
NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

SCHOOL OF SCIENCE
DEPARTMENT OF INFORMATICS AND TELECOMMUNICATIONS

POSTGRADUATE STUDIES
“DATA SCIENCE AND INFORMATION TECHNOLOGIES”

MASTER THESIS

Transforming into RDF and Interlinking Βig Geospatial
Data

George E. Mandilaras

Supervisor: Manolis Koubarakis, Professor

ATHENS

February 2021

ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ
“ΕΠΙΣΤΗΜΗ ΤΩΝ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΕΣ ΠΛΗΡΟΦΟΡΙΑΣ”

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Μετατροπή σε RDF και Διασύνδεση Μεγάλων
Γεωχωρικών Δεδομένων

Γεώργιος Ε. Μανδηλαράς

Επιβλέπων: Μανόλης Κουμπαράκης, Καθηγητής

ΑΘΗΝΑ

Φεβρουάριος 2021

MASTER THESIS

Transforming into RDF and Interlinking Βig Geospatial Data

George E. Mandilaras
R.N.: DS1190012

SUPERVISOR: Manolis Koubarakis, Professor

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Μετατροπή σε RDF και Διασύνδεση Μεγάλων Γεωχωρικών Δεδομένων

Γεώργιος Ε. Μανδηλαράς
Α.Μ.: DS1190012

ΕΠΙΒΛΕΠΩΝ: Μανόλης Κουμπαράκης, Καθηγητής

ABSTRACT

In the era of big data, a vast amount of geospatial data has become available from
government agencies, businesses and research projects. In most cases, this data does
not follow the linked data paradigm and the conventional methods for transforming it into
linked data has been proved ineffective due to its large volume. For this purpose, we
extended GeoTriples, an open source tool developed by our group, to be able to massively
transform big geospatial data into RDF graphs, using Apache Spark. Furthermore, by
transforming it into RDF, we can interlink it with other linked data and further populated
the Linked Open Data Cloud. In this work, we also present novel algorithms for batch
and progressive Geospatial Interlinking, as well as how we have parallelized them in the
system DS­JedAI, that runs on top of Apache Spark. In the end, we perform detailed
evaluation of both systems and we show that they can operate on big geospatial data
effectively.

SUBJECT AREA: Semantic Web

KEYWORDS: big data, geospatial data, Spark, RDF graphs, geospatial interlinking

ΠΕΡΙΛΗΨΗ

Στην εποχή των μεγάλων δεδομένων, μια μεγάλη ποσότητα γεωχωρικών δεδομένων είναι
διαθέσιμη στο διαδίκτυο, προερχόμενη από κρατικές υπηρεσίες, εταιρίες και ερευνητικά
έργα. Στις περισσότερες περιπτώσεις, αυτά τα δεδομένα δεν ακολουθούν το πρωτόκολλο
των διασυνδεδεμένων δεδομένων και οι συνηθισμένοι μέθοδοι μετατροπείς τους έχουν
αποδειχθεί ανεπαρκής, εξαιτίας του μεγάλου τους όγκου. Για αυτό τον λόγο, επεκτείνουμε
το εργαλείο GeoTriples ώστε να μπορεί να μετατρέψει μεγάλα γεωχωρικά δεδομένα σε
RDF γράφους, χρησιμοποιώντας το Apache Spark. Επιπλέον, μετατρέποντας τα δεδομένα
σαν RDF τριπλέτες, μπορούμε να τα διασυνδέσουμε με άλλα υπάρχοντα συνδεδεμένα
δεδομένα και να εμπλουτίσουμε περαιτέρω το σύννεφο των Ανοικτών Διασυνδεδεμένων
Δεδομένων (LinkedOpenData cloud). Οπότε, σε αυτήν την εργασία παρουσιάζουμε επίσης
κάποιους καινοτόμους αλγορίθμους για συνολική ή βαθμιαία διασύνδεση γεωχωρικών
δεδομένων, αλλά και πως τους έχουμε παραλληλοποιήσει στο σύστημα DS­JedAI, το
οποίο δουλεύει πάνω στο Apache Spark. Στο τέλος, εκτελούμε αναλυτική αξιολόγηση
των συστημάτων και αποδεικνύουμε ότι μπορούν να διαχειριστούν μεγάλα γεωχωρικά
δεδομένα αποτελεσματικά.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Σημασιολογικός Ιστός

ΛΕΞΕΙΣΚΛΕΙΔΙΑ: μεγάλα δεδομένα, γεωχωρικά δεδομένα, Spark, RDF γράφοι,
γεωχωρική διασύνδεση

To my family

ACKNOWLEDGEMENTS

Firstly, I would like to thank professor Manolis Koubarakis for his guidance and for giving
me the opportunity to be part of the AI research group and work on this project. I would also
like to thank George Papadakis for constantly advising me during the whole procedure.
The present work was co­funded by the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 825258 (ExtremeEarth).

CONTENTS

1 INTRODUCTION 13

2 PRELIMINARIES 16

2.1 Semantic Web . 16

2.2 Geospatial data . 17

2.3 Systems for Big Data management 20

2.4 Summary . 22

3 RELATED WORK 23

3.1 Transformation into RDF graph . 23

3.2 Geospatial Interlinking . 24

3.3 Summary . 25

4 Transforming Big Geospatial Data into Linked Data 26

4.1 GeoTriples . 26

4.2 Transformation of big geospatial data 27

4.3 Evaluation . 29

4.4 Summary . 32

5 Geospatial Interlinking1 33

5.1 Geospatial Interlinking At large (GIA.nt) 33

5.2 Progressive Geospatial Interlinking 36

5.2.1 Progressive GIA.nt. 37

5.2.2 Geometry Top­k . 39

5.2.3 Reciprocal Geometry Top­k . 40

5.3 Massive Parallelization. 43

5.4 Evaluation . 45

5.4.1 Evaluation of GIA.nt . 45

5.5 Evaluation of progressive algorithms 46

5.6 Summary . 50

6 POLAR USE­CASE2 51

6.1 Ice Monitoring . 51

6.2 Approach . 52

7 CONCLUSION 54

ACRONYMS 55

REFERENCES 55

LIST OF FIGURES

Figure 1 An example of an RDF graph . 17

Figure 2 The Linked Open Data Cloud . 18

Figure 3 Geospatial Interlinking . 19

Figure 4 System architecture of GeoTriples 27

Figure 5 The GeoTriples­Spark architecture 28

Figure 6 CSV experiments . 30

Figure 7 ESRI shapefiles experiments: Transformation of big shapefiles . . . 31

Figure 8 Space tiling . 34

Figure 9 System architecture of DS­JedAI . 44

Figure 10 Comparison betweenGIA.nt andGeoSpark using only the intersects
relation . 46

Figure 11 Evaluation of all progressive methods 47

Figure 12 The results as they are presented to the user. 52

LIST OF TABLES

Table 1 ESRI Shapefile experiments: Transformation of multiple shapefiles
of varying sizes . 31

Table 2 Large scale experiments with CSV documents 32

Table 3 Large scale experiments with ESRI shapefiles 32

Table 4 Technical characteristics of the real datasets for Geospatial Interlinking. 45

Table 5 Evaluation of progressive methods using all weighting schemes and
5M budget . 49

Table 6 Evaluation of all progressive methods using all weighting schemes
and 10M budget . 49

Transforming into RDF and Interlinking Βig Geospatial Data

1. INTRODUCTION

In the recent years, a vast amount of geospatial data has become available on the
Web, originating from numerous sources. From crowed­sourced projects such as
OpenStreetMap1, geospatial search engines like Google Maps, data hubs like the ESRI
Open Data Hub2 and earth observation imagery projects like the Copernicus3 and the US
Landsat program4.

Researchers and practitioners have started publishing geospatial data as linked data,
interlinking them and further populating the Linked Open Data (LOD) cloud. For example,
the project LinkedGeoData5 [4] was the first project to add a spatial dimension to the
Semantic Web by collecting information fromOpenStreetMap (OSM) and converting it into
linked data, gathering more than 3 billion geographic entities and 20 billion RDF triples.
Furthermore, projects such as TELEIOS6, LEO7, MELODIES8 and Copernicus App Lab9
have published a number of geospatial datasets that are Earth Observation (EO) products
such as the CORINE Land Cover10 and Urban Atlas11.

This has led to the development of geospatial Knowledge Graphs such as
YAGO2geo12 [25]. YAGO2geo is a recently developed Knowledge Graph that extends
the YAGO2 [17, 18] Knowledge Base with precise geospatial information originated
from various official government sources, such as the Ordnance Survey13 of the United
Kingdom and the National Boundary Dataset14 (NBD) of USA, but also from volunteered
open data of OSM. Another big collection of geospatial data represented as linked data is
Geographica 2.0 [20] which consists of almost half a billion RDF triples. Geographica
2.0 has gathered information from various open datasets (e.g., Greek Administrative
Geography Dataset15, Geonames16, DBpedia17, etc.) and it is used as benchmark to
examine the performance of triples­stores.

Publishing geospatial data as linked data, enables users to leverage the advantages of
using ontologies and to utilize Semantic Web technologies. Furthermore, enables users
to take advantage of other linked open data by interlinking them. In order to interlink
geospatial data, we need to discover the topological relations that may exists among
their geometries, a process known as Geospatial Interlinking or Link Discovery. However,
Geospatial Interlinking is consider to be a complex process, as a naive approach would
require to examine all the entities with each other, leading to a quadratic complexity
(O(n2)). Such complexity is prohibitive especially when we are dealing with big data.

1https://www.openstreetmap.org/
2https://hub.arcgis.com/search
3https://www.copernicus.eu/
4https://www.usgs.gov/core-science-systems/nli/landsat
5http://linkedgeodata.org/About
6http://www.earthobservatory.eu/
7http://www.linkedeodata.eu/
8https://www.melodiesproject.eu/
9https://www.app-lab.eu/
10https://land.copernicus.eu/pan-european
11http://kr.di.uoa.gr/#datasets
12http://yago2geo.di.uoa.gr
13https://www.ordnancesurvey.co.uk/
14https://www.sciencebase.gov/catalog/item/4f70b219e4b058caae3f8e19
15http://linkedopendata.gr/dataset/greek-administrative-geography
16http://www.geonames.org/
17https://wiki.dbpedia.org/online-access/DBpediaLive

G. Mandilaras 13

https://www.openstreetmap.org/
https://hub.arcgis.com/search
https://www.copernicus.eu/
https://www.usgs.gov/core-science-systems/nli/landsat
http://linkedgeodata.org/About
http://www.earthobservatory.eu/
http://www.linkedeodata.eu/
https://www.melodiesproject.eu/
https://www.app-lab.eu/
https://land.copernicus.eu/pan-european
http://kr.di.uoa.gr/##datasets
http://yago2geo.di.uoa.gr
https://www.ordnancesurvey.co.uk/
https://www.sciencebase.gov/catalog/item/4f70b219e4b058caae3f8e19
http://linkedopendata.gr/dataset/greek-administrative-geography
http://www.geonames.org/
https://wiki.dbpedia.org/online-access/DBpediaLive

Transforming into RDF and Interlinking Βig Geospatial Data

In many cases, geospatial data is considered as big data as it satisfies the 5Vs principle18.
The 5Vs principle is termed as the characteristics of big data and defines the followings
properties:

1. Volume refers to the size of data. If the volume of data is very large, then it is
actually considered as a big data. This means whether particular data can actually
be considered as big data or not, is dependent upon the volume of data.

