)

• The total sum of squares (proportional to the variance of the data):

SST =
n∑

i=1

(yi − ȳ)2 (5.3)

Through the combination of equations (5.1) and (5.3), the final formula of R2 is:

R2 = 1− SSR

SST

Larger R2 indicates a better fit and denotes that the model can better explain the variation
of the output with different inputs. The value R2 = 1 corresponds to SSR = 0—which is
the perfect fit—since the values of predicted and actual responses fit completely to each
other. An absolute fit, however, may indicate overfitting of the model on the data, which
can cause large generalization error [34].

Ι. Kalopisis 47

Adjustable Publisher/Subscriber system with Machine Learning

5.1.2 Multiple Linear Regression

Multiple linear regression is a case of linear regression with two or more independent
variables. It is the generalized case of linear regression and is what we discussed in the
section 5.1. The simple case of regression is the same but with only one variable x1. If
there are n independent variables, the estimated regression function is f(x1, x2, . . . , xn) =
b0 + b1x1 + . . . bnxn. It represents a regression plane in a (n+1)-dimensional space. The
goal of regression is to determine the values of the weights b0, b1, . . . , bn such that this
plane is as close as possible to the actual responses and yields the minimal SSR [34],
[33].

5.2 Lasso Regression

Lasso regression, or Least Absolute Shrinkage and Selection Operator, is a type of linear
regression that uses shrinkage. Shrinkage is where data values are shrunk towards a
central point, like the mean value. The Lasso procedure encourages simple, sparse mod-
els (i.e. models with fewer parameters). This particular type of regression is well-suited
for models showing high levels of multicollinearity or when one wants to automate certain
parts of model selection, such as variable selection/parameter elimination. Multicollin-
earity generally occurs when there are high correlations between two or more predictor
variables. In other words, one predictor variable can be used to predict the other. This
creates redundant information, skewing the results in a regression model [36].

5.2.1 L1 Regularization

Regularization is a way to avoid overfitting by penalizing high-valued regression coeffi-
cients. In simple terms, it reduces parameters and shrinks (simplifies) the model. This
more ”compact” model will likely perform better at predictions. Regularization adds penal-
ties to more complex models. The less overfitted the model is, the more likely it is to have
very good predictive power.

This principle is called the ”Principle of Economy” or ”Principle of Simplicity” and is known
as the Ockham’s razor. Ockham had claimed that ”No one should make more guesses
than necessary” or, alternatively, ”When one has to choose one of twomodels with identical
predictions, the simplest is chosen” [37].

Lasso regression performs L1 regularization, which adds a penalty equal to the absolute
value of the magnitude of coefficients. This type of regularization can result in sparse mod-
els with few coefficients. Some coefficients can reach zero and, as such, be eliminated
from the model. Larger penalties result in coefficient values closer to zero, which is the
ideal for producing simpler models. On the other hand, L2 regularization (used in Ridge
regression) does not result in elimination of coefficients or sparse models. This makes the
Lasso far easier to interpret than the Ridge [36], [38].

Ι. Kalopisis 48

Adjustable Publisher/Subscriber system with Machine Learning

5.2.2 Performing Lasso Regression

When performing the Lasso Regression algorithm, the goal is to minimize that quantity:

min
{ n∑

i=1

(yi − b0 −
p∑

j=1

xijbj)
2 − λ

p∑
j=1

|bj|
}

(5.4)

which is the same as minimizing the sum of squares with constraint
∑p

j=1 |bj| ≤ s. The
tuning parameter λ controls the strength of the L1 penalty. λ is basically the amount of
shrinkage. When λ = 0, no parameters are eliminated. The estimate is equal with Linear
Regression. As λ increases, more and more coefficients are set to zero and eliminated.
Theoretically, when λ = ∞, all coefficients are eliminated. In addition, bias increases,
where bias is the tendency of a statistic to overestimate or underestimate a parameter.
Last, but not least, when λ decreases, variance increases, with variance being a way of
measuring how far a data set is spread out. It is mathematically defined as the average
of the squared differences from the mean [36], [38], [39], [40].

5.3 LassoLARS Regression

Least-Angle Regression (LARS) is a regression algorithm for high-dimensional data, de-
veloped by Bradley Efron, Trevor Hastie, Iain Johnstone and Robert Tibshirani. LARS is
similar to forward stepwise regression [41].

The LARS procedure works roughly as follows. As with classic Forward Selection, we start
with all coefficients equal to zero, and find the predictor most correlated with the response,
say xj1. We take the largest step possible in the direction of this predictor until some other
predictor, say xj2, has as much correlation with the current residual. At this point, LARS
separated by Forward Selection. Instead of continuing along xj1, LARS proceeds in a
direction equiangular between the two predictors until a third variable xj3 earns its way
into the “most correlated” set. LARS then proceeds equiangularly between xj1, xj2 and
xj3, that is, along the “least angle direction”, until a fourth variable enters, and so on [42],
[43].

In simpler terms and without mathematics, it could be described as follows: at each step, it
finds the feature most correlated with the target. When multiple features are having equal
correlation, instead of continuing along the same feature, it proceeds in an equiangular
direction between the features.

5.3.1 Pros and Cons of LARS algorithm

The LARS algorithm features many advantages, some of which we will list below [41]:

Ι. Kalopisis 49

Adjustable Publisher/Subscriber system with Machine Learning

• It is numerically efficient in contexts where the number of features is significantly
greater than the number of samples.

• It is computationally just as fast as forward selection and has the same order of
complexity as ordinary least squares.

• It produces a full piecewise linear solution path, which is useful in cross-validation
or similar attempts to tune the model.

• If two features are almost equally correlated with the target, then their coefficients
should increase at approximately the same rate. The algorithm, thus, behaves as
intuition would expect; additionally, it is more stable.

• It is easily modified to produce solutions for other estimators, like the Lasso.

The algorithm, of course,also has a drawback [41]:

• Because LARS is based upon an iterative refitting of the residuals, it would appear
to be especially sensitive to the effects of noise.

5.3.2 Mathematical Formulation

LassoLARS is a Lasso model implemented using the LARS algorithm and, unlike the im-
plementation based on coordinate descent, this yields the exact solution, which is piece-
wise linear as a function of the norm of its coefficients.

The algorithm is similar to forward stepwise regression, though instead of including fea-
tures at each step, the estimated coefficients are increased in a direction equiangular to
each one’s correlations with the residual. Instead of giving a vector result, the LARS solu-
tion consists of a curve denoting the solution for each value of the l1 norm of the parameter
vector [42], [44].

Finally, the optimization objective function of LassoLARS is:

1

2 · nsamples

||y −Xw||22 + λ||w||1 (5.5)

5.4 CART Regression

Classification and Regression Trees—or CART, for short—is a term to refer to Decision
Tree algorithms that can be used for classification or regression predictive modeling prob-
lems.

Decision tree builds regression or classification models in the form of a tree structure.
It breaks down a dataset into smaller and smaller subsets while, at the same time, an

Ι. Kalopisis 50

Adjustable Publisher/Subscriber system with Machine Learning

associated decision tree is incrementally developed. The final result is a tree with decision
nodes and leaf nodes. A decision node has two or more branches, each representing
values for the attribute tested. Leaf node represents a decision on the numerical target.
The topmost decision node in a tree which corresponds to the best predictor called root
node. Decision trees can handle both categorical and numerical data [45], [46].

5.4.1 Pros and Cons of CART algorithm

To see whether this algorithm is worth utilizing or not, we have to look at the advantages
and disadvantages it offers [44]. Some advantages of decision trees include:

• Simple to understand and to interpret. Trees can be visualised.

• Requires little data preparation. Other techniques often require data normalization;
dummy variables need to be created and blank values to be removed.

• The cost of using the tree (i.e., predicting data) is logarithmic in the number of data
points used to train the tree.

• Able to handle both numerical and categorical data. Other techniques are usually
specialised in analysing datasets that have only one type of variable.

• Able to handle multi-output problems.

• Uses a white boxmodel. If a given situation is observable in amodel, the explanation
for the condition is easily explained by boolean logic. By contrast, in a black box
model (e.g., in an artificial neural network), results may be more difficult to interpret.

• Possible to validate a model using statistical tests. That makes it possible to account
for the reliability of the model.

• Performs well even if its assumptions are somewhat violated by the true model from
which the data were generated.

On the other hand, there are disadvantages that do not allow us to use this algorithm in
every problem. Some of them are:

• Decision-tree learners can create over-complex trees that do not generalise the data
well. This is called overfitting. Mechanisms such as pruning, setting the minimum
number of samples required at a leaf node, or setting the maximum depth of the
tree, are necessary to avoid this problem.

• Decision trees can be unstable because small variations in the data might result
in a completely different tree being generated. This problem is mitigated by using
decision trees within an ensemble.

Ι. Kalopisis 51

Adjustable Publisher/Subscriber system with Machine Learning

• The problem of learning an optimal decision tree is known to be NP-complete under
several aspects of optimality, and even for simple concepts. Consequently, prac-
tical decision-tree learning algorithms are based on heuristic algorithms such as the
greedy algorithm, where locally optimal decisions are made at each node. Such al-
gorithms cannot guarantee to return the globally optimal decision tree. This can be
mitigated by training multiple trees in an ensemble learner, where the features and
samples are randomly sampled with replacement.

• There are concepts that are hard to learn because decision trees do not express
them easily, such as XOR, parity or multiplexer problems.

• Decision tree learners create biased trees if some classes dominate. It is, therefore,
recommended to balance the dataset prior to fitting with the decision tree.

These are the pros and cons of decision trees. In our case, we have to compare them
each time to observe whether the algorithm is suitable for our type of problem, as well as
for our data.

Ι. Kalopisis 52

Adjustable Publisher/Subscriber system with Machine Learning

6. CLASSIFICATION ALGORITHMS

In Machine Learning and Statistics, Classification is a supervised learning technique, just
like the Regression we examined earlier. Classification is the process by which a computer
program recognizes which category (from a set of known categories) a new observation
belongs to. This decision is based on a set of training data containing other observations
whose categories are known. The corresponding unsupervised procedure is known as
clustering, and involves grouping data into categories based on somemeasure of inherent
similarity or distance. One of the best known examples of classification is the Iris Flower
dataset [47] which includes 3 flower categories (Iris Virginica, Iris Versicolor, Iris Setosa)
and new ones are categorized according to their four characteristics:

• Leaf length of calyx flower in centimeters (cm)

• Leaf width of calyx in centimeters (cm)

• Horseshoe length in centimeters (cm)

• Horseshoe width in centimeters (cm)

We will analyze the problem of classification from a more mathematical point of view.
The goal in classification is to take an input vector x and assign it to K distinct classes
Ck where k = 1, 2, . . . , K. In the most common case, classes are considered unrelated,
therefore each entry is assigned to a single class. The entry area is therefore divided into
decision areas whose boundaries are called decision boundaries or decision surfaces.

In comparison to the regression methods, the target variable t was simply the vector of
real numbers whose value we intended to calculate. In the case of classification, we can
interpret the value of the target variable tk as the input vector x belongs to the class Ck

[33].

After having gained an understanding of the key points of classification, in this chapter we
will take a look at some techniques, as well as analyze their effectiveness on our data.
We will also observe how we can tackle the problem of continuous data classification.

6.1 K-NN Classification

6.1.1 K-NN algorithm

K − NearestNeighbors is a neighbors-based classification. This type of classification is
an instance-based learning or non-generalizing learning: it does not attempt to construct
a general internal model, but simply stores instances of the training data. Classification
is computed from a simple majority vote of the nearest neighbors of each point: a query
point is assigned to the data class which has the most representatives within the nearest
neighbors of the point [48].

Ι. Kalopisis 53

Adjustable Publisher/Subscriber system with Machine Learning

The training examples are vectors in a multidimensional feature space, each with a class
label. The training phase of the algorithm consists only of storing the feature vectors and
class labels of the training samples.

In the classification phase, k is a user-defined constant, and an unlabeled vector (a query
or test point) is classified by assigning the label which is most frequent among the k training
samples nearest to that query point [49].

Figure 6.1: K-NN classification example

As we can note from the picture, where the new data will be classified depends on how
many neighbors are close to it from each class. Of course, we observe that as k changes,
the type/class of neighbors close to k can also change. From this we understand that the
correct choice of the hyperparameter, is key.

6.1.2 Parameter selection

The best choice of k depends on the data. Overall, larger values of k reduce effect of the
noise on the classification, but make boundaries between classes less distinct. A good
k can be selected by various heuristic techniques. The special case where the class is
predicted to be the class of the closest training sample (i.e. when k = 1), is known as the
nearest neighbor algorithm.

The accuracy of the k-NN algorithm can be severely degraded by the presence of noisy
or irrelevant features, or when the feature scales are not consistent with their importance.
Much research effort has been put into selecting or scaling features to improve the classi-
fication. A particularly popular approach is the use of evolutionary algorithms to optimize

Ι. Kalopisis 54

Adjustable Publisher/Subscriber system with Machine Learning

feature scaling. Another popular approach is to scale features according to the mutual
information of the training data with the training classes.

It is easy, therefore, to grasp the importance of the hyperparameter k for the performance
of the algorithm. It becomes apparent that the performance and number of neighbors
the user needs to define, is directly related to the type of problem, as well as the data.
Another parameter that can affect the performance of the algorithm through the number
of neighbors is the metric function we use to measure the distance of new unclassified
data from neighbors. The best choice of k can be made using techniques such as cross-
validation or GridSearch, which is essentially a form of exhaustive search.