2. Velocity refers to the high speed of accumulation of data. This determines the
potential of data that how fast the data is generated and processed to meet the
demands.

3. Variety refers to the nature of data that may be of diverse types and collected from
different sources. Generally, big data is classified as structured, semi­structured and
unstructured data.

4. Veracity or also commonly known as Validity, refers the assurance of quality or
credibility of the collected data. Decision­making that depends on data requires
from it to be credible and to originate from reliable sources.

5. Value, which refers to how worthy is the data and to its impact on the business model
and decision­making.

Geospatial data satisfies the 5Vs principle. For instance, the Copernicus project has
already produced a large amount of EO products (i.e. high Volume) and keeps generating
new products on a regular basis (i.e. high Velocity). In more details, the Open Access
Hub 19 has released almost 13M of EO products in 2019 and generates tens of thousands
new EO products on a daily basis. Regarding Variety, geospatial data may be stored
either in raster or vector formats and may originate from a plethora of different sources.
The Validity of the geospatial data strictly depends on its source. For instance there are
sources that may contain noisy data (e.g., OpenStreetMap), but on the other hand there
are sources that produce high quality geospatial data, like the EO products produced by
the Copernicus project. Last but not least, geospatial data is of significant importance as
it is used in a variety of applications, especially when it is interlinked with other data (e.g.,
satellite data with in­situ observations).

Consequently, dealing with geospatial data requires adequate resources and specially
designed tools able to handle big geospatial datasets consisting of complex geometries.
In this work, we focus on two problems that combine big geospatial data and linked data.
The first one concerns the transformation of big geospatial data into linked data, and the
second one focuses on developing algorithms able to perform geospatial interlinking in a
large scale. In more details, the contributions of this work are the following:

• We design and implement the system GeoTriples­Spark20, which is an extension
of GeoTriples that runs on top of Apache Spark and enables the transformation of
big geospatial data into linked data. GeoTriples­Spark is an open source project,
licensed under the Apache license version 2.0.

18https://www.bbva.com/en/five-vs-big-data/
19https://scihub.copernicus.eu/
20https://github.com/LinkedEOData/GeoTriples

G. Mandilaras 14

https://www.bbva.com/en/five-vs-big-data/
https://scihub.copernicus.eu/
https://github.com/LinkedEOData/GeoTriples

Transforming into RDF and Interlinking Βig Geospatial Data

• We evaluate our system using datasets of varying input sizes, in different scenarios,
and compare its performance with its main competitors: GeoTriples­Hadoop [27]
and TripleGeo­Spark [34]. We also show that GeoTriples­Spark is able to transform
terabytes of data in a reasonable amount of time, when no other system has been
proven to be able to do so.

• We introduce GIA.nt, an algorithm for Holistic Geospatial Interlinking and also
progressive algorithms that prioritize certain geometry pairs that are more likely to
relate.

• We present the system DS­JedAI which implements the parallelized versions of
these algorithms based on Apache Spark, and we evaluate all approaches through
a thorough experimental analysis that involves six real, large­scale datasets.

The structure of the document is the following: in Chapter 2 we present preliminaries,
basic concepts necessary for better understanding of this work. Then, in Chapter 3 we
present related work regarding the transformation of geospatial data into RDF, and the
Geospatial Interlinking. In Chapter 4 we present and evaluate GeoTriples­Spark and we
show that it is capable of transforming up to terabytes of input data. In Chapter 5 we
introduce novel batch and progressive algorithms for Holistic Geospatial Interlinking, and
how we have parallelize them in the system DS­JedAI using Apache Spark. Furthermore,
we present detailed evaluation of these algorithms. In Chapter 6 we present a use­case
in which we combine these two systems in order to improve ice monitoring in the Arctic.
Finally, in Chapter 7, we summarise the whole work and we present our future plans.

G. Mandilaras 15

Transforming into RDF and Interlinking Βig Geospatial Data

2. PRELIMINARIES

In this chapter we introduce some basic concepts, like the Semantic Web and its
related terms, the geospatial data and the topological relations, as well as systems and
frameworks necessary for big data management.

2.1 Semantic Web

The Semantic Web is a vision about an extension of the existing World Wide Web,
which provides software programs with machine­interpretable metadata of the published
information and data. In other words, the existing content and data on the Web will be
further extended with data descriptors. As a result, computers will able tomakemeaningful
interpretations similar to the way humans process information to achieve their goals

The ultimate ambition of the Semantic Web, as its founder Tim Berners­Lee 1 sees it, is to
enable computers to better manipulate information on our behalf. He further explains that,
in the context of the Semantic Web, the word “semantic” indicates machine­processable
or what a machine is able to do with the data. Whereas “Web” conveys the idea of a
navigable space of interconnected objects with mappings from URIs (Uniform Resource
Identifiers) to resources.

Fundamental for the adoption of the Semantic Web vision was the development of a
set of standards established by the international standards body – the World Wide Web
Consortium (W3C):

• Resource Description Framework(RDF) is a simple language for describing objects
and their relations in a graph.

• SPARQL Protocol and RDF Query Language (SPARQL) is the main protocol and
query language for RDF data.

• Uniform Resource Identifier(URI) is a string of characters designed for unambiguous
identification of resources and extensibility via the URI scheme.

In more details, RDF is a family of W3C specifications originally designed as a metadata
data model. It has come to be used as a general method for conceptual description or
modelling of information that is implemented in Web resources, using a variety of syntax
notations and data serialization formats, such as N­Triples, Turtle, N3, JSON­LD, etc.

The RDF data model is similar to classical conceptual modelling approaches (such
as entity–relationship or class diagrams). It is based on the idea of making
statements about resources (in particular Web resources) in expressions of the form
subject–predicate–object, known as RDF triples. The subject denotes a resource or
an entity, and the predicate denotes traits or aspects of the resource and expresses a
relationship between the subject and the object. Similarly, objects can also denote other
entities or literal values like a name or a date. Both subject, predicates and objects (in
case they describe an entity) are defined using HTTP URIs denoting entities within the
Web. Using HTTP URIs in RDF statements makes information more structured and more

1https://www.w3.org/People/Berners-Lee/

G. Mandilaras 16

https://www.w3.org/People/Berners-Lee/

Transforming into RDF and Interlinking Βig Geospatial Data

Figure 1: An example of an RDF graph

meaningful to software programs, allowing them to interact with the Web the same way
as people do.

A collection of RDF triples forms an RDF graph, like the one displayed in Figure 1. If the
entities of an RDF graph represent real­word objects, events, or abstract concepts then
the graph is considered to be a Knowledge Graph (KG) . In a KG, the relations between the
entities have formal semantics that allow both people and computers to process them in
an efficient and unambiguous manner. Furthermore, the information can be explored via
structured queries (e.g. using SPARQL). Probably, the most famous KG is DBpedia which
contains facts extracted from the structured information of Wikipedia pages like info­boxes
and articles metadata.

Moreover, many KGs contain information from different sources and from other KGs,
interlinking their entities and creating a network of accumulated knowledge. For instance,
DBpedia is connected with multiple other KGs like YAGO, Wikidata and Geonames. As a
result, a vast network of interconnected KGs has been created, which is known as Linked
Open Data (LOD) Cloud2 (Figure 2) and it is one of the principals and integral parts of the
Semantic Web. Additionally, it is interesting to mention that a big portion of LOD concerns
on geographical entities like administrative units.

2.2 Geospatial data

Here we provide some information about geospatial data, topological relations and we
define the problem of Geospatial Interlinking.

Geospatial data can exist in raster or vector forms and is usually accompanied by their
metadata. Raster data is made up of pixels (also referred as grid cells), it is usually
regularly­spaced and pixels are associated with a value (continuous) or class (discrete).
Some well­known formats for storing raster data are GeoTIFF, an industry standard file
for images from GIS and satellite remote sensing applications, and ESRI Grid files, a
proprietary format developed by ESRI. Vector data are made up of vertices and edges
and are composed by three basic geometry types: points, lines and polygons. They
are commonly available in formats such as ESRI shapefile, GeoJSON, KML and GML
documents and in spatially­enabled RDBMS like PostGIS. The ESRI shapefile format is
a group of files consisting of three mandatory components, a main file that contains the

2https://lod-cloud.net/

G. Mandilaras 17

https://lod-cloud.net/

Transforming into RDF and Interlinking Βig Geospatial Data

Figure 2: The Linked Open Data Cloud

geometries as lists of vertices, an index file and a dBASE file that contains the thematic
features of each record. The shapefile format is widely preferred because it requires less
storage space and it is easier to read andwrite, because it is compatible withmany libraries
(e.g., JTS Topology Suite3) and Geographic Information Systems (GIS). GeoJSON is an
open standard format designed for representing simple geographical features, along with
their non­spatial attributes. There are several formats of GeoJSON, but the standard
specification is based on RFC 79464. Moreover, CSV files can also store geospatial data
as vectors, by containing complex geometric types expressed asWell Known Text5 (WKT),
a text markup language for representing vector geometry.

Geospatial data can also be represented as RDF, based on the OGC6 GeoSPARQL7
standard. GeoSPARQL defines a vocabulary for representing geospatial data in RDF,
and it defines an extension to the SPARQL query language for processing geospatial
data. The geometries are represented as literals using either WKT or KML.

Topological relations describe qualitative properties that characterize the relative position
of spatial objects. The most common topological model is the Dimensionally Extended
9­Intersection Model (DE­9IM) [14, 9, 8] which is used to describe the spatial relations
of two regions. DE­9IM defines an 3x3 Intersection Matrix (IM) based on the interior,
exterior and the boundaries of geometries, in order to express all the possible topological
relations. The Intersection Matrix for the geometries s and t is defined as:

3https://github.com/locationtech/jts
4https://tools.ietf.org/html/rfc7946
5https://www.ogc.org/standards/wkt-crs
6https://www.ogc.org/standards/sfs
7https://www.ogc.org/standards/geosparql

G. Mandilaras 18

https://github.com/locationtech/jts
https://tools.ietf.org/html/rfc7946
https://www.ogc.org/standards/wkt-crs
https://www.ogc.org/standards/sfs
https://www.ogc.org/standards/geosparql

Transforming into RDF and Interlinking Βig Geospatial Data

(a) Progressive vs Batch
approach (b) Examples of spatial relations

Figure 3: Geospatial Interlinking

IM(s, t) =

dim(I(s) ∩ I(t)) dim(I(s) ∩B(t)) dim(I(s) ∩ E(t))
dim(B(s) ∩ I(t)) dim(B(s) ∩B(t)) dim(B(s) ∩ E(t))
dim(E(s) ∩ I(t)) dim(E(s) ∩B(t)) dim(E(s) ∩ E(t))


,

where dim is the dimension of the intersection (∩) of the interior (I), boundary (B), and
exterior (E) of geometries s and t. The dimension of non­empty sets (¬∅) are denoted
with the maximum number of dimensions of the intersection, specifically 0 for points, 1 for
lines and 2 for areas. Empty sets are expressed using F . Hence, the domain of the model
is {0, 1, 2, F}.