6.1.3 Distance functions

To calculate distances, three distance metrics [50] that are often used are:

• Euclidean Distance: Euclidean distance is one of the most commonly used dis-
tance metric. It is calculated using Minkowski Distance formula (see below) by set-
ting hyperparameter p’s value to 2. This will update the distance d formula as follows:

deuclidean =

√√√√ n∑
i=1

(xi − yi)2 (6.1)

Euclidean distance formula can be used to calculate the distance between two data
points in a plane.

• Manhattan Distance: We use Manhattan Distance when we need to calculate the
distance between two data points in a grid-like path. Distance d will be calculated
using an absolute sum of difference between its Cartesian co-ordinates, as indicated
below:

dmanhattan =
n∑

i=1

|xi − yi| (6.2)

where, n-number of variables, xi and yi are the variables of vectors x and y, re-
spectively, in the two dimensional vector space. i.e. x = (x1, x2, x3, . . .) and y =
(y1, y2, y3, . . .). Manhattan distance is also known as Taxicab Geometry, City Block
Distance, etc.

• Minkowski Distance: Minkowski distance is a metric in Normed vector space, on
which a norm is defined. The distance can be calculated using the formula below:

dminkowski =

(n∑
i=1

|xi − yi|p
) 1

p

(6.3)

Minkowski distance is the generalized distance metric. In this context, generalized
means that we can manipulate the above formula to calculate the distance between

Ι. Kalopisis 55

Adjustable Publisher/Subscriber system with Machine Learning

two data points in various ways. We can manipulate the value of hyperparameter p
and calculate the distance in three different ways:

1. p = 1, Manhattan Distance
2. p = 2, Euclidean Distance
3. p = ∞, Chebychev Distance

6.2 SVM Classification

A Support Vector Machine (SVM) is a supervised Machine Learning algorithm which can
be used for both classification or regression challenges. However, it is mostly used in
classification problems. In the SVM algorithm, we plot each data item as a point in n-
dimensional space (where n is number of features we have) with the value of each feature
being the value of a particular coordinate. Then, we perform classification by constructing
a hyper-plane or set of hyper-planes in a high or infinite dimensional space. Intuitively, a
good separation is achieved by the hyper-plane that has the largest distance to the nearest
training data points of any class (so-called functional margin) since, in general, the larger
the margin, the lower the generalization error of the classifier [51]. The figure below shows
an example of a decision function:

Figure 6.2: SVM classification example

6.2.0.1 Large-margin hyperplane

SVM is known as a large margin classifier. The distance between the line and the closest
data points is referred to as the margin. The best or optimal line that can separate the two
classes is the line that has the largest margin. This is called the large-margin hyperplane.

Ι. Kalopisis 56

Adjustable Publisher/Subscriber system with Machine Learning

The margin is calculated as the perpendicular distance from the line to only the closest
points.

6.2.0.2 Support Vectors

As themargin is calculated by taking into account only specific data points, support vectors
are data points that are closer to the hyperplane and influence its position and orientation.
By using these support vectors, we maximize the margin of the classifier. Deleting the
support vectors will change the position of the hyperplane. They are the points that help
us build our SVM.

In other words, support vectors are imaginary or real data points that are considered land-
mark points in order to determine the shape and orientation of the margin. The objective
of the SVM is to find the optimal separating hyperplane that maximizes the margin of the
training data [49], [51].

6.2.1 Linear SVM Classification

According to the previous section, the linear SVM is the basic case of the SVM classifier
according to which we find the maximum-margin hyperplane and classify our data accord-
ing to the side of the hyperplane they are on. As such, in this section we will explore the
basic mathematical concepts of linear SVM in more detail.

Our training dataset consists of n points of the form: (−→x1, y1), (
−→x2, y2), . . . , (

−→xn, yn) and the
yi is either 1 or -1, depending on the class to which−→xi belongs. Each−→xi is a p-dimensional
real vector. As mentioned earlier, our purpose is to find the ”maximum-margin hyperplane”
that separates the dataset of −→xi that have yi = 1, from −→xi that have yi = −1, and to
maximize the distance of each class from the hyperplane.

Each hyperplane can be written as a set of −→x points that satisfy the relation:

−→w · −→x − b = 0 (6.4)

where−→w is the normal vector to the hyperplane. The parameter b
||−→w || determines the offset

of the hyperplane from the origin along the normal vector −→w [49], [51].

As we can see in the picture, an area is created around the hyperplane. What the algorithm
practically tries to do is maximize this area. Unfortunately, however, this is not always
easy; as a result, there are 2 subcategories of the algorithm that we believe are worth
mentioning:

• Hard-margin: Essentially, it describes the aforementioned algorithm, according to
which the data can be perfectly separated into two classes and, consequently, we
attempt to maximize the distance between them. In this case, the maximum-margin
hyperplane is that which lies halfway between the two.

Ι. Kalopisis 57

Adjustable Publisher/Subscriber system with Machine Learning

Figure 6.3: Linear SVM maximum-margin hyperplane

Geometrically, the distance between these two hyperplanes is 2
−→w , so, to maximize

the distance between the planes, we aim to minimize −→w . The distance is computed
using the distance from a point to a plane equation. We also have to prevent data
points from falling into the margin, and thus we add the following constraint for every
point:

• −→w · −→x − b ≥ 1, if yi = 1,
• −→w · −→x − b ≤ −1, if yi = −1

These constraints state that each data point must lie on the correct side of the mar-
gin. An important consequence of this geometric description, is that the max-margin
hyperplane is completely determined by those −→xi that lie nearest to it. These −→xi are
called support vectors, as mentioned before [49].

• Soft-margin: This case is a variant of SVM, in which the data is not completely
linearly separable. A key role in this case is played by the hinge loss function:
max(0, 1− yi(

−→w · −→xi − b)) [52].
The yi is the target class (1, -1) and the −→w · −→xi − b is the return of the algorithm for
the i-th point.
This function returns zero if −→xi lies on the correct side of the margin. For data on the
wrong side of the margin, the function’s value is proportional to the distance from

Ι. Kalopisis 58

Adjustable Publisher/Subscriber system with Machine Learning

the margin. So we come to the conclusion that we need to minimize:[
1

n

n∑
i=1

max(0, 1− yi(
−→w · −→xi − b))

]
+ λ||−→w ||2 (6.5)

The parameter λ determines the trade-off between increasing the margin size and
ensuring that the −→xi lies on the correct side of the margin. Thus, for sufficiently small
values of λ, the second term in the loss function will become negligible; hence, it
will behave similar to the hard-margin SVM, if the input data are linearly classifiable
[49].

6.2.2 RBF SVM Classification

The linear support vector machine can also be applied to datasets that have non-linear
decision limits. The idea is to transform the data from the original coordinate space in x,
to a new space Φ(x), so that a linear decision limit can be used to separate the records
in the transformed space. After the transformation, the methodology presented in Section
6.2.1 can be applied to find a linear decision limit in the transformed space [53].

6.2.2.1 Kernel Trick

The calculations needed for this conversion are sometimes expensive and are likely to
suffer from the curse of dimensionality. An innovative solution to this problem appears in
the form of a method called kernel trick.

The kernel trick is a method of calculating the similarity in the transformed space by using
the original set of features. The similarity function of records K, which is computed in
the original features space, is known as the kernel function [54]. The kernel trick helps
to address some of the concerns about implementing nonlinear support vector machines
[49]:

1. The exact form of the imaging function Φ will not need to be known, as the core
functions used in nonlinear support vector machines must satisfy a mathematical
principle known as Mercer’s theorem [55]. This principle ensures that kernel func-
tions can always be expressed as the interior product between two input vectors
in a multidimensional space. The transformed kernel space of the support vector
machine is called the reproducing kernel Hilbert space - RKHS.

2. Computing internal products using kernel functions is significantly more economical
than using the transformed set of characteristics Φ(x).

3. Since the calculations are made in the original space, issues related to the curse of
many dimensions, are avoided.

Ι. Kalopisis 59

Adjustable Publisher/Subscriber system with Machine Learning

6.2.2.2 RBF SVM in practice

As discussed earlier, the radial basis function kernel, or RBF kernel, is a popular kernel
function used in various kernelized learning algorithms. The SVM algorithm is the one
most commonly encountered. Having learned the basics about kernel functions and what
they are, we need to see how this kernel function is applied to the SVM algorithm.

The RBF SVM algorithm (implemented by sklearn) has two hyperparameters that must
be provided by the user. Naturally, the values of these hyperparameters affect how the
algorithm works and, therefore, influence its results and efficiency in classifying new data.
These two parameters are called gamma and C.
The gamma parameter determines how far the influence of a single training example
reaches, with low values meaning far and high values meaning close. The gamma para-
meters can be seen as the inverse of the radius of influence of samples selected by the
model as support vectors. The C parameter trades off correct classification of training
examples against maximization of the decision function’s margin. For larger values of C,
a smaller margin will be accepted if the decision function is better at classifying all training
points correctly. A lower C will encourage a larger margin, therefore a simpler decision
function, at the cost of training accuracy. In other words, C behaves as a regularization
parameter within the SVM.

The behavior of themodel is very sensitive to the gamma parameter. If gamma is too large,
the radius of the area of influence of the support vectors only includes the support vector
itself, and no amount of regularization with C will be able to prevent overfitting. When
gamma is very small, the model is too constrained and cannot capture the complexity or
shape of the data. The region of influence of any selected support vector would include
the whole training set. The resulting model will behave similarly to a linear model with a
set of hyperplanes that separate the centers of high density of any pair of two classes.
Smooth models (with lower gamma values) can be made more complex by increasing the
importance of classifying each point correctly (through larger C values).

Finally, one can also understand that, for some intermediate values of gamma, we get
equally performing models when C becomes very large: it is not necessary to regularize
by enforcing a larger margin. The radius of the RBF kernel alone acts as a good structural
regularizer. In practice, though, it might still be interesting to simplify the decision function
with a lower value of C, so as to favor models that use less memory and are faster to
predict [44].

6.3 Data splitting into categories

As noted in Section 4, the data we received from Kafka’s measurements and experiments
include continuous numerical data. By numerical data, we mean continuous data and not
discreet data that are usually represented as categorical data. Integers and floats are the
most common and widely used types of numeric data for continuous numeric data.

Ι. Kalopisis 60

Adjustable Publisher/Subscriber system with Machine Learning

In this chapter, we referred to the basics of some classification algorithms. We must,
therefore, examine, from this point on, whether these models and algorithms have the ap-
propriate predictive power to provide us with satisfactory forecasts for the new test data.
The purpose of this work is to create Machine Learning models that will be trained with
input data―essentially, the settings of the Kafka pub/sub system―and correspond to its
performance; and when they receive new data, to be able to predict the corresponding
performance of the system with those settings. However, as we mentioned before, our
data are numerical. This means that they do not belong to a specific category. Although
the numerical data can be fed directly to Machine Learning models, in the case of classi-
fication, our model will take each value as a separate feature/category.

It is therefore understood that, in order to be able to properly apply the classification al-
gorithms to our data, we must divide them into corresponding categories/buckets. Each
bucket will be a category in which the data will be grouped. In practice, our input data
have a range of values from x0 (the smallest value) to xn (the largest value). As such,
each bucket will be a part of this value range. When new data is introduced into the
model, it will be able to predict which category it belongs to and, thus, predict Kafka’s sys-
tem performance with the new data/settings with relative accuracy. Accuracy depends on
the number of buckets; the smaller the number of buckets is, the smaller the accuracy of
actual value will be because each bucket corresponds to a wider range of values. On the
contrary, the greater the number of buckets is, the smaller their value range will be, so the
greater the accuracy of the actual predicted value.

For this purpose we utilized the qcut() function of the Python Pandas library. This function
essentially splits variables into equal-sized buckets based on rank, or based on sample
quantiles. In this thesis, we tested different bin sizes [2, 3, 5, 7, 10] to see which bucket
number the algorithm would handle best. When the number is small, there may be more
accuracy in the correct prediction of the category. However, the range is large, so the
prediction of actual value, as discussed in the previous paragraph, will be relatively small.
On the other hand, as the number of buckets grows, the accuracy in forecasting the cat-
egory decreases, though the accuracy in predicting the actual value practically increases
due to the small value range of each category. Therefore, we will attempt to find the right
balance between the number of bins and the forecast of the real values of the new data
[56], [57].

Ι. Kalopisis 61

Adjustable Publisher/Subscriber system with Machine Learning

7. IMPLEMENTATION AND RESULTS

In the previous chapters we took notice of the basic parts of Pub/Sub systems, observed
the setup with which the experiments were carried out and the data were collected; we
also explained the regression and classification algorithms we used in this thesis. In this
section, we will delve deeper on how we implemented the algorithms, how we measured
their performance, and will present their results. The algorithms were implemented with
the Python programming language and using one of its most well-known libraries, sklearn.
Its full name is Scikit-learn, and it is a free machine learning library for Python. It features
various learning algorithms and performance metrics and also supports Python numerical
and scientific libraries such as NumPy and SciPy. We also made use of two well-known
Python libraries, NumPy and Pandas, to read and format the data.