This way we can express all the possible topological relations between two geometries,
but most applications focus on just ten relations, which can be expressed by the English
language. Those are the followings:

1. Intersects(s, t) suggests that s and t share at least one point in their interior or
boundary.

2. Contains(s, t) means that s lies inside t such that only their interiors intersect.

3. Within(s, t) means that t contains s.

4. Covers(s, t) indicates that s lies inside t such that their interiors or their boundaries
intersect.

5. Covered_by(s, t) means that t Covers s.

6. Equals(s, t) means that the interiors of s and t intersect, but no point of s intersects
the exterior of t and vice versa.

7. Touches(s, t) indicates that the two geometries share at least one point, but their
interiors do not intersect.

8. Crosses(s, t) indicates that the two geometries share some but not all interior points
and that the dimension of their intersection is smaller than that of at least one of
them.

9. Overlap(s, t) differs from Crosses(s,t) in that the two geometries have the same
dimension, and so does their intersection.

G. Mandilaras 19

Transforming into RDF and Interlinking Βig Geospatial Data

10. Disjoint(s, t) designates that s and t share no interior or boundary point.

Figure 3b displays some examples of topological relations between two geometries.

Geospatial Interlinking is the procedure of discovering the topological relations between
the geometries of two datasets (source and target). For instance, to look for geometry
pairs that intersect or pairs of nearby points. Given that, each topological relation r is a
predicate evaluating to true or false. We can define Geospatial Interlinking as:

Definition 1 (Geospatial Interlinking) Given a source dataset S, a target dataset T and
a topological relation r, discover the set of links Lr = {(s, r, t)|s ∈ S ∧ t ∈ T ∧ r(s, t)}.

However, in linked data we want to discover all the topological relations between the
geometries. So, instead of examining individual topological relations, we use the DE­9IM
topological model in order to concurrently find all the topological relations between the two
datasets, except the Disjoint. Disjoint is hard to compute because the vast majority
of geometry pairs typically pertains to unrelated geometries. Furthermore, we can imply
Disjoint from the absence of the other relations. We call the process of discovering all
topological relations as Holistic Geospatial Interlinking and we define it as:

Definition 2 (Holistic Geospatial Interlinking) Given a source dataset S, a target one
T , and the set of non­trivial topological relationsR, derive the set of links LR = {(s, r, t)|s ∈
S ∧ t ∈ T ∧ r ∈ R ∧ r(s, t)} from the Intersection Matrix of geometry pairs.

In this work, we also examine methods that solve the Geospatial Interlinking task in a
progressive, i.e., pay­as­you­go, manner, when we have limited time or computational
resources. We assume that the available resources for progressive Geospatial Interlinking
are defined in terms of the number of geometry pairs that are actually verified. The goal
of a progressive algorithm is to prioritize geometry pairs that are more likely to relate. As
displayed in Figure 3a, a progressive approach should discover more qualifying pairs in
the first V ′ verifications, than a batch approach. However, after examining all geometry
pairs, both approach will conclude to the same qualifying pairs.

2.3 Systems for Big Data management

The management of big data is a difficult procedure which cannot be applied using
conventional systems that process data sequentially. Such systems would face storage
or memory issues, while would also require an extreme amount of time for processing.
Consequently, for processing big data, we use distributed systems able to operate in
clusters of computers. Regularly, such systems are based on the MapReduce [11]
framework.

MapReduce is a processing technique and a programmingmodel for distributed computing
based on Java. The MapReduce algorithm contains two important tasks, namely Map and
Reduce. Map takes a set of data and converts it into another set of data, where individual
elements are broken down into tuples (key/value pairs). Secondly, reduce task, which
takes the output from a map as an input and combines those data tuples into a smaller set
of tuples. As the sequence of the name MapReduce implies, the reduce task is always

G. Mandilaras 20

Transforming into RDF and Interlinking Βig Geospatial Data

performed after the map job. The major advantage of MapReduce is that it is easy to scale
data processing over multiple computing nodes.

MapReduce is one of the three main components of Apache Hadoop. Hadoop is
a framework that allows distributed processing of large datasets across clusters of
computers, providing distributed storage and computation. Hadoop consists of three
main components: the MapReduce, the (HDFS), and YARN. The Hadoop Distributed File
System (HDFS) [38] is the file­system used by Hadoop and allows to store big datasets
distributedly, by splitting the datasets into chunks and storing them into different machines.
YARN(which stands for Yet Another Resource Negotiator) is the resource manager and
job scheduler of Hadoop. Hadoop is widely used for processing big data, but recently the
MapReduce has been replaced with other more powerful distributed processing engines,
like Apache Spark and Apache Flink, which are based on MapReduce.

An extension of Hadoop is Hops which runs in the data platform Hopsworks8 [21],
developed by the Swedish startup LogicalClocks9. Hopsworks has its own resource
manager HopsYarn but its key component is the file­system HopsFS [29]. HopsFS is
a new distribution of HDFS, that replaces the single node in­memory metadata service of
HDFS, with a no­shared state distributed system built on a NewSQL database. Hence, it
allows to create larger clusters while maintaining client latencies low. As a result, HopsFS
is capable of surpassing 1 million file system operations per second, which is at least 16
times higher throughput than HDFS [22].

Probably, the most popular distributed processing engine is Apache Spark10 [46]. Spark
is an open­source, distributed, general­purpose, cluster­computing framework that uses
a master/worker architecture. There is a Driver program that talks to a single coordinator
called master which manages the worker nodes in which Executors run. Driver is
responsible to split the job into tasks, to schedule them to run on executors and to
coordinate the overall execution. Executors are distributed agents that execute tasks in
parallel (or sequentially). At the core of Apache Spark is the notion of data abstraction
as a distributed collection of objects, known as Resilient Distributed Datasets (RDD) [45].
RDDs allow the user to apply a series of transformations (i.e. map, filters, etc.), creating
a lineage graph which will not be executed before calling an action (i.e. count, write to
file, etc.). All transformations and actions are performed in parallel, as each Executor
is assigned with a portion of the overall data known as partition and the execution of
the transformation linkage graph runs inside a task. The number of concurrent tasks is
configurable and it is defined by the user and the available resources. Both systems
discussed in this work, are developed on top of Apache Spark.

Another very popular distributed processing engine is Apache Flink11 [5]. Apache Flink is
a framework and distributed processing engine for stateful computations over unbounded
and bounded data streams. Unbounded streams have a start but no defined end and
provide data as it is generated, while bounded streams is finite streams with a defined
start and end. Flink has been designed to run in all common cluster environments, perform
computations at in­memory speed and at any scale.

8https://github.com/logicalclocks/hopsworks
9https://www.logicalclocks.com/
10https://spark.apache.org/
11https://flink.apache.org/

G. Mandilaras 21

https://github.com/logicalclocks/hopsworks
https://www.logicalclocks.com/
https://spark.apache.org/
https://flink.apache.org/

Transforming into RDF and Interlinking Βig Geospatial Data

2.4 Summary

In this chapter, we introduce the concept of Semantic Web, as well as we provide
information about geospatial data and the topological relations between geometries.
Furthermore, we introduce the problem of Geospatial Interlinking and also the Holistic
Geospatial Interlinking where we try to discover all the topological relations between two
datasets. Moreover, since both of the systems discussed in Chapters 4 and 5 are designed
to process big data and to run on distributed clusters of computers, we also present some
state­of­the­art systems for big data management.

G. Mandilaras 22

Transforming into RDF and Interlinking Βig Geospatial Data

3. RELATED WORK

In this chapter, we present related work regarding the transformation of structured and
semi­structured data into RDF graphs and Geospatial Interlinking.

3.1 Transformation into RDF graph

Regarding the transformation of relational and non­relational data as RDF graphs, there
are two main approaches: direct mapping and using mapping rules. Direct mapping1 is
a straightforward approach where the tables of the relational database become classes,
the attributes are mapped into RDF properties that represent the relation between subject
and object and subjects are defined by the identifiers. Even though this is a very simple
method, the generated triples are strictly defined by the schema of the relational data.
Alternatively, using mapping rules, we define a set of rules which will be applied during
the transformation, and define how the input data will be mapped into triples. Two
well­known mapping languages are the R2RML2 and RML3 [12] the first of which is a
W3C recommendation. R2RML is a language for expressing customized mappings from
relational databases into RDF graphs while RML is a more generic mapping language
that can express rules that map data with heterogeneous structures (like XML, JSON)
into RDF graphs.

Regarding the transformation of geospatial data into RDF, there is not a lot of work
available. Geometry2RDF [10] was one of the first tools that enabled users to transform
spatially­enabled RDB systems into RDF graphs. Even though this project is no longer
maintained, its code­base worked as the basis for the development of other tools that
serve this purpose. A different approach appears in [7] which shows how R2RML can
be combined with a spatially­enabled relational database in order to transform geospatial
data into RDF. However, the transformation of other geospatial data sources like vector
forms e.g., shapefiles is not discussed.

TripleGeo4 [34, 35] is a tool for transforming geospatial features from various sources into
RDF graphs, developed in the project GeoKnow5. TripleGeo supports the transformation
of structured data (e.g., ESRI shapefiles, CSV, GeoJSON, GPX) or semi­structured
data (in XML, GML, or KML), as well as from spatially­enabled DBMSs and of less
standard formats such as OpenStreetMap data and certain INSPIRE data and metadata.
Furthermore, recently in the project SLIPO6, TripleGeo was further extended with several
novel features and specific functionalities to efficiently support the transformation of large
point of interests (POIs). This was achieved by extending TripleGeo to run on top
of Apache Spark, and therefore currently TripleGeo and GeoTriples­Spark, the system
presented in this paper, are the only tools available that support the transformation of
big geospatial data into RDF graphs (the author of this work implemented the Spark
extension of TripleGeo in collaboration with Spiros Athanasiou and Kostas Patroumpas of
the TripleGeo team).

1https://www.w3.org/TR/rdb-direct-mapping/
2https://www.w3.org/TR/r2rml/
3https://rml.io/
4https://github.com/SLIPO-EU/TripleGeo
5http://geoknow.eu/Welcome.html
6http://slipo.eu/

G. Mandilaras 23

https://www.w3.org/TR/rdb-direct-mapping/
https://www.w3.org/TR/r2rml/
https://rml.io/
https://github.com/SLIPO-EU/TripleGeo
http://geoknow.eu/Welcome.html
http://slipo.eu/

Transforming into RDF and Interlinking Βig Geospatial Data

3.2 Geospatial Interlinking

Most of the existing related work focuses on spatial join which examines a specific relation
(i.e., intersects, contains, etc.) at a time. Instead, in Holistic Geospatial Interlinking the
target is to discover all the possible topological relations.