7.1 Cross Validation

The error estimation helps the training algorithm to make the model selection, i.e. to find
a model with the right complexity, which is not prone to over-fitting. The more complex the
model, the greater the over-fitting. Once the model is built, it can be applied on the test
set to predict the expected values or categories of records, depending on whether we are
talking about a regression or classification algorithm.

It is often useful to measure the performance of the model in the test set, because such
a measure provides an unbiased estimate of the generalization error of the model. The
accuracy or degree of error calculated by the test set can also be used to compare the
relative performance of different models in the same field. We will therefore consider the
cross-validation method, which is often used to evaluate the performance of a machine
learning model.

Cross-Validation (CV) is a statistical technique for estimating unknown parameters of
a model or for estimating its performance. We could say that the estimation of unknown
parameters is part of the performance estimation of themodel, as its performance depends
on its parameters and, as such, the correct estimation and prediction of the parameters
gives us an overall better performance of the model. In this technique, each record is used
the same number of times as the others for training, and exactly once for testing.

To illustrate this method, let us assume that the data is split into two equal subsets. Firstly,
we select one of the two subsets for training and the other for testing. Next, we alternate
the roles of the subsets so that the set used for training can now be used for test, and
vice versa. This approach is called double cross-validation. The total error is obtained by
averaging the errors of the two executions. In this example, each record is used exactly
once for training and once for checking.

The k-fold cross-validation generalizes the above example by dividing the data into k
segments of equal size. During each run, only one of the sections is selected for testing

Ι. Kalopisis 62

Adjustable Publisher/Subscriber system with Machine Learning

and the rest for training. This process is repeated k times, so that each section is used for
test only once. That is, in each iteration, a different section is used for verification, while
the rest is used for training. Again, the total error is calculated by averaging k repetitions.

The procedure and steps of the algorithm are as follows:

1. Randomly shuffle the dataset

2. Divide the dataset into k groups

3. Define a group as the test dataset

4. Define the remaining k-1 as training dataset

5. Train the model with the training dataset

6. Evaluate the model with the test dataset

7. Repeat of steps (3), (4), (5) and (6) for k-1more repetitions with different test dataset
each time (and therefore in parts different training sets)

8. Select the best model based on the evaluation scores

Figure 7.1: K-fold Cross Validation

A special case of k-fold cross-validation is one that sets k = N, where N is the number of
records in the data set. This approach is called leave one out. Each test set contains
only one entry and all the others (N-1) constitute the training set. This approach has
the advantage of using as much data as possible for education. Moreover, test sets are
mutually exclusive and virtually cover the entire data set. A drawback of this method is
that it is computationally expensive due to the N repetitions. Furthermore, since each test
set contains only one record, the performance variation expected to be high [44], [49],
[58].

Ι. Kalopisis 63

Adjustable Publisher/Subscriber system with Machine Learning

7.2 Metrics

As we as mentioned in the previous sections, we used two categories of algorithms for
the purposes of this dissertation; the first category being regression algorithms to examine
whether it is possible to accurately predict system performance. The second category
involves classification algorithms. With this category, we aim to classify the training data
into categories, according to their performance, and assess if we can predict the category
of test data.

Understandably, in order to determine the reliability of each algorithm, we need to measure
its performance. We can achieve this with some mathematical functions. Each function is
a different metric. The variety of metrics shows us the efficacy of the algorithm from differ-
ent points of view, and helps us to better understand its behavior and actual performance.

Unfortunately, the two categories of algorithms feature several differences in the way and
in what they predict. As we have mentioned, regression algorithms essentially predict
values, while classification algorithms predict categories. Therefore, their metrics could
not be the same as they also depend on the type of algorithm. Below we note the corres-
ponding metrics we used in each category.

7.2.1 Regression Algorithms Metrics

The metric functions we used in the regression algorithms include the following:

• R2 score: R-squared (R2) represents the proportion of variance of y that has been
explained by the independent variables in the model. Whereas correlation explains
the strength of the relationship between an independent and dependent variable, R-
squared explains to what extent the variance of one variable explains the variance
of the second one. Thus, if the R2 of a model is 0.50, then approximately half of the
observed variation can be explained by the model’s input. It provides an indication
of goodness of fit and, therefore, a measure of how well unseen samples are likely
to be predicted by the model, through the proportion of explained variance. The cal-
culation type is:

R2(y, ŷ) = 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − ȳ)2
(7.1)

where ȳ = 1
n

∑n
i=1 yi and

∑n
i=1(yi − ŷi)

2 =
∑n

i=1 ϵ
2
i .

In simpler words, we could say that the formula is interpreted as follows:

R2 = 1− Unexplained V ariation

Total V ariation

The best possible score is 1.0 and it can also be negative. as the model can be

Ι. Kalopisis 64

Adjustable Publisher/Subscriber system with Machine Learning

arbitrarily worse. A constant model that always predicts the expected value of y,
disregarding the input features, would get a R2 score of 0.0 .

• Explained Variance Score: The explained variance score metric computes the ex-
plained variance regression score. It measures the proportion to which a mathem-
atical model accounts for the variation (dispersion) of a given data set. Dispersion is
the extent to which a distribution is stretched or squeezed. If ŷ is the estimated target
output, y the corresponding (correct) target output, and V ar is Variance, the square
of the standard deviation, then the explained variance is estimated as follows:

explained_variance(y, ŷ) = 1− V ar{y − ŷ}
V ar{y}

(7.2)

The best possible score is 1.0, while lower values are worse [44], [59].

• Mean Absolute Error (MAE): The mean absolute error function is a risk metric cor-
responding to the expected value of the absolute error loss or l1-norm loss. It is
also a measure of errors between paired observations expressing the same phe-
nomenon. If ŷi is the predicted value of the i-th sample, and yi is the corresponding
true value, then the mean absolute error (MAE) estimated over nsamples is defined
as:

MAE(y, ŷ) = 1

nsamples

nsamples−1∑
i=0

|yi − ŷi| . (7.3)

The mean absolute error uses the same scale as the data being measured. This is
known as a scale-dependent accuracy measure and, therefore, cannot be used to
make comparisons between series using different scales. Lower values are better
favored [44], [60].

• Mean Squared Error (MSE): The mean square error function is a risk metric corres-
ponding to the expected value of the squared (quadratic) error or loss. The average
of the squares of the errors that is measured, is the average squared difference
between the estimated values and the actual value. If ŷi is the predicted value of
the i-th sample, and yi is the corresponding true value, then the mean squared error
(MSE) estimated over nsamples is defined as:

MSE(y, ŷ) = 1

nsamples

nsamples−1∑
i=0

(yi − ŷi)
2. (7.4)

The MSE is a measure of the quality of an estimator. It is always non-negative, and
values closer to zero are preferred [44], [61].

• Median Absolute Error (MedAE): The median absolute error is very useful, as it
essentially is insensitive to outliers (as long as there are not too many of them). This
is because it is the median of all absolute values of the residuals, and the median is

Ι. Kalopisis 65

Adjustable Publisher/Subscriber system with Machine Learning

unaffected by values at the tails. As a result, this loss function can be used to perform
robust regression. Robust regression is a form of regression analysis designed to
overcome some limitations of traditional parametric and non-parametric methods. If
ŷi is the predicted value of the i-th sample, and yi is the corresponding true value,
then the median absolute Error (MedAE) estimated over nsamples is defined as:

MedAE(y, ŷ) = median(| y1 − ŷ1 |, . . . , | yn − ŷn |). (7.5)

Note that using the median absolute error only corrects for outliers in the respon-
se/target variable, not for outliers in the predictors/feature variables [44].

7.2.1.1 Negative values of metrics

As can be seen not only from the mathematical formulas of the metrics we presented
above, but also from what the latter actually represent, the quantities they provide should
be positive numbers. However, as we will later discuss in the presentation of the results,
some of the metrics return negative values. This applies to the following metrics:

• Mean Absolute Error (MAE)

• Mean Squared Error (MSE)

• Median Absolute Error (MedAE)

According to the sklearn library module used to take the metric functions to measure the
effectiveness of the predictions, some functions return a positive score and others a neg-
ative one [44]. In more detail:

• functions that end with _score return a value for maximization; the higher, the better.

• functions ending with _error or _loss return a value for minimization; the lower, the
better.

Nonetheless, there is a reasonable explanation for this choice of library developers: The
unified scoring API of sklearn always maximizes the score, so scores which need to be
minimized are negated in order for the unified scoring API to work correctly. The score
that is returned is therefore negated when it is a score that should be minimized and left
positive if it is a score that should be maximized.

The actual score of the MAE, MSE, MedAE, is simply the positive version of the number
we are getting.

Ι. Kalopisis 66

Adjustable Publisher/Subscriber system with Machine Learning

7.2.2 Classification Algorithms Metrics

For the classification algorithms we used the classification_report() function of sklearn.
The classification report visualizer displays the accuracy, precision, recall, F1, and sup-
port scores for the classification model. The classification report shows a representation
of the main classification metrics on a per-class basis. This gives a deeper intuition of the
classifier behavior over global accuracy, which can mask functional weaknesses in one
class of a multiclass problem.

The metrics are defined in terms of true and false positives, and true and false negatives.
Positive and negative in this case are generic names for the classes of a binary classific-
ation problem. Therefore a true positive occurs when the actual class is positive, similarly
to the estimated class. A false positive emerges when the actual class is negative but the
estimated class is positive [62], [63].

The analysis of metrics is necessary to understand what they represent and how effective
our model is:

• Accuracy: Classification Accuracy is what we usually point to when using the term
accuracy. It features the ratio of number of correct predictions to the total number of
input samples:

Accuracy =
Number of correct predictions

Total number of predictions
(7.6)

It works well only if there is an equal number of samples belonging to each class.
For example, consider that there are two classes, A and B, in our training set, and
class A has many more samples than class B. Then, our model can easily get very
high training accuracy simply by predicting every training sample belonging to class
A. When class A has 50% of samples then accuracy is 50%, if we once again predict
all the samples belonging to class A.
We can easily understand that classification Accuracy is a great metric, although
gives us a false sense of achieving high accuracy [44], [64].

• Precision: Precision is the ability of a classifier not to label an instance that is ac-
tually negative, as positive. For each class it is defined as the ratio of true positives
to the sum of true and false positives. In other words, “for all instances classified
positive, what percent was correct?”. The mathematical formula is:

Precision =
true_positive

true_positive + false_positive
(7.7)

The best value is 1 and the worst value is 0. When true_positive+false_positive ==
0, precision returns 0 [44], [62], [63].

• Recall: Recall is the ability of a classifier to find all positive instances. For each
class it is defined as the ratio of true positives to the sum of true positives and false

Ι. Kalopisis 67

Adjustable Publisher/Subscriber system with Machine Learning

negatives. That is, “for all instances that were actually positive, what percent was
classified correctly?”. The formula is:

Recall =
true_positive

true_positive + false_negative
(7.8)

The best value is 1 and theworst value is 0. When true_positive+false_negative ==
0, recall returns 0 [44], [63].

• F1: The F1 score is a weighted harmonic mean of precision and recall such that the
best score is 1.0 and the worst is 0.0. Strictly speaking, F1 scores are lower than
accuracy measures as they embed precision and recall into their computation. The
relative contribution of precision and recall to the F1 score are equal. The formula
for the F1 score is:

F1 =
2 ∗ (precision ∗ recall)

(precision + recall)
(7.9)

As a rule of thumb, the weighted average of F1 should be used to compare classifier
models, not global accuracy [44], [63].

• Support scores: Support is the number of actual occurrences of the class in the
specified dataset. Imbalanced support in the training data may indicate structural
weaknesses in the reported scores of the classifier and could indicate the need for
stratified sampling or rebalancing. Support does not change between models but
instead diagnoses the evaluation process [63].

7.3 Hyperparameter optimization

7.3.1 Grid Search

In machine learning, hyperparameter optimization or tuning is the problem of choosing a
set of optimal hyperparameters for a learning algorithm. A hyperparameter is a parameter
whose value is used to test the learning process. Consequently, they should be adjusted
properly so as to provide us with the best possible result. In terms of regression and clas-
sification algorithms, improving the result implies better predictive power of the algorithm
and the model in general. Of course, the improvement is not only about the performance
of the algorithm in terms of results, but also in terms of speed. Many times optimal tuning
of the hyperparameters leads the algorithm towards producing results faster. However,
we must remember that the hyperparameters of a model also depend on the training data.
A change in the variation of data can give us other hyperparameters that are optimal for
the specific data.

There are many approaches to finding the optimal hyperparameters of ML algorithms.
Some of them are:

Ι. Kalopisis 68

Adjustable Publisher/Subscriber system with Machine Learning

• Grid Search

• Random search

• Bayesian optimization

• Gradient-based optimization

• Evolutionary optimization

alongside many more algorithms and techniques.

In this thesis, we employed the Grid Search technique to configure the best hyperparamet-
ers. Grid Search is the most traditional way of performing hyperparameter optimization,
which is simply an exhaustive searching through a manually specified subset of the hy-
perparameter space of a learning algorithm. A grid search algorithm must be guided by
some performance metric, typically measured by cross-validation on the training set or
evaluation on a hold-out validation set. Grid search is a slow technique as it can do many
iterations of the algorithm execution, depending on the number and range of parameters
given to it. But it is also a very effective solution for finding the optimal hyperparameters
[44], [65].

We used the GridSearchCV function provided by the sklearn library. In this implementa-
tion of the library, the estimator parameters are optimized by cross-validated grid-search
over the parameter grid.

7.3.2 Algorithm parameters

The parameters we examined in each algorithm are:

• Linear Regression: This model is the basis on which the other linear regression
models are built and, as a result, it is, in essence, the simplest model and does
not have any special parameter that requires adjustment. The default values of the
parameters fit_intercept = True and normalize = False were used.

• Lasso Regression: In this algorithm we did not give a value or any range of values
to parameter a. With this technique, the LassoCV () implementation of the sklearn
decides for itself which value is better, depending on the data. Furthermore, the
data were not normalized as this is done automatically by using the parameters
fit_intercept = True and normalize = True. Finally, this implementation incorpor-
ates cross-validation to determine the splitting strategy.

• LassoLARS Regression: As in the previous regression algorithm, so in this one,
which is a variation of the former, we did not use exhaustive search (Grid Search).
Instead, we gave the algorithm a range of 10000 values of the hyperparameter a
to search and decide the, itself, which value is better according to our data. Addi-
tionally, as before, the data were normalized by the model through the parameters

Ι. Kalopisis 69

Adjustable Publisher/Subscriber system with Machine Learning

fit_intercept = True and normalize = True. Lastly, we utilized the LassoLarsCV ()
implementation of the sklearn that performs cross-validation, so as to determine the
splitting strategy.

• CART Regression: Since this algorithm uses decision trees to regress and predict
new values, the two most basic parameters we examined with Grid Search to find
their optimal combination based on the data, are the maximum depth of the tree and
the minimum number of samples required to be at a leaf node. At the standard of
the sklearn DecisionTreeRegressor() function we used, these two parameters are
referred to as max_depth and min_samples_leaf , respectively. Moreover, as a cri-
terion for the separation of data at each level, we used the metric error measurement
”MSE” for the mean squared error, which is equal to variance reduction as feature
selection criterion and minimizes the l2 loss using the mean of each terminal node.

• K-NN Classification: The number of neighbors is the most important parameter
of the K-NN algorithm and we used exhaustive search (grid search) to find its op-
timal value for each dataset, is the number of neighbors or otherwise n_neighbors,
as corresponding to the standard of the sklearn function that was used. There are
other parameters of the classification algorithm, such as the nearest neighbor calcu-
lation algorithm which we set to auto so it will attempt to decide the most appropriate
algorithm based on the data; the metric for measuring the distance from the data
points where we used the Minkowski metric (p = 2), and the weight of the points
which, in essence, is how important each point is (depending on its distance from
the new unclassified point), where we considered uniform weight for all points.

• Linear-SVM Classification: In this algorithm, the parameter we set after searching
in a range of values is the regularization parameter C. The regularization parameter
C defines the balance between maximizing the class margin and successfully cat-
egorizing the training data. The higher the C value, the higher the penalty for in-
correct training data classification. Since we are talking about linear SVM then the
kernel is automatically defined as linear. In addition, we used the l2 function, which
is the default function in the implementation of the Linear-SVM algorithm by sklearn,
as a penalty function. l2 is, in essence, the normalization Ridge Regression function
with formula: λ||w||22. Finally, the fault tolerance is small enough to be able to have
good and accurate results without much error margin.

• RBF-SVM Classification: Since this algorithm is a variant of the linear-SVM, the
parameters could not be vastly different. We have set the kernel in this variant of
SVM classifier as RBF (we have explained in a previous chapter what the difference
between a linear and rbf kernel is). Exhaustive search in this algorithm was used to
find the best combination of the parameters C and gamma for the input data. As we
said before, the C parameter defines the balance between maximizing class margin
and successfully categorizing training data, while the gamma parameter scales the
influence of each training data. The higher the value of gamma, the faster (close) the
effect weakens. Finally, as before, we once again set the error tolerance to small,
so we have good and accurate results without much error margin.

Ι. Kalopisis 70

Adjustable Publisher/Subscriber system with Machine Learning

7.4 Model training and evaluation

In this section we will present the results of the models. This section shows how effect-
ive (after training) each model was, according to the metrics, in predicting the estimated
performance of the Kafka system in terms of ”Records/sec”, ”MB/sec”, ”avg latency” and
”max latency”. These four ”targets” are essential measures of system performance. That
is, the higher the ”Records/sec” and the ”MB/sec”, or the lower the ”avg latency” and the
”max latency”, the more efficient our system is. Therefore, we will assess how the models
can predict the values of the measures we mentioned, to ”find out” which values of the
parameters of the system―e.g. batch.size, message.size, linger.ms etc.―give us the de-
sired values of these targets, so that we can properly configure the system and get high
”Records/sec” and ”MB/sec”, as well as low ”avg latency” and ”max latency”.

7.4.1 Predicted targets

In order to gain a better understanding of the diagrams, as well as the results of the al-
gorithms in general, it is necessary to explain, in further detail, what these ”targets” are.

• Records/sec: the ”Records/sec”, as it is easily understood, regards how many re-
cords the producer can send to the system without considering the size of each
record. The higher the number, the better throughput our system has.

• MB/sec: corresponding to the previous target, MB/sec indicates the amount of data
(in MB) that the producer can send to the system. The message size multiplied by
the Records/sec is almost this number, along with a small overhead added by the
system. The higher the MB/sec, the better throughput our system has.

• Avg Latency: ”Avg Latency” is the average time it takes for the message to reach
each consumer. This can show us the overall average performance of the system.
Ιn contrast to the previous 2 targets, the shorter the average latency is, the better
performance our system has.

• Max Latency: corresponding to the Avg Latency, so the ”Max Latency” shows the
maximum time it takes for a record/message to reach the consumer. It is important
that the max latency is low, because it shows that our system is working well, even
under ”pressure”.

You can find the code for the algorithms, as well as the images and results at the following
link: https://github.com/GiannisKalopisis/Adjustable-pub-sub-system/tree/master/ML.

7.4.2 Regression Algorithms

In this section we will present the results of the categorization algorithms. Because the
data followed a logarithmic distribution, we applied the logarithmic function to them (f(x) =

Ι. Kalopisis 71

https://github.com/GiannisKalopisis/Adjustable-pub-sub-system/tree/master/ML

Adjustable Publisher/Subscriber system with Machine Learning

log10(x)) to convert them to linear and, thus, obtain better results, especially for metrics
that measure error/distance, i.e. Mean Absolute Error, Mean Squared Error and Median
Absolute Error. By using the logarithmic function on the data, a general improvement
of the results of about 20% was observed in the metric R2 and Explained Variance, and
the distance/error in the metrics Mean Absolute Error, Mean Squared Error and Median
Absolute Error was dramatically reduced. As we mentioned in Section 7.2.1.1, these 3
metrics return negative values, due to the unified API of the sklearn library. Though, in
order to be able to represent them correctly in the diagrams, as well as compare them,
the absolute value of these metrics was used.

The results are organized by the ”target” (”Records/sec”, ”MB/sec”, ”Avg latency” and ”Max
latency”) we want to predict, so that we can better gauge how effectively we can predict
them. For each metric there are two diagrams. The first one shows the behavior of the
algorithms per datafile given to them through use of the cross-validation technique, while
the second one showcases the behavior of the algorithms and their predictive ability in
a dataset that has not been trained, which the algorithms ”see” for the first time. That
test-set is a part (20%) of the training dataset.

Finally, I consider it necessary to point out, for a better understanding of the diagrams,
that, as regards the metric R2 and Explained Variance, the higher value is better, while
for the metrics Mean Absolute Error, Mean Squared Error and Median Absolute Error the
lower value is better.

7.4.2.1 Records/sec results

Ι. Kalopisis 72

Adjustable Publisher/Subscriber system with Machine Learning

• R2:

Figure 7.2: Records/sec predicting accuracy using R2 metric with cross-validated data (higher is
better)

Figure 7.3: Records/sec predicting accuracy using R2 metric with test set data (higher is better)

Ι. Kalopisis 73

Adjustable Publisher/Subscriber system with Machine Learning

• Explained Variance Score:

Figure 7.4: Records/sec predicting accuracy using Explained Variance metric with cross-validated
data (higher is better)

Figure 7.5: Records/sec predicting accuracy using Explained Variance metric with test set data
(higher is better)

Ι. Kalopisis 74

Adjustable Publisher/Subscriber system with Machine Learning

From the Figures above, we notice that, according to the above two metrics, all algorithms
display very good results. Particularly with regard to the CART algorithm, we can remark
that it achieves the absolute success rate in many cases. Furthermore, it is equally evident
that the differences between the cross-validation and the test sets technique for predicting
the values of the target ”Records/sec”, are almost negligible. This means that even with
unknown data, such as the test set, the algorithms perform quite well.

• Mean Absolute Error (MAE):

Figure 7.6: Records/sec predicting accuracy using Mean Absolute Error metric with
cross-validated data (lower is better)

Ι. Kalopisis 75

Adjustable Publisher/Subscriber system with Machine Learning

Figure 7.7: Records/sec predicting accuracy using Mean Absolute Error metric with test set data
(lower is better)

• Mean Squared Error (MSE):

Figure 7.8: Records/sec predicting accuracy using Mean Squared Error metric with cross-validated
data (lower is better)

Ι. Kalopisis 76

Adjustable Publisher/Subscriber system with Machine Learning

Figure 7.9: Records/sec predicting accuracy using Mean Squared Error metric with test set data
(lower is better)

• Median Absolute Error (MedAE):

Figure 7.10: Records/sec predicting accuracy using Median Absolute Error metric with
cross-validated data (lower is better)

Ι. Kalopisis 77

Adjustable Publisher/Subscriber system with Machine Learning

Figure 7.11: Records/sec predicting accuracy using Median Absolute Error metric with test set
data (lower is better)

As observed before, the threemetrics show very satisfactory results. The CART algorithm,
as in the previous metrics, in particular, nearly provides the absolute result—i.e. the value
zero—in some cases. Additionally, the differences between the prediction techniques—
cross-validation and test set—are very small, although one could claim that the predictions
are ”smoother” in the cross-validation, contrary to the test set technique.

7.4.2.2 MB/sec results

Ι. Kalopisis 78

Adjustable Publisher/Subscriber system with Machine Learning

• R2:

Figure 7.12: MB/sec predicting accuracy using R2 metric with cross-validated data (higher is better)

Figure 7.13: MB/sec predicting accuracy using R2 metric with test set data (higher is better)

Ι. Kalopisis 79

Adjustable Publisher/Subscriber system with Machine Learning

• Explained Variance Score:

Figure 7.14: MB/sec predicting accuracy using Explained Variance metric with cross-validated data
(higher is better)

Figure 7.15: MB/sec predicting accuracy using Explained Variance metric with test set data (higher
is better)

Ι. Kalopisis 80

Adjustable Publisher/Subscriber system with Machine Learning

In comparison to the previous goal ”Records/sec”, we note that the results are good,
though not as satisfactory as before. In detail, there is a reduction of 10-15%, yet the CART
algorithm again produces excellent results that nearly reach absolute 100%. Something
worth highlighting is that, as regards the file ”Message Size”, the results are significantly
lower than those of the other files, which applies to all algorithms except CART.

• Mean Absolute Error (MAE):

Figure 7.16: MB/sec predicting accuracy using Mean Absolute Error metric with cross-validated
data (lower is better)

Ι. Kalopisis 81

Adjustable Publisher/Subscriber system with Machine Learning

Figure 7.17: MB/sec predicting accuracy using Mean Absolute Error metric with test set data (lower
is better)

• Mean Squared Error (MSE):

Figure 7.18: MB/sec predicting accuracy using Mean Squared Error metric with cross-validated
data (lower is better)

Ι. Kalopisis 82

Adjustable Publisher/Subscriber system with Machine Learning

Figure 7.19: MB/sec predicting accuracy using Mean Squared Error metric with test set data (lower
is better)

• Median Absolute Error (MedAE):

Figure 7.20: MB/sec predicting accuracy using Median Absolute Error metric with cross-validated
data (lower is better)

Ι. Kalopisis 83

Adjustable Publisher/Subscriber system with Machine Learning

Figure 7.21: MB/sec predicting accuracy using Median Absolute Error metric with test set data
(lower is better)

The algorithms yield relatively good results in each file. Once again, the CART algorithm,
especially the Mean Squared Error metric, tends to generate the absolute result in the
forecasts, in some cases. Moreover, the cross-validation technique in the three metrics,
performs slightly better and yields ”smoother” results than the test set technique. We
employ the term ”smoother” to explain that the transition, or difference, to values from
algorithm to algorithm, and from metric to metric, does not feature many fluctuations in
values.

7.4.2.3 Avg Latency results

Ι. Kalopisis 84

Adjustable Publisher/Subscriber system with Machine Learning

• R2:

Figure 7.22: Avg Latency predicting accuracy using R2 metric with cross-validated data (higher is
better)

Figure 7.23: Avg Latency predicting accuracy using R2 metric with test set data (higher is better)

Ι. Kalopisis 85

Adjustable Publisher/Subscriber system with Machine Learning

• Explained Variance Score:

Figure 7.24: Avg Latency predicting accuracy using Explained Variance metric with
cross-validated data (higher is better)

Figure 7.25: Avg Latency predicting accuracy using Explained Variance metric with test set data
(higher is better)

Ι. Kalopisis 86

Adjustable Publisher/Subscriber system with Machine Learning

For this target we detect that the results of the Linear Regression, Lasso Regression
and LassoLARS Regression algorithms, are slightly lower than the previous two targets,
”Records/sec” and ”MB/sec”. Likewise, the results for the file ”Message Size” are, again,
slightly worse than those of the other files. As mentioned in the previous targets, the
cross-validation technique once again yields ”smoother” results than the use of test sets
for prediction.