Silk­spatial [40]7 is a well­known tool for spatial link discovery, implemented as an
extension of Silk [42] 8 which is an open source framework for integrating heterogeneous
data sources. Silk­spatial employs a static space tiling approach that defines a fixed
EquiGrid on Earth’s surface, and compares the geometries that coexist in the same tiles.
However, since the tiling technique is independently of the input data, it leads to tiles
that are usually coarse­grained, which means that the number of geometry pairs that are
verified is too large. This is partially ameliorated through massive parallelization on top of
Apache Hadoop.

RADON [37] is an algorithm implemented in LIMES9 which is a link discovery framework
for the Web of Data. RADON improves on Silk­spatial by building dynamic, fine­grained
tiles: in each dimension, the extent of the tiles has a length equal to the average extent
of the geometry Minimum Bounding Rectangles (MBRs) in that dimension. Given that
every geometry is assigned to all tiles intersecting its MBR, and similarly to Silk­spatial, all
geometries that coexist in the same tiles will be examined. However, since the MBRs
can intersect with multiple tiles, it leads to redundant geometry pairs that co­occur in
multiple tiles. In order to avoid duplicate verifications, RADON maintains a hash­table
in memory with all the verified geometries. Even though this is a simple solution, the
size of the table can grow significantly when the number of geometric pairs is very big.
Thorough experimental evaluation in [36] demonstrates that RADON is significantly faster
than Silk­spatial, constituting the state­of­the­art approach. Additionally, RADON in [3]
was enriched with the DE­9IM topological model in order to be able to compute all spatial
relations at once.

GeoSpark10 [44] (currently known as Apache Sedona) is an in­memory cluster computing
framework developed by the Data Systems Lab11, in order to support spatial data types,
indexes, and processing of large­scale spatial data. GeoSpark provides a geometrical
operations library that accesses Spatial RDDs to perform basic geometrical operations
like spatial joins based on topological relations (e.g., overlap, intersect). System users
can leverage the newly defined SRDDs to effectively develop spatial data processing
programs in Spark. To better process geometries in parallel, GeoSpark enables users
to spatial partition their data so all the potentially spatial related geometries to co­occur in
the same partition. To spatial partition, GeoSpark collects and builds a spatial index (e.g.,
Quad-Trees, KDB-Trees, R-Trees, etc.) based on a sample of data, which is then used
in order to assign each geometry to the appropriate partition. This way, in spatial joins,
GeoSpark examines only the geometry pairs that co­exist in the same partitions.

More importantly, in this work we focus on pay­as­you­algorithms that try to optimize the
processing order of geometry pairs within a limited budget (in terms of computational
resources). Previous work on progressive computation of spatial joins focuses on stream
processing and is not relevant to our problem. A problem related to this work isProgressive

7http://silk.di.uoa.gr/
8http://silkframework.org/
9https://aksw.org/Projects/LIMES.html
10http://geospark.datasyslab.org/
11https://www.datasyslab.net/

G. Mandilaras 24

http://silk.di.uoa.gr/
http://silkframework.org/
https://aksw.org/Projects/LIMES.html
http://geospark.datasyslab.org/
 https://www.datasyslab.net/

Transforming into RDF and Interlinking Βig Geospatial Data

Entity Resolution [33, 39, 43], where the goal is to detect matches, i.e., entity profiles
describing the same real­world object, in a pay­as­you­go manner.

3.3 Summary

In this chapter we discuss related work about the two subjects of this work, transformation
of geospatial data and Geospatial Interlinking. In both cases, we see that there are
extensions of existing tools developed either with Apache Spark or Apache Hadoop, in
order to be able to process big data. However, regarding Geospatial Interlinking, only
RADON can use the DE­9IM model to discover all topological relations, but it is not
designed for processing big data. Furthermore, to the best of our knowledge, there is
no existing framework for progressive Geospatial Interlinking.

G. Mandilaras 25

Transforming into RDF and Interlinking Βig Geospatial Data

4. TRANSFORMING BIG GEOSPATIAL DATA INTO LINKED DATA

In this chapter we present GeoTriples­Spark1, an open source system for the massive
conversion of big geospatial data into RDF graphs. GeoTriples­Spark is an extension
of GeoTriples [27] that runs on top of Apache Spark, and it is able to transform up to
terabytes of data into RDF graphs. In this chapter we introduce GeoTriples and how we
have extended it with Apache Spark. Moreover, we evaluate our system using datasets
of varying input sizes, in different scenarios, and compare its performance with its main
competitors: GeoTriples­Hadoop [27] and TripleGeo­Spark. We show that, in most cases,
GeoTriples­Spark decreases the transformation time by approximately 40%.

4.1 GeoTriples

In this section we give a short description of the main components of the tool GeoTriples
and how it operates.

GeoTriples is an open source tool developed by our team2 in the National and Kapodistrian
University of Athens for the transformation of geospatial data, from various data sources,
into linked data [27]. GeoTriples, currently supports the transformation of spatially­enabled
databases (PostGIS and MonetDB), ESRI shapefiles, XML documents (hence GML
documents), KML, GeoJSON and CSV documents. It consists of three components:
a mapping generator that given an input file it generates a mapping file containing the
mapping rules, a mapping processor that applies the mapping rules in order to map each
instance of the input data into the appropriate RDF triples, and an stSPARQL/GeoSPARQL
evaluator that can performs stSPARQL or GeoSPARQL queries in a spatial enabled
database given a mapping file. In addition, the first element of GeoTriples is a connector
which is responsible for providing an abstraction layer that allows the other components to
transparently access the input data regardless of the format of the source. The execution
of GeoTriples comprises three steps. In the first step we use the mapping generator which
creates a mapping file containing the mapping rules. Then as a second optional step
the user may edit the mapping file, so the produced triples will adopt any vocabulary
or ontology the user wants. Finally, in the last step follows the transformation of the
input file, which applies the mapping rules and maps the input data into RDF triples. The
produced graph by default, will be compliant with the GeoSPARQL vocabulary and can
be manifested in any of the popular RDF syntaxes such as Turtle, RDF/XML, Notation3
or N­Triples. Figure 4 presents the architecture of GeoTriples.

The mappings produced by GeoTriples consists of two triples maps: one for handling
non­geometric (thematic) data, and one related to the geospatial data. The triples map
that handles thematic information defines a logical table that contains the attributes of the
input data source and a unique identifier for the generated instances. Combined with a
URI template, the unique identifier is used to produce the URIs that will be the subjects of
the produced triples. For each column of the input data source, GeoTriples generates an
RDF predicate according to the name of the column and a predicate­object map. This map
generates predicate­object pairs consisting of the generated predicate and the column
values. The triples map that handles geospatial information defines a logical table with a

1https://github.com/LinkedEOData/GeoTriples
2http://ai.di.uoa.gr/

G. Mandilaras 26

https://github.com/LinkedEOData/GeoTriples
http://ai.di.uoa.gr/

Transforming into RDF and Interlinking Βig Geospatial Data

Figure 4: System architecture of GeoTriples

unique identifier similar to the thematic one. The logical table contains a serialization of
the geometric information according to the WKT format, and all attributes of the geometry
that are required for producing a GeoSPARQL compliant RDF graph. Hence, if the input
is an ESRI shapefile, GeoTriples constructs RML mappings with transformations that
invoke GeoSPARQL/stSPARQL extension functions. If the input is a relational database,
GeoTriples constructs SQL queries that utilize the appropriate spatial functions of the
Open Geospatial Consortium3 [16] standard that generate the information required.

In the beginning of the execution, GeoTriples parses the input mappings and extracts the
content of the logical table using the appropriate way (e.g. a SELECT query). If the subject
map is a template­valued term map or a column­valued term map, the related columns
are extracted and stored in memory. Then, the processor iterates over all predicate­object
maps, and for each one it extracts all template­ and column­valued termmaps. These term
maps are cached in memory along with the position that they appear on. Afterwards, the
processor extracts all the features that are referenced by the term maps that appear in
the subject, predicate and object positions for the current predicate map and iterates over
the results. For each predicate and object value in the result row, a new RDF triple is
constructed.

4.2 Transformation of big geospatial data

In this section we present GeoTriples­Spark. GeoTriples­Spark is developed to run on top
of Apache Spark and it enables the massive conversion of big geospatial data into RDF
graphs. The input big geospatial data can be provided as multiple separate files which will
be transformed concurrently or as a big single file. However, in case of multiple files, all of
them must comply to the same schema and mapping rules. Currently, GeoTriples­Spark
supports the transformation of CSV, GeoJSON and ESRI shapefiles. Figure 5 displays its
architecture.

The first component of GeoTriples­Spark is the Reader, which employs the appropriate
libraries regarding the format of the source to load the input data into a Spark Dataset,
which is a distributed immutable collection of data organized into named columns. When
a dataset is stored in a distributed filesystem (like HDFS), it is split into multiple chunks
of constant size. When GeoTriples­Spark starts, the Reader loads these data chunks

3https://www.ogc.org/standards/sfs

G. Mandilaras 27

https://www.ogc.org/standards/sfs

Transforming into RDF and Interlinking Βig Geospatial Data

Figure 5: The GeoTriples­Spark architecture

into partitions, which will be transformed as individual units in parallel. Users can
change the default number of partitions in order to increase parallelization, but this may
invoke data shuffling. In order to load ESRI shapefiles and GeoJSON, we use the
library GeoSpark. After initializing the Dataset, a new column is inserted containing a
monotonically increasing unique index which will be combined with a URI template to
form the subjects of produced triples. This is the default way of constructing subjects, but
the user can overwrite it by editing the mapping file. Moreover, this generated index is
not consecutive as this would require to have counted all the instances of the input data,
which would add an overhead in the execution. Last, before the transformation starts, the
Reader loads and extracts the mapping rules from the mapping file, and broadcasts them
so they will be available in all the nodes.

The transformation starts by a map stage where, for each partition, an RML processor is
initialized, which is in charge of transforming all the instances of the input partitions into
RDF triples. The RML processor iterates over the records of its input partition and applies
the mapping rules loaded by the mapping file, generating the corresponding triples. Note
that the produced triples significantly over­exceed the size of the initial dataset and hence
we avoid to reduce the partitions in order to construct a single partition containing all the
produced triples, as this would either require an excessive amount of available memory
or it would lead to memory errors. Additionally, collecting all the data into one node is
not considered to be a good tactic. Consequently, after the transformation, the triples
of each partition are stored in individual files, which can easily be concatenated as the
produced triples follow the N­Triples RDF syntax. Hence, the whole procedure is a highly
parallelized one as each running process needs to load its corresponding data, transform
it based on the mapping rules and store it.

Spark does not load the input data as a whole, but as multiple partitions distributed across
the cluster. For each partition, Spark spawns a task which its target is to transform the
partition into RDF triples and to store them in a file. Except of the broadcast of the mapping
rules, there is no need for further data shuffling during the whole procedure as each
partition already contains all the necessary information for performing the transformation.
Furthermore, the whole procedure is memory friendly, as it does not need to maintain
neither the initial dataset nor the produced triples in memory. When the produced
triples of a record is generated, they are directly written in the target file. Therefore,
GeoTriples­Spark is capable of transforming large amount of data with minimum memory
requirements.