• Mean Absolute Error (MAE):

Figure 7.26: Avg Latency predicting accuracy using Mean Absolute Error metric with
cross-validated data (lower is better)

Ι. Kalopisis 87

Adjustable Publisher/Subscriber system with Machine Learning

Figure 7.27: Avg Latency predicting accuracy using Mean Absolute Error metric with test set data
(lower is better)

• Mean Squared Error (MSE):

Figure 7.28: Avg Latency predicting accuracy using Mean Squared Error metric with
cross-validated data (lower is better)

Ι. Kalopisis 88

Adjustable Publisher/Subscriber system with Machine Learning

Figure 7.29: Avg Latency predicting accuracy using Mean Squared Error metric with test set data
(lower is better)

• Median Absolute Error (MedAE):

Figure 7.30: Avg Latency predicting accuracy using Median Absolute Error metric with
cross-validated data (lower is better)

Ι. Kalopisis 89

Adjustable Publisher/Subscriber system with Machine Learning

Figure 7.31: Avg Latency predicting accuracy using Median Absolute Error metric with test set
data (lower is better)

The distances given by the forecasts of the Mean Absolute Error, Mean Squared Error and
Median Absolute Error metrics, are slightly above the ”Avg Latency” target, in comparison
to the previous two targets. This might indicate that the algorithms may not be as good at
predicting the target ”Avg Latency”, at least when using these particular pieces of data.

7.4.2.4 Max Latency results

Ι. Kalopisis 90

Adjustable Publisher/Subscriber system with Machine Learning

• R2:

Figure 7.32: Max Latency predicting accuracy using R2 metric with cross-validated data (higher is
better)

Figure 7.33: Max Latency predicting accuracy using R2 metric with test set data (higher is better)

Ι. Kalopisis 91

Adjustable Publisher/Subscriber system with Machine Learning

• Explained Variance Score:

Figure 7.34: Max Latency predicting accuracy using Explained Variance metric with
cross-validated data (higher is better)

Figure 7.35: Max Latency predicting accuracy using Explained Variance metric with test set data
(higher is better)

Ι. Kalopisis 92

Adjustable Publisher/Subscriber system with Machine Learning

As is the case in the target ”Avg Latency”, so, too, in the ”Max Latency”, we acknow-
ledge that the percentages of the algorithms are slightly lower than the first two targets,
”Records/sec” and ”MB/sec”. As this phenomenon occurs in the ”Avg Latency” target, it
would stand to reason that this target would follow the same course as, in essence, the
latter (”Max Latency”) constitutes an extreme case of the former.

• Mean Absolute Error (MAE):

Figure 7.36: Max Latency predicting accuracy using Mean Absolute Error metric with
cross-validated data (lower is better)

Ι. Kalopisis 93

Adjustable Publisher/Subscriber system with Machine Learning

Figure 7.37: Max Latency predicting accuracy using Mean Absolute Error metric with test set data
(lower is better)

• Mean Squared Error (MSE):

Figure 7.38: Max Latency predicting accuracy using Mean Squared Error metric with
cross-validated data (lower is better)

Ι. Kalopisis 94

Adjustable Publisher/Subscriber system with Machine Learning

Figure 7.39: Max Latency predicting accuracy using Mean Squared Error metric with test set data
(lower is better)

• Median Absolute Error (MedAE):

Figure 7.40: Max Latency predicting accuracy using Median Absolute Error metric with
cross-validated data (lower is better)

Ι. Kalopisis 95

Adjustable Publisher/Subscriber system with Machine Learning

Figure 7.41: Max Latency predicting accuracy using Median Absolute Error metric with test set
data (lower is better)

As observed with the metric R2 and Explained Variance, where results are lower than the
previous targets, this case moves along the same vein, with more pronounced results in
the CART algorithm, which was the best in the previous targets by far. Of course, we
should not forgo mentioning that the results with the use of the test set technique, display
greater fluctuations per algorithm than what is the case with the cross-validation technique.

7.4.2.5 General Results for Regression algorithms

After a thorough look at the results of the Regression algorithms, we can conclude that
they all produce fairly satisfactory results. The significant improvement came when the
logarithmic function was applied to the data and, thus, allowed the algorithms to produce
more accurate results. We note that some algorithms, like CART, closely provide the ab-
solute value. We can observe, as mentioned previously, that the use of cross-validation
provides smoother results between the algorithms, i.e. without significant differences
between them.

The diagrams also showcase that the Regression algorithms are slightly better at predict-
ing Kafka performance on the ”Records/Sec” and ”MB/sec” targets, as opposed to the
”Avg Latency” and ”Max Latency” targets. That is, they seem to be better able to predict
the throughput of the system, particularly predicting the amount of information that passes
through it, rather than predicting the delay resulting from transmission.

Ι. Kalopisis 96

Adjustable Publisher/Subscriber system with Machine Learning

7.4.3 Classification Algorithms

As in Section 7.4.2, we will now present the results of the second type of algorithms we
used, the classification algorithms. We will examine how well the algorithms we used can
predict the corresponding target. In this type of algorithms, we did not need to apply the
logarithmic function (f(x) = log10(x)) to the data, as the metrics did not measure distance,
but whether the algorithm managed to classify the new data correctly.

Unlike Section 7.4.2, the results here are organized by algorithm. We considered that they
can be presented better this way, due not only to the extent of the results, but also due to
the nature of the algorithms. In each algorithm, the results are organized per the ”target”
that we wanted to predict (”Records/sec”, ”MB/sec”, ”Avg latency” and ”Max latency”),
while each ”target” is organized per metric so as to assess if each metric yields different
results. We also noted that the results from the cross-validated data are almost identical
to the results from the use of test datasets (20% of the whole dataset) for predictions. As
such, in order to make the thesis more concise and comprehensible, we did not include
the results from the use of test datasets. Furthermore, as highlighted in Section 6.3, the
data had to be separated into buckets, due to their continuous nature, so that we could
apply classification algorithms on them. Therefore, in each file (i.e. in each diagram), we
observe how the algorithm handles a varying number of buckets.

Each algorithm we will present had hyperparameters that we learned—i.e. we found the
best value for our data through exhaustive search, or, as we saw in Chapter 7.3.1, it
is called Grid Search. That is why we will present and chart with the values of these
parameters per file, as well as per number of buckets. Finally, because we noticed that the
different metrics did not affect the value of the hyperparameters—i.e. they were identical
for each metric—the values were different for each target. As a consequence, no diagram,
but one for each target, has been added for each metric of the targets.

7.4.3.1 k-NN algorithm

Records/sec:

Ι. Kalopisis 97

Adjustable Publisher/Subscriber system with Machine Learning

• Accuracy:

Figure 7.42: Records/sec predicting accuracy using accuracy metric with cross-validated data
(higher is better)

• F1:

Figure 7.43: Records/sec predicting accuracy using f1 metric with cross-validated data (higher is
better)

Ι. Kalopisis 98

Adjustable Publisher/Subscriber system with Machine Learning

• Precision:

Figure 7.44: Records/sec predicting accuracy using precision metric with cross-validated data
(higher is better)

• Recall:

Figure 7.45: Records/sec predicting accuracy using recall metric with cross-validated data (higher
is better)

Ι. Kalopisis 99

Adjustable Publisher/Subscriber system with Machine Learning

In the above Figures that all metrics have similar results. Additionally, for each file there is
close to no difference in each bucket, which indicates that the variables we modify in each
file do not have a significant impact in the system. Moreover, as the number of buckets
increases, the success rate decreases by a percentage that is almost constant. This may
be interpreted as the fact that there is no good separation of data in the extreme values
of the buckets and, thus, the performance of the algorithm decreases with the increase of
buckets.

• Neighbors:

Figure 7.46: Parameter Neighbors for k-NN algorithm with ”Records/sec” predicted target

The number of neighbors was the same for each metric, which still remains stable for
almost every case/file. However, we observe some steep climbs that may stem from the
randomness with which the data is fed into the algorithm; due to their shuffling, in essence.

MB/sec:

Ι. Kalopisis 100

Adjustable Publisher/Subscriber system with Machine Learning

• Accuracy:

Figure 7.47: MB/sec predicting accuracy using accuracy metric with cross-validated data (higher is
better)

• F1:

Figure 7.48: MB/sec predicting accuracy using f1 metric with cross-validated data (higher is better)

Ι. Kalopisis 101

Adjustable Publisher/Subscriber system with Machine Learning

• Precision:

Figure 7.49: MB/sec predicting accuracy using precision metric with cross-validated data (higher
is better)

• Recall:

Figure 7.50: MB/sec predicting accuracy using recall metric with cross-validated data (higher is
better)

Ι. Kalopisis 102

Adjustable Publisher/Subscriber system with Machine Learning

As with the target ”Records/sec”, at ”MB/sec” we detect that the results in each metric
and file are nearly identical. However, contrary to the target ”Records/sec”, the increase
of buckets in each file does not result in a significant decrease in the performance of the
algorithm. Perhaps the data in the buckets for this purpose, have clearer limits. Never-
theless, we do observe a decrease of the efficiency of the order of 45% in the file where
we study the size of the message in relation to the target ”MB/sec”.

• Neighbors:

Figure 7.51: Parameter Neighbors for k-NN algorithm with ”MB/sec” predicted target

As was the case before, the number of optimal neighbors remained the same in each
metric. We also acknowledge that it remains constant in each file, as well as for each
number of buckets.

Avg Latency:

Ι. Kalopisis 103

Adjustable Publisher/Subscriber system with Machine Learning

• Accuracy:

Figure 7.52: Avg Latency predicting accuracy using accuracy metric with cross-validated data
(higher is better)

• F1:

Figure 7.53: Avg Latency predicting accuracy using f1 metric with cross-validated data (higher is
better)

Ι. Kalopisis 104

Adjustable Publisher/Subscriber system with Machine Learning

• Precision:

Figure 7.54: Avg Latency predicting accuracy using precision metric with cross-validated data
(higher is better)

• Recall:

Figure 7.55: Avg Latency predicting accuracy using recall metric with cross-validated data (higher
is better)

Ι. Kalopisis 105

Adjustable Publisher/Subscriber system with Machine Learning

Once again, we take notice of a gradual decrease in values as the number of buckets
for classification in each file increases. We further detect a lower success rate in the
prediction, in terms of the file we are looking at the size of the messages for.

• Neighbors:

Figure 7.56: Parameter Neighbors for k-NN algorithm with ”Avg Latency” predicted target

The number of neighbors typically fluctuates at constant levels and has a general value
of 1; with the ”Message Size” file being an exception to the rule due to its varying values.

Max Latency:

Ι. Kalopisis 106

Adjustable Publisher/Subscriber system with Machine Learning

• Accuracy:

Figure 7.57: Max Latency predicting accuracy using accuracy metric with cross-validated data
(higher is better)

• F1:

Figure 7.58: Max Latency predicting accuracy using f1 metric with cross-validated data (higher is
better)

Ι. Kalopisis 107

Adjustable Publisher/Subscriber system with Machine Learning

• Precision:

Figure 7.59: Max Latency predicting accuracy using precision metric with cross-validated data
(higher is better)

• Recall:

Figure 7.60: Max Latency predicting accuracy using recall metric with cross-validated data (higher
is better)

Ι. Kalopisis 108

Adjustable Publisher/Subscriber system with Machine Learning

As regards the gradual decrease of values, alongside the increase of the buckets—both of
which we discussed in the previous targets—we note that, in the ”Max Latency” target, this
decrease is more pronounced. In addition, the success rates of the algorithm are lower
than those of the previous targets. However, once again, we notice that the percentages
of the file ”Message Size” are the smallest, which means it may not be possible to make
a correct prediction given the size of the message.

• Neighbors:

Figure 7.61: Parameter Neighbors for k-NN algorithm with ”Max Latency” predicted target

The number of neighbors that produces the best results in the classification, once again
remains almost constant at value 1, as in previous targets.

7.4.3.2 Linear SVM algorithm

Records/sec:

Ι. Kalopisis 109

Adjustable Publisher/Subscriber system with Machine Learning

• Accuracy:

Figure 7.62: Records/sec predicting accuracy using accuracy metric with cross-validated data
(higher is better)

• F1:

Figure 7.63: Records/sec predicting accuracy using f1 metric with cross-validated data (higher is
better)

Ι. Kalopisis 110

Adjustable Publisher/Subscriber system with Machine Learning

• Precision:

Figure 7.64: Records/sec predicting accuracy using precision metric with cross-validated data
(higher is better)

• Recall:

Figure 7.65: Records/sec predicting accuracy using recall metric with cross-validated data (higher
is better)

Ι. Kalopisis 111

Adjustable Publisher/Subscriber system with Machine Learning

Here we notice that, for the ”Records/sec” target, all files almost hold the same results.
Furthermore, as the number of buckets for classification increases in each file, the success
rate of the algorithm gradually decreases. However, for buckets two and three, we notice
that the success rate is nearly the same and almost reaches the absolute value.