G. Mandilaras 28

Transforming into RDF and Interlinking Βig Geospatial Data

The parallelization of the whole procedure is based on the number of partitions and on
available resources (physical cores/threads). More partitions means the more parallelized
the procedure can be (according to the number of concurrent executed threads), but also
it means that it will have to transform a smaller chunk of data, as the initial dataset will have
been divided into more partitions of fewer records. The number of partitions is determined
by the file format of the source, its size and the configuration settings of the filesystem, but
it can also be configured by the user. However, increasing the initial number of partitions
may invoke data shuffling, and hence, in a distributed cluster, it would probably invoke
network and disk I/O, which can significantly impact the performance of the procedure.

The transformation of CSV and GeoJSON documents is quite similar as these filetypes
are considered text files and therefore they are loaded as multiple partitions by Spark
because they are distributedly stored across the cluster. The geometry feature in CSV files
is expected to be in WKT and hence it does not require any further processing. Regarding
GeoJSON, the application loads them as simple JSON files that follow the GeoJSON
specification of RFC 7946. The FeatureCollection of the GeoJSON file is loaded into a
Spark Dataset which is then extended with a new column containing the geometries as
WKT.

The case of ESRI shapefiles is a little more complicated. As mentioned, we load them
using GeoSpark, whose shapefile reader always loads the input shapefile into a single
partition4. Since shapefiles are composed of multiple files, in order to load them, we first
need to merge all the related component files into one. This is happening because all the
related component files must be located in the same datanode to utilize the shapefile index
and the related attributes. Loading shapefiles from a distributed filesystem is a well­known
problem and it has been studied extensively in [2]. Hence, if users want to parallelize the
transformation of a single shapefile, it requires to re­partition in order to re­distribute the
input data as multiple partitions in the cluster. Consequently, this will probably have a
negative effect in the performance, as re­partitioning will invoke data shuffling. However,
shapefiles are considered to be small files. Actually there is a 2GB size limit for any of its
component files5 and it is common to store data as multiple shapefiles. Thus, we have
enabled GeoTriples­Spark to be able to transform multiple shapefiles concurrently loaded
as multiple partitions.

4.3 Evaluation

For the evaluation of GeoTriples­Spark, we compare it with the centralized version
of GeoTriples, with the Hadoop­based implementation of GeoTriples 6 and with the
Spark­based implementation of TripleGeo7. The following experiments concern the
performance of the systems against varying input sizes, the scalability of the system
and also the performance of the system in transforming big geospatial data into RDF.
Regarding the comparison with GeoTriples­Hadoop using shapefiles, we reproduce the
same experiments presented in [27], while for the comparison using CSV files we perform
larger scale experiments with bigger files.

4https://github.com/DataSystemsLab/GeoSpark/issues/356
5https://desktop.arcgis.com/en/arcmap/latest/manage-data/shapefiles/geoprocessing-

considerations-for-shapefile-output.htm
6https://github.com/dimitrianos/GeoTriples-Hadoop
7https://github.com/SLIPO-EU/TripleGeo/tree/master/src/eu/slipo/athenarc/triplegeo/

partitioning

G. Mandilaras 29

https://github.com/DataSystemsLab/GeoSpark/issues/356
https://desktop.arcgis.com/en/arcmap/latest/manage-data/shapefiles/geoprocessing-considerations-for-shapefile-output.htm
https://desktop.arcgis.com/en/arcmap/latest/manage-data/shapefiles/geoprocessing-considerations-for-shapefile-output.htm
https://github.com/dimitrianos/GeoTriples-Hadoop
https://github.com/SLIPO-EU/TripleGeo/tree/master/src/eu/slipo/athenarc/triplegeo/partitioning
https://github.com/SLIPO-EU/TripleGeo/tree/master/src/eu/slipo/athenarc/triplegeo/partitioning

Transforming into RDF and Interlinking Βig Geospatial Data

0 10 20 30 40 50

0

1,000

2,000

3,000

4,000

Input size (GB)

To
ta
lt
im
e
(s
ec
.)

CSV experiment I

GeoTriples-Spark
TripleGeo-Spark

GeoTriples

(a) Performed in standalone
machine

5 10 15 20 25 30

200

400

600

800

1,000

Input size (GB)

To
ta
lt
im
e
(s
ec
.)

CSV experiment II

GeoTriples-Spark
GeoTriples-Hadoop

(b) Performed in Hadoop
cluster

0 5 10 15
0

5

10

15

cores

sp
ee
du
p

Scalability experiments

linear
weak-scaling

strong-scaling

(c) Performed in standalone
machine

Figure 6: CSV experiments

We performed the experiments in three different environment, a Hadoop cluster, a
standalone machine that runs Apache Spark, and a large scale cluster that runs the
Hospworks data platform. Ideally we would like to avoid the standalone machine, but we
were not able to execute TripleGeo on HDFS, as it was not able to read the configuration
file and to store the output triples. Hence we compare the Spark­ and Hadoop­based
implementations of GeoTriples in the Hadoop cluster, and we compare the Spark­based
implementations of GeoTriples and TripleGeo in the standalone machine. The Hadoop
cluster consists of four nodes with 8 cores each of Intel(R) Xeon(R) CPU E5­2650 v3
at 2.30GHz and 8GB of memory. The standalone machine contains 32 virtual cores8
at 2.20GHz and 128GB of memory. The large scale cluster is a very powerful cluster
provided by Logical Clocks, containing approximately 1000 CPU cores at 2.40GHz, 12TB
of RAM and 1PB of storage. The data used for the experiments are extracts of the
OpenStreetMap project that are publicly available from GEOFABRIK9, which we further
edit and replicate in order to increase the input size.

Figures 6a and 6b show the performance of GeoTriples­Spark for varying input CSV
file sizes against the Hadoop­based implementation of GeoTriples and the Spark­based
implementation of TripleGeo. In the experiment of Figure 6a, both GeoTriples­Spark and
TripleGeo­Spark, load the input data as 32 partitions which are transformed concurrently
by 32 tasks. In the experiment of Figure 6b, we did not change the initial number of
loaded partitions of the datasets, as it would invoke network I/O which we wanted to
avoid. In both experiments of Figure 6, GeoTriples­Spark outperforms its competitors
and we can also observe that as the size of input data increases, the effectiveness
of GeoTriples­Spark becomes even clearer, particularly for the last datasets where the
execution time decreases up to 47% compared to TripleGeo­Spark and 42% compared to
GeoTriples­Hadoop. The results are similar when using GeoJSON documents as input.

Figure 6c depicts the scalability experiments with regards to strong and weak scaling10.
In strong scaling we examine how the overall computational time of the job scales as
we increase the number of available processing cores. In weak scaling we examine the
speedup while increasing both the job size and the number of processing elements. In
strong scaling experiment the size of the job is 15GB. In weak scaling the input size is
equivalent to the number of active cores (i.e., 2 core → 2GB, 4 cores → 4GB). In weak
scaling we can observe that the execution is almost linear but we can notice that there

8The system uses hyperthreading hence it has 16 physical cores
9http://download.geofabrik.de/
10https://www.kth.se/blogs/pdc/2018/11/scalability-strong-and-weak-scaling/

G. Mandilaras 30

http://download.geofabrik.de/
https://www.kth.se/blogs/pdc/2018/11/scalability-strong-and-weak-scaling/

Transforming into RDF and Interlinking Βig Geospatial Data

Dataset Size

GR 440MB
AT 764MB
ES 1.7GB
DE 3.7GB

(a) Shapefile datasets

GRAT ES DE
0

200

400

600

Shapefiles

To
ta
lt
im
e
(s
ec
.)

Performed in standalone machine

GeoTriples-Spark
TripleGeo-Spark

GeoTriples

(b) SHP Experiment

Figure 7: ESRI shapefiles experiments: Transformation of big shapefiles

Table 1: ESRI Shapefile experiments: Transformation of multiple
shapefiles of varying sizes

Dataset Size
(MB)

Times
loaded

GeoTriples­
Spark (sec.)

GeoTriples­
Hadoop (sec.)

Andorra 888 15 345 370
Australia 247 60 382 499
Ukraine 2 1000 428 1002

is a small deceleration as the number of cores increases. Similar deceleration we also
observe in strong scaling experiment. The main reason for this is because the Executors
read and write in the same disk, hence more active cores lead to bigger latencies in disk
I/O.

Regarding the experiments with ESRI shapefiles, we evaluate the performance of
GeoTriples­ Spark in two kinds of experiments.

In the first experiment we compare the performance of GeoTriples­Spark and TripleGeo­
Spark in the transformation of big ESRI shapefiles. The shapefiles are displayed in
Table 7a and contain data of the road system of the corresponding countries (i.e. Greece,
Austria, Spain and Germany) originated from OSM. As mentioned, most shapefiles are
relatively small files, hence in order to create bigger ones, we merged multiple shapefiles
into one. The largest shapefile we use (DE) contains the whole road­system of Germany
and it was created by merging the shapefiles of the road­system of the states of Germany.
In these experiments, both tools re­partition the input data into 32 partitions which are all
transformed in parallel. The results are presented in Figure 7b. Both systems perform
well and quite similarly, but in the last and largest dataset, clearly GeoTriples­Spark
outperforms TripleGeo­Spark, as it requires 62.5% of the time TripleGeo­Spark needs
to transform it.

In the second type of experiments, we examine and compare the performance of
Spark­ and Hadoop­based implementations of GeoTriples regarding the transformation of
multiple shapefiles concurrently. Similarly to GeoTriples­Spark, GeoTriples­ Hadoop loads
the data of a shapefile into a single mapper, but in contrast with the Spark implementation,
GeoTriples­Hadoop cannot re­distribute the load to other mappers, as mentioned in [27].
Therefore, GeoTriples­ Hadoop is good for transforming multiple shapefiles where each

G. Mandilaras 31

Transforming into RDF and Interlinking Βig Geospatial Data

Table 2: Large scale experiments with CSV documents

Dataset Times
loaded

Input
Size #Executors Output

Size
Total time
(in minutes)

100GB.csv 1 100GB 41 840.1GB 3.3
250GB.csv 1 250GB 60 2.1TB 6.6
250GB.csv 2 500GB 65 4.1TB 13
250GB.csv 4 1TB 70 8.3TB 26
250GB.csv 8 2TB 80 16.6 TB 50

Table 3: Large scale experiments with ESRI shapefiles

Dataset Times loaded Input
Size #Executors Output

Size
Total time
(in minutes)

AT 153 100 GB 20 427.7 GB 4.3
AT 381 250 GB 30 1068.6 GB 9.9
DE 136 500 GB 15 2.5 TB 17
DE 258 1TB 27 5.1 TB 34

one is assigned to a different mapper, but it is incapable of transforming shapefiles where
their size exceeds the available memory of mappers. In this experiment we load three
different shapefiles of varying sizes multiple times, in order to evaluate how the tools
perform when the goal is to transform multiple small, medium and large files. The results
are displayed in Table 1 and we can see that both tools perform similarly regarding the big
and the medium shapefiles, with GeoTriples­Spark performing slightly better. However,
we observe significant difference in the last dataset where GeoTriples­Spark advances
over GeoTriples­Hadoop, as it requires less than 50% of the time it needs.

Last, there is the large scale experiments, presented in Tables 2 and 3. For the
experiments with CSV documents, we constructed datasets up to 250GB which we
replicate and load multiple times. Likewise, for the experiments of ESRI shapefiles we
replicate and load the AT and DE shapefiles. The memory requirements of each Executor
are the minimum, as neither the input data nor the generated triples are cached in memory.
Furthermore, there is no need for large Spark execution memory11 since there is little to
none data shuffling. So, in these experiments we equipped each Executor with 2GB of
memory. In the end, we managed to transform 2TB of CSV input in less than an hour and
1TB of shapefiles input in less than half an hour.

4.4 Summary

In this chapter, we describe how we can transform big geospatial data into RDF using
GeoTriples­Spark. In more details, we introduce GeoTriples and GeoTriples­Spark and
we perform detailed evaluation between GeoTriples­Spark and its competitors. In the
end, we show that GeoTriples­Spark not only outperforms its competitors, but we also
show that it is capable of transforming up to terabytes of input data, in reasonable amount
of time. GeoTriples­Spark is used in the project ExtremeEarth12 in order to transform data
extracted form satellite images, into linked data.

11https://spark.apache.org/docs/latest/tuning.html
12http://earthanalytics.eu/

G. Mandilaras 32

https://spark.apache.org/docs/latest/tuning.html
http://earthanalytics.eu/

Transforming into RDF and Interlinking Βig Geospatial Data

5. GEOSPATIAL INTERLINKING1

In this chapter, we discuss the novel batch algorithm Geospatial Interlinking At large
(GIA.nt), and we introduce some progressive geospatial interlinking algorithm that
prioritize geometry pairs based on certain weighting schemes. All these algorithms are
implemented in a parallelized version in the open­source system DS­JedAI2 (Distributed
Spatial JedAI), that runs on top of Apache Spark. In the end, we compare GIA.nt with
GeoSpark, and we evaluate the progressive algorithms using the appropriate metrics.

5.1 Geospatial Interlinking At large (GIA.nt)

In certain parts, GIA.nt is quite similar to RADON. Given two geometry sets S (called
source) and T (called target), the goal of GIA.nt is to discover all topological relations
among the geometries of these two geometry sets. As we have already mention, verifying
all geometry pairs is a highly expensive procedure that leads to quadratic complexity
(O(n2)). Additionally, verifying geometry pairs that are not topologically close, is a waste
of time since those pairs will not relate. So, in order to avoid redundant verifications, we
use a dynamic space tiling, like the one used in RADON. The granularity of space tiling
is defined by the average extend of the MBRs of the geometries, in both dimensions. For
instance, in Figure 8a, each geometry is assigned to the tiles its MBR overlap, and GIA.nt
will verify all the geometry pairs that coexist in the same tiles. We call this process as the
Filtering Step.

From Figure 8, we can see that the geometries g1 and g2 share multiple tiles, hence,
by default, this verification would be performed multiple times. To avoid duplicate
verifications, RADON maintains the executed verifications in a hash­table, and executes
new ones only if they do not exist in this hash­table. The goal with GIA.nt is to be
executed in a distributed environment, so, maintaining such hash­table would require
to keep it updated in all parallel processes. Such approach would be expensive and
would drastically worsen the performance. So, instead, we use the Reference Point (RF)
technique introduced in [13], which states that for each pair of candidates, the verification
is carried out only in the tile that contains the top­left corner of the intersection of their
MBRs. For example, in Figure 8, the verification of g1 and g2, will be executed once, only
in the tile b21 which contains the reference point.

To further filter redundant verifications, GIA.nt implements another filtering technique
which we call IntersectingMBR. In this filtering technique we examine if the MBRs of the
candidate geometries intersect, and if they do not, then we omit the verification. This
derives from the fact that if the MBRs of the geometry pairs do not intersect, then the actual
geometries cannot possible intersect (i.e. they will be disjoint). Performing verifications
with MBRs is significantly easier and faster than with actual geometries, as it reduces
the problem to just simple comparisons between a few points. IntersectingMBR of the
geometries s and t is performed by checking the following condition:

1Parts of this chapter appear in the paper ”Progressive, Holistic Geospatial Interlinking”, in proceedings
of the WebConference 2021 (WWW ’21)

2https://github.com/GiorgosMandi/DS-JedAI

G. Mandilaras 33

https://github.com/GiorgosMandi/DS-JedAI

Transforming into RDF and Interlinking Βig Geospatial Data

(a) Space tiling and filtering techniques

(b) The tiles each geometry is assigned to

Figure 8: Space tiling

IntersectingMBR = ¬ (min(MBR(s).width) > max(MBR(t).width)
∨ max(MBR(s).width) < min(MBR(t).width)
∨ min(MBR(s).length) > max(MBR(t).length)
∨ max(MBR(s).length) < min(MBR(t).length))

Another key difference between GIA.nt and RADON, is that in GIA.nt we maintain only the
one of the two datasets in the memory (i.e.the source), while the other dataset is loaded
iteratively. Consequently, tiling granularity and the Filtering step are based only on the S
dataset.

GIA.nt’s functionality appears in Algorithm 1. Lines 1­12 apply Filtering to index
the source dataset, which is set as the smallest one so as to minimize the memory
footprint. In Line 2, the longitude and latitude granularity of tiles are defined as ∆x =
means∈ SMBR(s).width and ∆y = means∈ SMBR(s).length, respectively,by adapting
RADON’s approach so that it considers only the S dataset. For each geometry s ∈ S
(Line 3), GIA.nt estimates the diagonal corners of its MBR (Line 4) ­ the lower left point
(x1(s), y1(s)) and the upper right point (x2(s), y2(s)). Using them along with ∆x and ∆y, it
determines the tiles that intersect MBR(s) and should contain s (Lines 5­11).

GIA.nt’s verification is applied in Lines 13­29. The next target geometry t ∈ T is read from
the disk (Lines 14­15) and the tiles that contain it are estimated, based on its MBR (Lines
17­28). For each tile, GIA.nt retrieves the source geometries it contains and places them
in the local set of candidates TS (Line 20). As a result, every geometry s that is likely to be
related to t appears in TS. Next, GIA.nt iterates over the geometries of TS (Line 21) and
filters out the redundant verifications using the IntersectingMBR and ReferencePoint
techniques (Line 22). In Line 27 computes the corresponding intersection matrix IM . The
topological relations that are extracted from IM are added to the list of detected links L
(Line 24), which is returned as output (Line 30).

G. Mandilaras 34

Transforming into RDF and Interlinking Βig Geospatial Data

Algorithm 1: GIA.nt
input : the source dataset S, a reader for the target one rd(T) & the set of non­trivial

topological relations R
output : the links L = {(s, r, t)|s ∈ S ∧ t ∈ T ∧ r ∈ R ∧ r(s, t)}
/* Filtering step */

1 I ← {} ; // Equigrid index structure
2 (∆x,∆y)← (means∈ SMBR(s).width,means∈ SMBR(s).length);
3 foreach geometry s ∈ S do
4 (x1(s), y1(s), x2(s), y2(s))← getDiagCorners(s);
5 for i← ⌊x1(s) ·∆x⌋ to ⌈x2(s) ·∆x⌉ do
6 for j ← ⌊y1(s) ·∆y⌋ to ⌈y2(s) ·∆y⌉ do
7 I.addToIndex(i, j, s);
8 j ← j + 1;
9 end
10 i← i + 1;
11 end
12 end

/* Verification step */
13 L← {} ; // The set of detected links
14 while rd(T).hasNext() do
15 t← rd(T).next() ; // The current target geometry
16 (x1(t), y1(t), x2(t), y2(t))← getDiagCorners(t);
17 for i← ⌊x1(t) ·∆x⌋ to ⌈x2(t) ·∆x⌉ do
18 for j ← ⌊y1(t) ·∆y⌋ to ⌈y2(t) ·∆y⌉ do
19 b← (i, j);
20 TS ← I.getTileContents(b);
21 foreach geometry s ∈ TS do
22 if intersectingMBRs(s, t) & ReferencePoint(b , s, t) then
23 IM ← verify(s, t);
24 L← L ∪ IM .getRelations();
25 end
26 end
27 end
28 end
29 end
30 return L;

G. Mandilaras 35

Transforming into RDF and Interlinking Βig Geospatial Data

5.2 Progressive Geospatial Interlinking

Although, GIA.nt uses novel techniques that significantly improves RADON in terms of
time and space requirements, still the total number of verifications is very big, especially
when the input datasets (source and target) are big. Furthermore, examining the
relations between a pair of geometries is a very expensive procedure, especially when
the geometries consist of numerous points and edges [6]. Therefore, in order to avoid
verifications of unrelated geometry pairs, we use progressive algorithms that prioritize
the verification of pairs, that are more likely to relate. In this section, we present three
progressive algorithms: Progressive GIA.nt, Geometry Top­k and Reciprocal Geometry
Top­k. These algorithms take as input a budget BU that indicates the total number of
verifications that will be performed, and a weighting scheme W .

In order to quantify the probability of a pair of geometries to relate, these algorithms
uses certain weighting schemes that assign a weight to every candidate pair. These
schemes produce a numerical estimate of how likely two geometries s and t are to satisfy
a non­trivial topological relation, judging exclusively from the tiles that contain them. The
more tiles they share, the higher is the weight that is assigned to them and the more likely
they are to be topologically related.

The following schemes are defined:

• Co − occurrence Frequency (CF): indicates the number of common tiles that are
shared by s and t. CF (s, t) = |Bs ∩ Bt|, where Bk stands for the set of tiles/blocks
containing geometry k.

• Jaccard Similarity (JS): normalizes the overlap similarity defined by CF, i.e.
JS(s, t) = |Bs∩Bt|

|Bs|+|Bt|−|Bs∩Bt| .

• Pearson′s χ2 test (χ2): extends CF by assessing whether two geometries s and
t appear independently in the set of tiles. To infer their dependency, it estimates
whether the distribution of tiles containing s in B is the same as the distribution if we
exclude the tiles that contain t.

Budget BU indicates the total number of verifications that will be performed. All the
algorithms use a min­max priority queue of max­size BU , where they store the geometry
pairs that have collected the biggest weights. This priority queue is referred as PQ.

G. Mandilaras 36

Transforming into RDF and Interlinking Βig Geospatial Data

5.2.1 Progressive GIA.nt

Progressive GIA.nt turns GIA.nt into a progressive algorithm, in which we maintain a
min­max priority queue (PQ) with the BU most promising geometry pairs from the entire
input datasets. The functionality of Progressive GIA.nt is exactly the same as with GIA.nt,
but instead of verifying geometry pairs after Filtering, it weights them based on the input
weighting scheme, and inserts them in PQ. Whenever the size of PQ exceeds BU , the
pair with the lowest weight is evicted. In the end, the PQ contains the BU top weighted
pairs of the entire input datasets.