• C:

Figure 7.66: Parameter C for Linear-SVM algorithm with ”Records/sec” predicted target

In almost every case, as well as for every metric, the exhaustive search yielded the optimal
value 100 for the parameter C, which is considered a reasonably high one.

MB/sec:

Ι. Kalopisis 112

Adjustable Publisher/Subscriber system with Machine Learning

• Accuracy:

Figure 7.67: MB/sec predicting accuracy using accuracy metric with cross-validated data (higher is
better)

• F1:

Figure 7.68: MB/sec predicting accuracy using f1 metric with cross-validated data (higher is better)

Ι. Kalopisis 113

Adjustable Publisher/Subscriber system with Machine Learning

• Precision:

Figure 7.69: MB/sec predicting accuracy using precision metric with cross-validated data (higher
is better)

• Recall:

Figure 7.70: MB/sec predicting accuracy using recall metric with cross-validated data (higher is
better)

Ι. Kalopisis 114

Adjustable Publisher/Subscriber system with Machine Learning

We notice again that, as the buckets increase, there is a drop in the performance of the al-
gorithm. However, contrary to the target ”Records/sec”, the success rate for three buckets
also diminishes. Percentage drops less than it does from three to five buckets, or from five
to seven; though it still does not remain stable, as was the case with target ”Records/sec”.

• C:

Figure 7.71: Parameter C for Linear-SVM algorithm with ”MB/sec” predicted target

Here we see that there are transitions in the value of the parameter C, though this may be
due to the random order in which the data are given to the algorithm.

Avg Latency:

Ι. Kalopisis 115

Adjustable Publisher/Subscriber system with Machine Learning

• Accuracy:

Figure 7.72: Avg Latency predicting accuracy using accuracy metric with cross-validated data
(higher is better)

• F1:

Figure 7.73: Avg Latency predicting accuracy using f1 metric with cross-validated data (higher is
better)

Ι. Kalopisis 116

Adjustable Publisher/Subscriber system with Machine Learning

• Precision:

Figure 7.74: Avg Latency predicting accuracy using precision metric with cross-validated data
(higher is better)

• Recall:

Figure 7.75: Avg Latency predicting accuracy using recall metric with cross-validated data (higher
is better)

Ι. Kalopisis 117

Adjustable Publisher/Subscriber system with Machine Learning

We observe almost identical results as the ”MB/sec” target; that is, a gradual decrease as
the number of buckets for all files increases, but the percentage is smaller for the change
from two to three buckets. Although the results for two buckets are close to absolute, the
results for three buckets have a satisfactory success rate in the predictions.

• C:

Figure 7.76: Parameter C for Linear-SVM algorithm with ”Avg Latency” predicted target

As in the previous targets, a constant value of 100 is observed for parameter C, coupled
with some downward fluctuations.

Max Latency:

Ι. Kalopisis 118

Adjustable Publisher/Subscriber system with Machine Learning

• Accuracy:

Figure 7.77: Max Latency predicting accuracy using accuracy metric with cross-validated data
(higher is better)

• F1:

Figure 7.78: Max Latency predicting accuracy using f1 metric with cross-validated data (higher is
better)

Ι. Kalopisis 119

Adjustable Publisher/Subscriber system with Machine Learning

• Precision:

Figure 7.79: Max Latency predicting accuracy using precision metric with cross-validated data
(higher is better)

• Recall:

Figure 7.80: Max Latency predicting accuracy using recall metric with cross-validated data (higher
is better)

Ι. Kalopisis 120

Adjustable Publisher/Subscriber system with Machine Learning

We observe that after the three buckets, there is a large reduction in the performance of
the algorithm. For the three buckets the efficiency percentage is around 90%, which is
adequate but not perfect, while for the two buckets it reaches 96%, which is a very good
percentage; however, the range of the buckets is bigger and, perhaps, as we discussed
in Section 6.3, the prediction of the actual value may have a lot of noise/variance.

• C:

Figure 7.81: Parameter C for Linear-SVM algorithm with ”Max Latency” predicted target

Once again, the value of parameter C is 100 for almost any number of buckets per file. It
is also constant for every metric.

7.4.3.3 RBF SVM algorithm

Records/sec:

Ι. Kalopisis 121

Adjustable Publisher/Subscriber system with Machine Learning

• Accuracy:

Figure 7.82: Records/sec predicting accuracy using accuracy metric with cross-validated data
(higher is better)

• F1:

Figure 7.83: Records/sec predicting accuracy using f1 metric with cross-validated data (higher is
better)

Ι. Kalopisis 122

Adjustable Publisher/Subscriber system with Machine Learning

• Precision:

Figure 7.84: Records/sec predicting accuracy using precision metric with cross-validated data
(higher is better)

• Recall:

Figure 7.85: Records/sec predicting accuracy using recall metric with cross-validated data (higher
is better)

Ι. Kalopisis 123

Adjustable Publisher/Subscriber system with Machine Learning

Contrary to the previous algorithms, we remark that we have quite high success rates
and the decrease observed alongside the increase of buckets is almost negligible. In
addition, the success rates of the algorithm reach almost absolute success rates, with a
slight exception occurring in the file of ”Message Size”.

• C:

Figure 7.86: Parameter C for RBF-SVM algorithm with ”Records/sec” predicted target

Ι. Kalopisis 124

Adjustable Publisher/Subscriber system with Machine Learning

• Gamma:

Figure 7.87: Parameter Gamma for RBF-SVM algorithm with ”Records/sec” predicted target

We see that the value of hyperparameter C is consistently 100 with only two exceptions,
while the value of hyperparameter Gamma is low at 0.01, though, again, with few excep-
tions that reach even value 1.

MB/sec:

Ι. Kalopisis 125

Adjustable Publisher/Subscriber system with Machine Learning

• Accuracy:

Figure 7.88: MB/sec predicting accuracy using accuracy metric with cross-validated data (higher is
better)

• F1:

Figure 7.89: MB/sec predicting accuracy using f1 metric with cross-validated data (higher is better)

Ι. Kalopisis 126

Adjustable Publisher/Subscriber system with Machine Learning

• Precision:

Figure 7.90: MB/sec predicting accuracy using precision metric with cross-validated data (higher
is better)

• Recall:

Figure 7.91: MB/sec predicting accuracy using recall metric with cross-validated data (higher is
better)

Ι. Kalopisis 127

Adjustable Publisher/Subscriber system with Machine Learning

In the target ”MB/sec” we notice that, in general, the performance levels of the algorithm
are slightly lower than those of the target ”Records/sec”. Despite that, in addition to the
general decline, we observe that there is a gradual decline as the number of buckets
increases, something that was not observed in the previous target.

• C:

Figure 7.92: Parameter C for RBF-SVM algorithm with ”MB/sec” predicted target

Ι. Kalopisis 128

Adjustable Publisher/Subscriber system with Machine Learning

• Gamma:

Figure 7.93: Parameter Gamma for RBF-SVM algorithm with ”MB/sec” predicted target

As for the target ”Records/sec”, here too, the value of hyperparameter C remains constant
at 100, with only two exceptions. On the contrary, the value of the Gamma hyperparameter
ranges mainly in two value levels, 0.01 and 0.1. There are also four points that reach the
value of 1. We conclude that the value for the target ”MB/sec” is not very stable, i.e. the
changes per number of buckets and per metric, are more noticeable, compared to the
previous target ”Records/sec”.

Avg Latency:

Ι. Kalopisis 129

Adjustable Publisher/Subscriber system with Machine Learning

• Accuracy:

Figure 7.94: Avg Latency predicting accuracy using accuracy metric with cross-validated data
(higher is better)

• F1:

Figure 7.95: Avg Latency predicting accuracy using f1 metric with cross-validated data (higher is
better)

Ι. Kalopisis 130

Adjustable Publisher/Subscriber system with Machine Learning

• Precision:

Figure 7.96: Avg Latency predicting accuracy using precision metric with cross-validated data
(higher is better)

• Recall:

Figure 7.97: Avg Latency predicting accuracy using recall metric with cross-validated data (higher
is better)

Ι. Kalopisis 131

Adjustable Publisher/Subscriber system with Machine Learning

It can be seen from the diagrams that the performance of the algorithm is quite good, in
terms of the ”Avg Latency” target. Of course, as the buckets increase, there is a gradual
decrease. Nevertheless, especially for two and three buckets, the performance levels
remain very high and almost equal to each other.

• C:

Figure 7.98: Parameter C for RBF-SVM algorithm with ”Avg Latency” predicted target

Ι. Kalopisis 132

Adjustable Publisher/Subscriber system with Machine Learning

• Gamma:

Figure 7.99: Parameter Gamma for RBF-SVM algorithm with ”Avg Latency” predicted target

As for the hyperparameter C of the algorithm, it holds a constant value of 100, except for
one case. On the other hand, the gamma hyperparameter ranges in three levels: 0.01,
0.1 and 1, which differ significantly, as shown in the diagram.

Max Latency:

Ι. Kalopisis 133

Adjustable Publisher/Subscriber system with Machine Learning

• Accuracy:

Figure 7.100: Max Latency predicting accuracy using accuracy metric with cross-validated data
(higher is better)

• F1:

Figure 7.101: Max Latency predicting accuracy using f1 metric with cross-validated data (higher is
better)

Ι. Kalopisis 134

Adjustable Publisher/Subscriber system with Machine Learning

• Precision:

Figure 7.102: Max Latency predicting accuracy using precision metric with cross-validated data
(higher is better)

• Recall:

Figure 7.103: Max Latency predicting accuracy using recall metric with cross-validated data
(higher is better)

Ι. Kalopisis 135

Adjustable Publisher/Subscriber system with Machine Learning

We observe that the accuracy of the algorithm for the ”Max Latency” target is less than
the ”Avg Latency” target, which is a similar target, as we explained in Section 7.4.1. Even
the gradual decrease, as the number of buckets increases, is much steeper compared to
all targets.

• C:

Figure 7.104: Parameter C for RBF-SVM algorithm with ”Max Latency” predicted target

Ι. Kalopisis 136

Adjustable Publisher/Subscriber system with Machine Learning

• Gamma:

Figure 7.105: Parameter Gamma for RBF-SVM algorithm with ”Max Latency” predicted target

From the diagram we see that the hyperparameter C remains constant at the value 100,
which is significantly high. With regard to the value of the hyperparameter Gamma has
mainly the value 0.01 with a few upward fluctuations that reach the value of 1.

7.4.3.4 General Results for Classification algorithms

The Classification algorithms additionally provided very good results. However, it became
clear that, as the number of buckets grew, so did their performance, at least most of the
time. As we explained, this was due to the fact that the data at the boundaries of the
bucket separation were not so clear, and the classification at those points could not be
performed as efficiently. An improvement of this phenomenon was observed with the use
of the RBF-SVM algorithm, which likely has to do with the nature of the algorithm and the
way it creates the ”areas” within which it classifies the data.

Therefore, we conclude that the categorization algorithms are quite capable of predicting
the performance of Kafka, when predicting the corresponding targets we studied. The
”Max Latency” target is perhaps an exception, as there has been a greater decline in
performance as buckets increase, as opposed to other targets.

Finally, as we have already mentioned in Section 6.3, the problem of Classification al-
gorithms involves the correct separation and assignment of data to categories, as the
data themselves are continuous and do not belong to any category. The tradeoff between

Ι. Kalopisis 137

Adjustable Publisher/Subscriber system with Machine Learning

the highest efficiency with fewer categories and the lowest efficiency with more categories
and, therefore, a more accurate of actual price forecast, is something that can be studied
further and may depend on each use case of Kafka.

Ι. Kalopisis 138

Adjustable Publisher/Subscriber system with Machine Learning

8. CONCLUSIONS AND FUTURE WORK

8.1 Conclusions

The purpose of this thesis was to study the Publisher/Subscriber system Apache Kafka,
as well as to study whether it is possible to properly configure its parameters in order
to achieve the best performance, by using Machine Learning algorithms. The two types
of Machine Learning algorithms utilized are Regression and Classification algorithms.
There were three stages of this thesis.

• The first step was to get acquainted with the Apache Kafka system and perform
experiments so that we could take measurements. These measurements were later
used as training data for the Machine Learning algorithms.

• The second step was the creation of Machine Learning models, according to the
algorithms used. The models were trained with the data collected from the first stage
and the predictions of the new measures/targets were made, which, in essence,
showcase the performance of the system from different points of view.

• The third and final step of the work involved the visualization and interpretation of the
results. The results were aggregated and plotted on the diagrams shown in Section
7.4; following that, the algorithms for their performance were then refined and tested.

The experimental results of the ML models used indicate that such techniques can be
used to predict the performance of the Apache Kafka. For the Regression models and
algorithms, the data would be modified according to the logarithmic function as described
above, to produce better results. Respectively, for the algorithms and the Classification
models, the appropriate hyperparameters were found, in order to provide the best possible
result for the data. This process, however, was relatively time-consuming, depending on
the case and model. Moreover, the division of data into categories was another problem
that was addressed, as the data do not belong to a category by themselves. Nevertheless,
the results were quite satisfactory and showcased that this family of algorithms could also
be used for such purposes.