Algorithm 2 describes the functionality of Progressive GIA.nt. Progressive GIA.nt takes
as input the same arguments as GIA.nt, but additionally it requires a budget BU and a
weighting schemeW , which can be one of the schemes wementioned earlier (i.e. CF , JS,
Pearson′s χ2 test). The algorithm starts by using the dynamic tiling technique to index the
source dataset, just like in GIA.nt (Lines 1­12). Afterwards, does not follow the Verification
step like in GIA.nt, but the Scheduling step, in which it weights and inserts the candidate
pairs, that were not filtered out by the IntersectingMBR and ReferencePoint techniques,
into the min­max priority queue PQ of fixed size (Lines 13­35).

To insert a new pair in PQ, its weight must exceed a minimum weight (denoted by
minWeight), which is initialized as 0.0. As long as PQ is not full, we do not update
minWeight and we insert all the new pairs inside PQ. When PQ exceeds its maximum
size, we remove the pair with the minimum weight (Line 28), and we update minWeight
with the minimum weight that currently there is in PQ (Line 29). So, when PQ is full, a
new pair is inserted only if its weight exceeds minWeight. In case it does, the new pair is
inserted and the pair with the minimum weight is evicted. Finally, minWeight is updated
with the minimum weight of PQ (Lines 25­31).

In the end of the Scheduling step, we have populated PQ with the BU candidate pairs that
are associated the biggest weights. Afterwards, follows the Verification step, which pops
the geometry pairs from PQ in a decreasing order, and computes the IM . The relations
extracted from IM is added in L (Lines 36­41).

We choose to use a min­max priority queue instead of a regular priority queue because
we want fast access to both smallest and biggest item of queue. When we execute the
verifications, we pop the pair with the biggest weight, while when we populate the priority
queue we always remove the pair with the smallest weight.

G. Mandilaras 37

Transforming into RDF and Interlinking Βig Geospatial Data

Algorithm 2: Progressive GIA.nt
input : the source dataset S, a reader for the target one rd(T), the set of non­trivial

topological relations R, the budget BU and the pair weighting scheme W
output : the links L = {(s, r, t)|s ∈ S ∧ t ∈ T ∧ r ∈ R ∧ r(s, t)}
/* Filtering step */

1 I ← {} ; // Equigrid index structure
2 (∆x,∆y)← (means∈ SMBR(s).width,means∈ SMBR(s).length);
3 foreach geometry s ∈ S do
4 (x1(s), y1(s), x2(s), y2(s))← getDiagCorners(s);
5 for i← ⌊x1(s) ·∆x⌋ to ⌈x2(s) ·∆x⌉ do
6 for j ← ⌊y1(s) ·∆y⌋ to ⌈y2(s) ·∆y⌉ do
7 I.addToIndex(i, j, s);
8 j ← j + 1;
9 end
10 i← i + 1;
11 end
12 end

/* Scheduling step */
13 PQ← MinMaxPriorityQueue(maxsize=BU);
14 minWeight = 0.0;
15 while rd(T).hasNext() do
16 t← rd(T).next() ; // The current target geometry
17 (x1(t), y1(t), x2(t), y2(t))← getDiagCorners(t);
18 for i← ⌊x1(t) ·∆x⌋ to ⌈x2(t) ·∆x⌉ do
19 for j ← ⌊y1(t) ·∆y⌋ to ⌈y2(t) ·∆y⌉ do
20 b← (i, j);
21 TS ← I.getTileContents(b);
22 foreach geometry s ∈ TS do
23 if intersectingMBRs(s, t) & ReferencePoint(b , s, t) then
24 ws,t ←W .getWeight(s, t) ;
25 if minWeight < ws,t then
26 PQ← PQ ∪ {{s, t}, ws,t} ;
27 if BU < PQ.size() then
28 PQ.pop() ; // Remove pair with minimum weight
29 minWeight = PQ.peekFirst().getWeight() ; // Update
30 end
31 end
32 end
33 end
34 end
35 end

/* Verification step */
36 L← {};
37 while PQ ̸= {} do
38 tail← PQ.popLast();
39 IM ← verify(tail.s, tail.t);
40 L← L ∪ IM .getRelations();
41 end
42 end
43 return L;

G. Mandilaras 38

Transforming into RDF and Interlinking Βig Geospatial Data

5.2.2 Geometry Top­k

In Geometry Top­k we find the top­k candidate geometries of each geometry, for every
s ∈ S and t ∈ T . For each geometry, we store its top­k candidates in a min­max priority
queue and in the end we accumulate them in the global min­max priority queue PQ of
max­size BU . Finally, we implement the same procedure as in Progressive GIA.nt, in
which we pop the geometry pairs from PQ in a decreasing order, compute the IM and
extract the requested relations. The k is calculated by dividing the initial BU by the sum
of the sizes of S and T (i.e. k = ⌈ BU

|S|+|T |⌉). This require to have pre­computed the size of
the target dataset.

To collect the top­k candidate geometries of T , we initialize a min­max priority queue
(denoted by PQT) of size k. For each geometry tm ∈ T , we find its candidate geometries
and populate PQT . After examining all candidates of tm, we pop all the geometries of PQT

and insert them in PQ. So, after emptying the PQT , we continue to the next geometry
tm+1 where we repeat the same procedure. This procedure occurs in Lines 39­48 of
Algorithm 3.

The discovery of the top­k candidates of each geometry s ∈ S is a little bit more
complicated. For this, we use an array that contains min­max priority queues. In this
array, the priority queue in position i will contain the top­k geometries of geometry si,
which is located in position i of array S. After adding the geometry si in the top­k of a
geometry t, follows the procedure of adding t in the top­k of si. In order to access the
top­k of si, we use the index i which denotes its position in array S. Furthermore, before
inserting, we check if the priority queue of si is defined, and in case it is not, we initialize it.
So, while populating the top­k of target geometries, we also populate the top­k of source
geometries concurrently. This procedure takes place in Lines 49­52.

After examining all the geometries of target, the top­k of source geometries have not
yet been inserted in PQ, which currently (i.e., Line 64) contains only the top­k of target
geometries. After computing all the top­k of both source and target geometries, we
iteratively insert the top­k of source in PQ. However, since PQ already contains the top­k
geometries of target, there might be candidate pairs that already exist in PQ. In this case,
we do not add the duplicate pairs, but we update their weights, if the existing weights in
PQ are smaller than the new ones. The whole procedure takes place in Lines 64­72.
Afterwards, follows the verification and the relation extraction.

The functionality of Geometry Top­k is presented in Algorithm 3. In the first 33 Lines, we
apply the Filtering step by indexing the source dataset. Then we initialize the min­max
priority queues, and their auxiliary variables that store the minimum weight they contain
(Lines 34­38). The ArrPQS is the array that will contain the priority queues, and their
minimumweights will be stored in the arrayminWeightsArrPQS

, where the value in position
i is the minimum weight of the priority queue, located in position i in ArrPQS. These
minimum weights are initialized after initializing their corresponding priority queue (i.e
Line 51). The insert function, which is called multiple times, does not simply insert a
weighted pair in the specified priority queue, but only if its weight is greater than the
minimum weight of the priority queue. Additionally, it maintains the size of the priority
queue fixed by removing the pair with the minimum weight, whenever the size exceeds
its maximum size. In more details, the insert function does exactly the same as the Lines
25­31 of Algorithm 2.

Regarding the update function used in Line 68, it finds the pair inside the specified priority

G. Mandilaras 39

Transforming into RDF and Interlinking Βig Geospatial Data

queue and updates its weight, in case it exists with a smaller one. However, look up is an
expensive action for a min­max priority queue. Therefore, in the actual implementation,
this is implemented using an auxiliary hash­set that contains all the top­k pairs of all
geometries. Then, the final PQ is constructed using this hash­set. For the economy
of space and simplicity, we omit it in the Algorithm.

5.2.3 Reciprocal Geometry Top­k

The last progressive algorithm we present is Reciprocal Geometry Top­k, which is very
similar to Geometry Top­k. Their main difference is that Reciprocal Geometry Top­k
prioritizes only the pairs (s′, t′) that s′ belongs to the top­k of t′ and t′ belongs to the top­k
of s′. To achieve this, we maintain the top­k pairs of each geometry t ∈ T in a hash­set.
Hence, to insert the pair (sn, tm) in the PQ, tm must be one of the top­k of sn, and sn must
also exist in the hash­set that contains the top­k of tm.

The Algorithm 4 implements Reciprocal Geometry Top­k. A key element of the algorithm
is the array HT which will contain the hash­sets we mentioned earlier. In more details, the
location m of the hash­set will contain the top­k candidates of the geometry tm, which is
located in positionm in array T . This will be initialized after populating PQT with the top­k
pairs of geometry tm (Lines 41­63). In Lines 61­63, we extract the pairs from PQT and
put them in the hash­set HT [m], we also empty PQT and set its minimum weight to 0.0.
Meanwhile, we also gather the top­k pairs of source geometries using the same procedure
as in Geometry Top­k (Lines 51­56). Then, we populate PQ by inserting the pair (sn, tm),
extracted from priority queue ArrPQS[n], only if sn exists in the hash­set HT [m], thus if sn
belong to the top­k pairs of tm (Lines 64­71). Finally, for each pair in PQ, we compute the
IM , extract the requested relations and return them in L.

Furthermore, another key difference with top­k is that we do not put the top­k geometries
of target in PQ, but we just use them to filter pairs from the top­k geometries of source.
Consequently, k is calculated by dividing BU with the number of source geometries.
Moreover, since we also find the top­k of the target geometries, we compute a different
k (denoted by kT) by dividing BU with number of target geometries. However, if k was
computed as ⌈BU

|S| ⌉, the maximum pairs we could get would be BU , but since we filter
based on target geometries’ top­k, most of the times we would get fewer pairs. Therefore,
we calculate k as ⌈2∗BU

|S| ⌉ and we ensure that we will get BU pairs by defining PQmax­size
as BU .