8.2 Future work

The deep study and understanding of the topics covered in this thesis, highlighted even
more topics and aspects to explore. Unfortunately, the practical constraints on infrastruc-
ture and time did not allow to continue to deepen the issue even further. Nonetheless, we
present below some suggestions for further work that could stem from this thesis.

The use of more computing resources, such as a computer cluster, to test the system in
more realistic situations, instead of using VMs, would yield data that could be closer to

Ι. Kalopisis 139

Adjustable Publisher/Subscriber system with Machine Learning

actual system use; as a result, the new predictions of the Machine Learning models would
be even more realistic. In addition to the ”quality” of the measurements, more computing
resources could provide a larger training dataset for the Machine Learning models.

In addition, as the field of Machine Learning is so extensive, the use and testing of more
models is something that could be considered in future work. A possible scenario could
involve combining the different processing of the data with these new models. Even the
use of Deep Learning techniques such as Neural Networks, as an alternative way to clas-
sifying the data, is something that, although it was not considered in this thesis, would be
very interesting to explore and even apply to such techniques.

Finally, this entire study could further be applied to other messaging systems such as
Amazon Kinesis, Microsoft Event Hubs, Google Pub/Sub, etc., with the ultimate goal being
to create a system that automatically adjusts the parameters of such systems without user
intervention.

Ι. Kalopisis 140

Adjustable Publisher/Subscriber system with Machine Learning

ABBREVIATIONS - ACRONYMS

IoT Internet of Things
Pub Publisher
Sub Subscriber
ML Machine Learning
RPC Remote Procedure Call
TCP Transmission Control Protocol
UDP User Datagram Protocol
DSM Distributed Shared Memory
MOM Message-Oriented Middleware
FIFO First In First Out
IP Internet Protocol
QoS Quality of Service
API Application Programming

Interface
ZAB Zookeeper Atomic Broadcast
acks acknowledgments
CPU Central Processing Unit
RAM Random-Access Memory
OS Operating System
Lasso Least Absolute Shrinkage and

Selection Operator
LARS Least Angle Regression
CART Classification and Regression

Trees
NP Nondeterministic Polynomial
XOR Exclusive Or
K-NN K - Nearest Neighbor
SVM Support Vector Machine
RBF Radial Basis Function
CV Cross Validation
MAE Mean Absolute Error
MSE Mean Squared Error
MedAE Median Absolute Error
Avg Average
MB Megabytes
VMs Virtual Machines

Ι. Kalopisis 141

Adjustable Publisher/Subscriber system with Machine Learning

REFERENCES

[1] A. Carzaniga, M. J. Rutherford, and A. L. Wolf. A routing scheme for content-based networking. In IEEE
INFOCOM 2004, volume 2, pages 918–928 vol.2, 2004.

[2] Yali Wang, Yang Zhang, and Junliang Chen. SDNPS: A load-balanced topic-based publish/subscribe
system in software-defined networking. Applied Sciences, 6:91, 2016.

[3] Patrick Th. Eugster, Pascal Felber, Rachid Guerraoui, and Anne-Marie Kermarrec. The many faces of
publish/subscribe. ACM Comput. Surv., 35(2):114–131, 2003.

[4] Message passing. /https://www.tutorialspoint.com/message-passing-model-of-process-
communication.

[5] Wikipedia contributors. Message passing — Wikipedia, the free encyclopedia. /https://
en.wikipedia.org/w/index.php?title=Message_passing&oldid=968041311, 2020. [Online; ac-
cessed 18-September-2020].

[6] Wikipedia contributors. Remote procedure call — Wikipedia, the free encyclopedia. /https://
en.wikipedia.org/w/index.php?title=Remote_procedure_call&oldid=976896180, 2020. [Online;
accessed 18-September-2020].

[7] James F. Kurose and Keith W. Ross. Computer Networking: A Top-Down Approach (6th Edition). Pear-
son, 6th edition, 2012.

[8] Margaret Rouse. TCP protocol. /https://searchnetworking.techtarget.com/definition/TCP, May
2020.

[9] Wikipedia contributors. Transmission control protocol — Wikipedia, the free encyclopedia. /https://
en.wikipedia.org/w/index.php?title=Transmission_Control_Protocol&oldid=977068225, 2020.
[Online; accessed 18-September-2020].

[10] Wikipedia contributors. User datagram protocol — Wikipedia, the free encyclopedia. /https:
//en.wikipedia.org/w/index.php?title=User_Datagram_Protocol&oldid=978719960, 2020. [On-
line; accessed 18-September-2020].

[11] Distributed shared memory. /https://www.geeksforgeeks.org/architecture-of-distributed-
shared-memorydsm/.

[12] Wikipedia contributors. Distributed shared memory — Wikipedia, the free encyclopedia. /https://
en.wikipedia.org/w/index.php?title=Distributed_shared_memory&oldid=934636158, 2020. [On-
line; accessed 18-September-2020].

[13] Introduction to message queue by IBM. /https://www.ibm.com/support/knowledgecenter/SSFKSJ_
9.1.0/com.ibm.mq.pro.doc/q002620_.htm.

[14] Kai Sachs, Stefan Appel, Samuel Kounev, and Alejandro P. Buchmann. Benchmarking
publish/subscribe-based messaging systems. 6193:203–214, 2010.

[15] Introduction to Apache Kafka. /https://kafka.apache.org/intro, 2020.

[16] Matthew O’Riordan. Everything You Need To Know About Publish/Subscribe. /https://www.ably.io/
topic/pub-sub.

[17] AbdulFattah Popoola. Design Patterns: PubSub Explained. /https://abdulapopoola.com/2013/03/
12/design-patterns-pub-sub-explained/, MARCH 12, 2013.

[18] Amazon Pub-Sub messaging. /https://aws.amazon.com/pub-sub-messaging/.

Ι. Kalopisis 142

https://www.tutorialspoint.com/message-passing-model-of-process-communication
https://www.tutorialspoint.com/message-passing-model-of-process-communication
https://en.wikipedia.org/w/index.php?title=Message_passing&oldid=968041311
https://en.wikipedia.org/w/index.php?title=Message_passing&oldid=968041311
https://en.wikipedia.org/w/index.php?title=Remote_procedure_call&oldid=976896180
https://en.wikipedia.org/w/index.php?title=Remote_procedure_call&oldid=976896180
https://searchnetworking.techtarget.com/definition/TCP
https://en.wikipedia.org/w/index.php?title=Transmission_Control_Protocol&oldid=977068225
https://en.wikipedia.org/w/index.php?title=Transmission_Control_Protocol&oldid=977068225
https://en.wikipedia.org/w/index.php?title=User_Datagram_Protocol&oldid=978719960
https://en.wikipedia.org/w/index.php?title=User_Datagram_Protocol&oldid=978719960
https://www.geeksforgeeks.org/architecture-of-distributed-shared-memorydsm/
https://www.geeksforgeeks.org/architecture-of-distributed-shared-memorydsm/
https://en.wikipedia.org/w/index.php?title=Distributed_shared_memory&oldid=934636158
https://en.wikipedia.org/w/index.php?title=Distributed_shared_memory&oldid=934636158
https://www.ibm.com/support/knowledgecenter/SSFKSJ_9.1.0/com.ibm.mq.pro.doc/q002620_.htm
https://www.ibm.com/support/knowledgecenter/SSFKSJ_9.1.0/com.ibm.mq.pro.doc/q002620_.htm
https://kafka.apache.org/intro
https://www.ably.io/topic/pub-sub
https://www.ably.io/topic/pub-sub
https://abdulapopoola.com/2013/03/12/design-patterns-pub-sub-explained/
https://abdulapopoola.com/2013/03/12/design-patterns-pub-sub-explained/
https://aws.amazon.com/pub-sub-messaging/

Adjustable Publisher/Subscriber system with Machine Learning

[19] Patrick Eugster. Type-based publish/subscribe: Concepts and experiences. ACM Trans. Program.
Lang. Syst., 29(1):6, 2007.

[20] Angelo Corsaro, Leonardo Querzoni, Sirio Scipioni, Sara Tucci Piergiovanni, and Antonino Virgillito.
Quality of Service in Publish/Subscribe Middleware. /https://www.researchgate.net/publication/
237100885_Quality_of_Service_in_PublishSubscribe_Middleware.

[21] How can Kafka help you? /https://www.confluent.io/what-is-apache-kafka/.

[22] Elin Vinka. What is Zookeeper and why is it needed for Apache Kafka? /https://
www.cloudkarafka.com/blog/2018-07-04-cloudkarafka_what_is_zookeeper.html.

[23] Zookeeper: A Distributed Coordination Service for Distributed Applications. /https://
zookeeper.apache.org/doc/current/zookeeperOver.html.

[24] Algorithmia. The importance of machine learning data. /https://algorithmia.com/blog/the-
importance-of-machine-learning-data, 26 March 2020.

[25] Cogito Tech LLC. Understanding the Importance Of Training Data in Machine Learn-
ing. /https://medium.com/@cogitotech/understanding-the-importance-of-training-data-in-
machine-learning-da4235332904, Aug 26, 2019.

[26] Rinu Gour. Kafka Performance Tuning — Ways for Kafka Optimization. /https://medium.com/
@rinu.gour123/kafka-performance-tuning-ways-for-kafka-optimization-fdee5b19505b, Dec
17, 2018.

[27] CONFLUENT. CONFLUENT: Kafka’s producer configuration. /https://docs.confluent.io/current/
installation/configuration/producer-configs.html.

[28] Apache Kafka. Apache Kafka producer configuration. /https://kafka.apache.org/documentation/
#producerconfigs.

[29] Apache Kafka. Apache kafka quickstart code. /https://kafka.apache.org/quickstart.

[30] Richa Bhatia. Top 6 regression algorithms used in data mining and their applications in
industry. /https://analyticsindiamag.com/top-6-regression-algorithms-used-data-mining-
applications-industry/, Sept 19, 2017.

[31] Apoorva Dave. Regression in machine learning. /https://medium.com/datadriveninvestor/
regression-in-machine-learning-296caae933ec, Dec 4, 2018.

[32] Wikipedia contributors. Regression analysis — Wikipedia, the free encyclopedia. /https://
en.wikipedia.org/w/index.php?title=Regression_analysis&oldid=977533924, 2020. [Online; ac-
cessed 18-September-2020].

[33] Christopher M. Bishop. Pattern Recognition and Machine Learning (Information Science and Statist-
ics). Springer-Verlag, Berlin, Heidelberg, 2006.

[34] Nagesh Singh Chauhan. A beginner’s guide to linear regression in python with scikit-learn.
/https://towardsdatascience.com/a-beginners-guide-to-linear-regression-in-python-
with-scikit-learn-83a8f7ae2b4f, Feb 25, 2019.

[35] Mirko Stojiljković. Linear regression in python. /https://realpython.com/linear-regression-in-
python/.

[36] Nikolaos Perdikopanis. Normalization and Lasso Regression. /https://colab.research.google.com/
drive/1qxN5WcI6HGz9lzMaU2bi7-5HbGwX_Zsh?usp=sharing.

[37] Wikipedia contributors. Occam’s razor — Wikipedia, the free encyclopedia. /https://
en.wikipedia.org/w/index.php?title=Occam%27s_razor&oldid=975663366, 2020. [Online; ac-
cessed 18-September-2020].

[38] Stephanie Glen. Lasso Regression: Simple Definition. /https://www.statisticshowto.com/lasso-
regression/, Sep 24, 2015.

Ι. Kalopisis 143

https://www.researchgate.net/publication/237100885_Quality_of_Service_in_PublishSubscribe_Middleware
https://www.researchgate.net/publication/237100885_Quality_of_Service_in_PublishSubscribe_Middleware
https://www.confluent.io/what-is-apache-kafka/
https://www.cloudkarafka.com/blog/2018-07-04-cloudkarafka_what_is_zookeeper.html
https://www.cloudkarafka.com/blog/2018-07-04-cloudkarafka_what_is_zookeeper.html
https://zookeeper.apache.org/doc/current/zookeeperOver.html
https://zookeeper.apache.org/doc/current/zookeeperOver.html
https://algorithmia.com/blog/the-importance-of-machine-learning-data
https://algorithmia.com/blog/the-importance-of-machine-learning-data
https://medium.com/@cogitotech/understanding-the-importance-of-training-data-in-machine-learning-da4235332904
https://medium.com/@cogitotech/understanding-the-importance-of-training-data-in-machine-learning-da4235332904
https://medium.com/@rinu.gour123/kafka-performance-tuning-ways-for-kafka-optimization-fdee5b19505b
https://medium.com/@rinu.gour123/kafka-performance-tuning-ways-for-kafka-optimization-fdee5b19505b
https://docs.confluent.io/current/installation/configuration/producer-configs.html
https://docs.confluent.io/current/installation/configuration/producer-configs.html
https://kafka.apache.org/documentation/#producerconfigs
https://kafka.apache.org/documentation/#producerconfigs
https://kafka.apache.org/quickstart
https://analyticsindiamag.com/top-6-regression-algorithms-used-data-mining-applications-industry/
https://analyticsindiamag.com/top-6-regression-algorithms-used-data-mining-applications-industry/
https://medium.com/datadriveninvestor/regression-in-machine-learning-296caae933ec
https://medium.com/datadriveninvestor/regression-in-machine-learning-296caae933ec
https://en.wikipedia.org/w/index.php?title=Regression_analysis&oldid=977533924
https://en.wikipedia.org/w/index.php?title=Regression_analysis&oldid=977533924
https://towardsdatascience.com/a-beginners-guide-to-linear-regression-in-python-with-scikit-learn-83a8f7ae2b4f
https://towardsdatascience.com/a-beginners-guide-to-linear-regression-in-python-with-scikit-learn-83a8f7ae2b4f
https://realpython.com/linear-regression-in-python/
https://realpython.com/linear-regression-in-python/
https://colab.research.google.com/drive/1qxN5WcI6HGz9lzMaU2bi7-5HbGwX_Zsh?usp=sharing
https://colab.research.google.com/drive/1qxN5WcI6HGz9lzMaU2bi7-5HbGwX_Zsh?usp=sharing
https://en.wikipedia.org/w/index.php?title=Occam%27s_razor&oldid=975663366
https://en.wikipedia.org/w/index.php?title=Occam%27s_razor&oldid=975663366
https://www.statisticshowto.com/lasso-regression/
https://www.statisticshowto.com/lasso-regression/

Adjustable Publisher/Subscriber system with Machine Learning

[39] T. Hastie, R. Tibshirani, and J.H. Friedman. The Elements of Statistical Learning: Data Mining, Infer-
ence, and Prediction. Springer series in statistics. Springer, 2009.

[40] Wikipedia contributors. Lasso (statistics) — Wikipedia, the free encyclopedia. /https://
en.wikipedia.org/w/index.php?title=Lasso_(statistics)&oldid=967820964, 2020. [Online; ac-
cessed 18-September-2020].

[41] Wikipedia contributors. Least-angle regression — Wikipedia, the free encyclopedia. /https://
en.wikipedia.org/w/index.php?title=Least-angle_regression&oldid=941643629, 2020. [Online;
accessed 18-September-2020].

[42] Efron Bradley, Hastie Trevor, Johnstone Iain, and Tibshirani Robert. LEAST ANGLE REGRESSION.
Ann. Statist., 32(2):407–499, 04 2004.

[43] Trisha Magdalena Adelheid Januaviani, N. Gusriani, Khafsah Joebaedi, S. Supian, and S. Subiyanto.
The best model of lasso with the lars (least angle regression and shrinkage) algorithm using mallow’s
cp. 2019.

[44] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12:2825–2830,
2011.

[45] Jason Brownlee. Classification and regression trees for machine learning. /https://
machinelearningmastery.com/classification-and-regression-trees-for-machine-learning/,
Aug 15, 2020.

[46] Dr. Saed Sayad. Decision tree - regression. /https://www.saedsayad.com/decision_tree_reg.htm,
2020.

[47] Dheeru Dua and Casey Graff. UCI machine learning repository. /http://archive.ics.uci.edu/ml,
2017.

[48] Wikipedia contributors. K-nearest neighbors algorithm—Wikipedia, the free encyclopedia. /https://
en.wikipedia.org/w/index.php?title=K-nearest_neighbors_algorithm&oldid=977287943, 2020.
[Online; accessed 17-September-2020].

[49] Tan Pang-Ning, Steinbach Michael, and Kumar Vipin. Introduction to Data Mining, (First Edition).
Addison-Wesley Longman Publishing Co., Inc., USA, 2005.

[50] Adipta Martulandi. K-Nearest Neighbors in Python + Hyperparameters Tuning. /https://medium.com/
datadriveninvestor/k-nearest-neighbors-in-python-hyperparameters-tuning-716734bc557f,
Oct 22, 2019.

[51] Wikipedia contributors. Support vector machine — Wikipedia, the free encyclopedia. /https:
//en.wikipedia.org/w/index.php?title=Support_vector_machine&oldid=976259237, 2020. [On-
line; accessed 17-September-2020].

[52] Wikipedia contributors. Hinge loss —Wikipedia, the free encyclopedia. /https://en.wikipedia.org/
w/index.php?title=Hinge_loss&oldid=949912210, 2020. [Online; accessed 11-October-2020].

[53] Wikipedia contributors. Radial basis function kernel — Wikipedia, the free encyclopedia. /https:
//en.wikipedia.org/w/index.php?title=Radial_basis_function_kernel&oldid=927526941, 2019.
[Online; accessed 17-September-2020].

[54] Wikipedia contributors. Kernel method — Wikipedia, the free encyclopedia. /https://
en.wikipedia.org/w/index.php?title=Kernel_method&oldid=971091524, 2020. [Online; accessed
17-September-2020].

[55] Wikipedia contributors. Mercer’s theorem — Wikipedia, the free encyclopedia. /https://
en.wikipedia.org/w/index.php?title=Mercer%27s_theorem&oldid=950643624, 2020. [Online; ac-
cessed 11-October-2020].

Ι. Kalopisis 144

https://en.wikipedia.org/w/index.php?title=Lasso_(statistics)&oldid=967820964
https://en.wikipedia.org/w/index.php?title=Lasso_(statistics)&oldid=967820964
https://en.wikipedia.org/w/index.php?title=Least-angle_regression&oldid=941643629
https://en.wikipedia.org/w/index.php?title=Least-angle_regression&oldid=941643629
https://machinelearningmastery.com/classification-and-regression-trees-for-machine-learning/
https://machinelearningmastery.com/classification-and-regression-trees-for-machine-learning/
https://www.saedsayad.com/decision_tree_reg.htm
http://archive.ics.uci.edu/ml
https://en.wikipedia.org/w/index.php?title=K-nearest_neighbors_algorithm&oldid=977287943
https://en.wikipedia.org/w/index.php?title=K-nearest_neighbors_algorithm&oldid=977287943
https://medium.com/datadriveninvestor/k-nearest-neighbors-in-python-hyperparameters-tuning-716734bc557f
https://medium.com/datadriveninvestor/k-nearest-neighbors-in-python-hyperparameters-tuning-716734bc557f
https://en.wikipedia.org/w/index.php?title=Support_vector_machine&oldid=976259237
https://en.wikipedia.org/w/index.php?title=Support_vector_machine&oldid=976259237
https://en.wikipedia.org/w/index.php?title=Hinge_loss&oldid=949912210
https://en.wikipedia.org/w/index.php?title=Hinge_loss&oldid=949912210
https://en.wikipedia.org/w/index.php?title=Radial_basis_function_kernel&oldid=927526941
https://en.wikipedia.org/w/index.php?title=Radial_basis_function_kernel&oldid=927526941
https://en.wikipedia.org/w/index.php?title=Kernel_method&oldid=971091524
https://en.wikipedia.org/w/index.php?title=Kernel_method&oldid=971091524
https://en.wikipedia.org/w/index.php?title=Mercer%27s_theorem&oldid=950643624
https://en.wikipedia.org/w/index.php?title=Mercer%27s_theorem&oldid=950643624

Adjustable Publisher/Subscriber system with Machine Learning

[56] Dipanjan (DJ) Sarkar. Continuous Numeric Data. /https://towardsdatascience.com/
understanding-feature-engineering-part-1-continuous-numeric-data-da4e47099a7b, Jan 4,
2018.

[57] Chris Moffitt. Binning Data with Pandas qcut and cut. /https://pbpython.com/pandas-qcut-
cut.html, Oct 14, 2019.

[58] Wikipedia contributors. Cross-validation (statistics) — Wikipedia, the free encyclopedia. /https://
en.wikipedia.org/w/index.php?title=Cross-validation_(statistics)&oldid=975192923, 2020.
[Online; accessed 17-September-2020].

[59] Wikipedia contributors. Explained variation — Wikipedia, the free encyclopedia. /https://
en.wikipedia.org/w/index.php?title=Explained_variation&oldid=950924846, 2020. [Online; ac-
cessed 17-September-2020].

[60] Wikipedia contributors. Mean absolute error — Wikipedia, the free encyclopedia. /https://
en.wikipedia.org/w/index.php?title=Mean_absolute_error&oldid=975662598, 2020. [Online; ac-
cessed 17-September-2020].

[61] Wikipedia contributors. Mean squared error — Wikipedia, the free encyclopedia. /https://
en.wikipedia.org/w/index.php?title=Mean_squared_error&oldid=978068800, 2020. [Online; ac-
cessed 17-September-2020].

[62] Shivam Kohli. Understanding a Classification Report For Your Machine Learning Model.
/https://medium.com/@kohlishivam5522/understanding-a-classification-report-for-your-
machine-learning-model-88815e2ce397, Nov 18, 2019.

[63] Scikit-yb developers. Classification Report — Yellowbrick v1.1 documentation. /https://
en.wikipedia.org/w/index.php?title=Mean_squared_error&oldid=978068800, Feb 26, 2020.

[64] Wikipedia contributors. Accuracy and precision — Wikipedia, the free encyclopedia. /https://
en.wikipedia.org/w/index.php?title=Accuracy_and_precision&oldid=978348772, 2020. [Online;
accessed 18-September-2020].

[65] Wikipedia contributors. Hyperparameter optimization — Wikipedia, the free encyclopedia. /https:
//en.wikipedia.org/w/index.php?title=Hyperparameter_optimization&oldid=972537954, 2020.
[Online; accessed 18-September-2020].

Ι. Kalopisis 145

https://towardsdatascience.com/understanding-feature-engineering-part-1-continuous-numeric-data-da4e47099a7b
https://towardsdatascience.com/understanding-feature-engineering-part-1-continuous-numeric-data-da4e47099a7b
https://pbpython.com/pandas-qcut-cut.html
https://pbpython.com/pandas-qcut-cut.html
https://en.wikipedia.org/w/index.php?title=Cross-validation_(statistics)&oldid=975192923
https://en.wikipedia.org/w/index.php?title=Cross-validation_(statistics)&oldid=975192923
https://en.wikipedia.org/w/index.php?title=Explained_variation&oldid=950924846
https://en.wikipedia.org/w/index.php?title=Explained_variation&oldid=950924846
https://en.wikipedia.org/w/index.php?title=Mean_absolute_error&oldid=975662598
https://en.wikipedia.org/w/index.php?title=Mean_absolute_error&oldid=975662598
https://en.wikipedia.org/w/index.php?title=Mean_squared_error&oldid=978068800
https://en.wikipedia.org/w/index.php?title=Mean_squared_error&oldid=978068800
https://medium.com/@kohlishivam5522/understanding-a-classification-report-for-your-machine-learning-model-88815e2ce397
https://medium.com/@kohlishivam5522/understanding-a-classification-report-for-your-machine-learning-model-88815e2ce397
https://en.wikipedia.org/w/index.php?title=Mean_squared_error&oldid=978068800
https://en.wikipedia.org/w/index.php?title=Mean_squared_error&oldid=978068800
https://en.wikipedia.org/w/index.php?title=Accuracy_and_precision&oldid=978348772
https://en.wikipedia.org/w/index.php?title=Accuracy_and_precision&oldid=978348772
https://en.wikipedia.org/w/index.php?title=Hyperparameter_optimization&oldid=972537954
https://en.wikipedia.org/w/index.php?title=Hyperparameter_optimization&oldid=972537954

	CONTENTS
	PREFACE
	INTRODUCTION
	RELATED WORK
	BACKGROUND
	Alternative Communications Systems - Predecessors
	Message Passing
	Remote Procedure Call - RPC
	Notifications
	Shared Spaces
	Message Queuing
	Summary

	Publisher/Subscriber Systems
	What is a Publisher/Subscriber system?
	Why a Pub/Sub system? Pros and Cons.
	Subscription Models
	Topic - Based Publisher/Subscriber
	Content - Based Publisher/Subscriber
	Type - Based Publisher/Subscriber
	Summary

	Quality of Service - QoS
	Reliability
	On-Time Delivery
	Security
	Summary

	Apache Kafka
	Introduction to Kafka
	System Architecture
	Main Parts of Kafka
	Abstractions and Terminology

	Zookeeper
	What is it and how does it work?
	Zookeeper and Apache Kafka

	DATA GATHERING
	The importance of data
	Kafka setup and data gathering procedure
	Parameters tested/measured
	Procedure and code
	Machine specs

	REGRESSION ALGORITHMS
	Linear Regression
	Linear Regression Performance
	Multiple Linear Regression

	Lasso Regression
	L1 Regularization
	Performing Lasso Regression

	LassoLARS Regression
	Pros and Cons of LARS algorithm
	Mathematical Formulation

	CART Regression
	Pros and Cons of CART algorithm

	CLASSIFICATION ALGORITHMS
	K-NN Classification
	K-NN algorithm
	Parameter selection
	Distance functions

	SVM Classification
	Large-margin hyperplane
	Support Vectors

	Linear SVM Classification
	RBF SVM Classification
	Kernel Trick
	RBF SVM in practice

	Data splitting into categories

	IMPLEMENTATION AND RESULTS
	Cross Validation
	Metrics
	Regression Algorithms Metrics
	Negative values of metrics

	Classification Algorithms Metrics

	Hyperparameter optimization
	Grid Search
	Algorithm parameters

	Model training and evaluation
	Predicted targets
	Regression Algorithms
	Records/sec results
	MB/sec results
	Avg Latency results
	Max Latency results
	General Results for Regression algorithms

	Classification Algorithms
	k-NN algorithm
	Linear SVM algorithm
	RBF SVM algorithm
	General Results for Classification algorithms

	CONCLUSIONS AND FUTURE WORK
	Conclusions
	Future work

	ABBREVIATIONS - ACRONYMS
	REFERENCES