G. Mandilaras 40

Transforming into RDF and Interlinking Βig Geospatial Data

Algorithm 3: Geometry Top­k
input : the source dataset S, a reader for the target one rd(T), the set of non­trivial

topological relations R, the budget BU & the weighting scheme W
output : the links L = {(s, r, t)|s ∈ S ∧ t ∈ T ∧ r ∈ R ∧ r(s, t)}
/* As in Alg. 2, Lines 1-32 */

33 ... k = ⌈BU/(|T |+ |S|)⌉ ;
34 PQ← MinMaxPriorityQueue(maxsize=BU);
35 PQT ← MinMaxPriorityQueue(maxsize=k);
36 ArrPQS[]← {} ; // Array of priority queues
37 minWeightsArrPQS

[]← {} ; // Array of min weights
38 minWeightPQ = 0.0; minWeightPQT

= 0.0;
39 foreach geometry t ∈ T do
40 (x1(t), y1(t), x2(t), y2(t))← getDiagCorners(t);
41 for i← ⌊x1(t) ·∆x⌋ to ⌈x2(t) ·∆x⌉ do
42 for j ← ⌊y1(t) ·∆y⌋ to ⌈y2(t) ·∆y⌉ do
43 b← (i, j);
44 TS ← I.getTileContents(b);
45 foreach geometry sn ∈ TS do
46 if intersectingMBRs(sn, t) & ReferencePoint(b , sn, t) then
47 wsn,t ← W .getWeight(sn, t) ;
48 insert(PQT , minWeightPQT

, {{sn, t}, wsn,t}) ;
/* initialize and insert sn's top-k */

49 if ¬ArrPQS[n].isDefined then
50 ArrPQS[n]← MinMaxPriorityQueue(maxsize=k);
51 minWeightsArrPQS

[n] = 0.0;
52 end
53 insert(ArrPQS[n], minWeightsArrPQS

[n], {{sn, t}, wsn,t});
54 end
55 end
56 end
57 end

/* add t top-k in PQ */
58 while PQT ̸= {} do
59 tail← PQT .popLast();
60 insert(PQ, minWeightPQ, tail) ;
61 end
62 minWeightPQT

= 0.0;
63 end

/* add top-k of every s ∈ S in PQ */
64 foreach pqs ∈ ArrPQS do
65 while pqs ̸= {} do
66 tail← pqs.popLast();
67 if tail ∈ PQ then
68 update(PQ, tail)
69 else
70 insert(PQ, minWeightPQ, tail)
71 end
72 end
73 end
74 ... return L;

G. Mandilaras 41

Transforming into RDF and Interlinking Βig Geospatial Data

Algorithm 4: Reciprocal Geometry Top­k
input : the source dataset S, a reader for the target one rd(T), the set of non­trivial

topological relations R, the budget BU & the weighting scheme W
output : the links L = {(s, r, t)|s ∈ S ∧ t ∈ T ∧ r ∈ R ∧ r(s, t)}
/* As in Alg. 2, Lines 1-32 */

33 ... k = ⌈(2 ∗BU)/|S|⌉ ;
34 kT = ⌈(2 ∗BU)/|T |⌉ ;
35 PQ← MinMaxPriorityQueue(maxsize=BU);
36 PQT ← MinMaxPriorityQueue(maxsize=kT);
37 HT []← {};
38 ArrPQS ← {};
39 minWeightsArrPQS

← {};
40 minWeightPQ = 0.0;
41 foreach geometry tm ∈ T do
42 (x1(t), y1(t), x2(t), y2(t))← getDiagCorners(t);
43 for i← ⌊x1(t) ·∆x⌋ to ⌈x2(t) ·∆x⌉ do
44 for j ← ⌊y1(t) ·∆y⌋ to ⌈y2(t) ·∆y⌉ do
45 b← (i, j);
46 TS ← I.getTileContents(b);
47 foreach geometry sn ∈ TS do
48 if intersectingMBRs(sn, tm) & ReferencePoint(b , sn, tm) then
49 wsn,tm ← W .getWeight(sn, tm) ;
50 insert(PQT , minWeightPQT

, {{sn, tm}, wsn,tm}) ;
51 if ¬ ArrPQS[n].isDefined then
52 ArrPQS[n]← MinMaxPriorityQueue(maxsize=k);
53 minWeightsArrPQS

[n] = 0.0;
54 end
55 insert(ArrPQS[n], minWeightsArrPQS

[n], {{sn, tm}, wsn,tm}) ;
56 end
57 end
58 end
59 end
60 HT [m]← {PQT .items};
61 PQT .clear() ;
62 minWeightPQT

= 0.0;
63 end
64 foreach pqs ∈ ArrPQS do
65 while pqs ̸= {} do
66 {{sn, tm}, wsn,tm} ← pqs.popLast();
67 if HT [m].contains(sn) then
68 insert(PQ, minWeightPQ, {{sn, tm}, wsn,tm}) ;
69 end
70 end
71 end
72 ... return L;

G. Mandilaras 42

Transforming into RDF and Interlinking Βig Geospatial Data

5.3 Massive Parallelization

We have implemented these algorithms in a parallelized version according to the
MapReduce framework, in the system DS­JedAI3 (Distributed ­ Spatial JedAI). This
system is implemented on top of Apache Spark and can run in any distributed or
standalone environment that supports the execution of Apache Spark jobs. Its name
originates from the system JedAI4 (Java gEneric DAta Integration) [32, 24, 31], which
is a tool for Entity Resolution, i.e., tries to identify entities that refer to the same real world
entity.

DS­JedAI loads both datasets as RDDs that are spatially partitioned based on GeoSpark’s
spatial partitioning techniques. We can spatial partition the datasets either by using a
KDB­Tree or a Quad­Tree spatial index, which is build based on a sample of the source
dataset. Both RDDs are partitioned using the same partitioner and thus, the topologically
close geometries belong to partitions with the same partition id. The RDDs with the same
partition id are then merged such that each partition contains all geometries from both
datasets that lie within its area. This way, we ensure that all geometries that are likely to
satisfy a topological relation coexist in the same partitions.

For GIA.nt, each Executor receives one of these partitions as input, during the Map phase.
It indexes the source geometries and for each target geometry t, it estimates the tiles that
intersect its MBR. Using the index, it retrieves the distinct source geometries in these tiles
and verifies their topological relations with t. All qualifying pairs are aggregated during
Reduce phase.

The granularity of space tiling (i.e., ∆x,∆y) is computed by the Driver, which broadcasts
it to the Executors. To compute it, requires information from all geometries of source, and
hence this triggers the execution plan of source RDD. By caching it after loading it, we
avoid the re­execution of the execution plan so that there is no impact on the performance
of the algorithm.

Regarding the progressive algorithms, every Executor receives as input a partition of both
input datasets, during theMap phase, and applies Filtering to index the source geometries.
Then, it processes the target geometries one by one, estimating their weights with the
intersecting source geometries. Then follows the Scheduling step, where each algorithm
finds the top BU pairs and verifies them. The qualifying pairs of each Executor are
aggregated by the Reduce phase. Initially, each partition computed just a portion of the
BU verifications, which we used to call local budget, and it was estimated by dividing the
global budget BU among the data partitions in proportion to the source geometries they
contain. However, this resulted to fewer verifications as it was estimated by the number of
source geometries and not by the total verifications within partitions. Hence, in the current
implementation, each partition computes a fixed number of verifications.

Note that no data shuffling is required during Scheduling for the weight estimations, since
all necessary information is locally available: every Executor estimates all tiles that should
contain every geometry. Thus, each Executor operates independently of the others,
promoting concurrency and making the most of massive parallelization.

We should also stress that all algorithms employ the reference point technique to avoid
redundant pairs. This is because every geometry that crosses the borders between two

3https://github.com/GiorgosMandi/DS-JedAI
4https://github.com/scify/JedAIToolkit

G. Mandilaras 43

https://github.com/GiorgosMandi/DS-JedAI
https://github.com/scify/JedAIToolkit

Transforming into RDF and Interlinking Βig Geospatial Data

Figure 9: System architecture of DS­JedAI

partitions is added to both of them during spatial partitioning. To avoid the resulting
redundancy, both algorithms ensure that every pair is verified only in the partition that
contains the top left corner of their intersection.

Finally, it is worth noting that spatial partitioning yields uneven partitions, which are skewed
with respect to the volume of data and the corresponding computational cost. That is,
some partitions are overloaded and require significant time, while others complete their
jobs instantaneously, leaving the corresponding nodes idle. To tackle this issue, both
algorithms take special care of the overloaded partitions, whose size exceeds significantly
the average size of all partitions. After completing the processing of the well­balanced
partitions, the entities of the overloaded partitions are indexed and re­partitioned using
a HashPartitioner that is based on tiles id. In this way, geometries indexed in the same
tiles will be placed in same partitions, thus missing no candidate pairs. Redundant pairs
are again discarded with the reference point technique. This is an effective and efficient
strategy as long as it applies to a small portion of the input data, because it requires the
duplication of each entity as many times as the numbers its tiles.

Additionally, we have enriched our system with the capability to perform temporal filtering.
This way, users can specify the temporal fields of the input datasets and the resulted
interlinked pairs will coincide temporally. This means that the difference between the
timestamps of geometry pairs will not exceed a pre­defined time margin. By default, this
time margin is set to one day, thus the timestamps of the interlinked pairs will be at most
24 hours apart. This time margin is configurable by the users. Such functionality is very
important, especially when we process EO products due to the changes in Earth’s surface
as the time passes by.

Figure 9 outlines the architecture of DS­JedAI. Currently, it supports most of the RDF
formats (i.e., N­Triples, Turtle, RDF/JSON and RDF/XML), as well as CSV, TSV,
GeoJSON and ESRI shapefiles. To load distributed RDF datasets into RDDs, we use the
open­source library SANSA­Stack5 [28], which is a big data engine for scalable processing
of large­scale RDF data. Moreover, the input triples must follow the GeoSPARQL
vocabulary. CSV and TSV are loaded using Spark’s API and GeoJSON and ESRI
shapefiles are loaded using GeoSpark. All RDDs, regardless source, are loaded into
RDDs of SpatialEntities, which are objects that maintain only the geometries and their

5https://github.com/SANSA-Stack/SANSA-Stack

G. Mandilaras 44

https://github.com/SANSA-Stack/SANSA-Stack

Transforming into RDF and Interlinking Βig Geospatial Data

Table 4: Technical characteristics of the real datasets for Geospatial Interlinking.

D1 D2 D3 D4 D5 D6
Source Dataset AREAWATER AREAWATER Lakes Parks ROADS Roads
Target Dataset LINEARWATER ROADS Parks Roads EDGES Buildings
#Source Geometries 2,292,766 2,292,766 8,419,320 9,961,891 19,592,688 72,339,926
#Target Geometries 5,838,339 19,592,688 9,961,891 72,339,926 70,380,191 114,796,567
Cartesian Product 1.34 · 1013 4.49 · 1013 8.39 · 1013 7.21 · 1014 1.38 · 1015 8.30 · 1015
#Qualifying Pairs 2,401,396 199,122 5,551,014 14,163,325 163,982,135 1,041,562
#Contains 806,158 3,792 947,788 6,323,433 12,218,867 276,010
#CoveredBy 0 0 3,031,403 48,922 53,758,452 83,936
#Covers 832,843 4,692 948,086 6,470,655 12,218,867 276,023
#Crosses 40,489 106,823 270,248 6,490,937 6,769 314,708
#Equals 0 0 557,465 3,147 12,218,867 18,972
#Intersects 2,401,396 199,122 5,551,014 14,163,325 163,982,135 1,041,562
#Overlaps 0 0 822,241 45,116 73 54,899
#Touches 1,554,749 88,507 1,037,412 1,258,163 110,216,841 332,249
#Within 0 0 3,030,790 48,823 53,758,452 82,668
Total Topological Relations 5,635,635 402,936 16,196,447 34,852,521 418,379,323 2,481,027

identifiers. The geometries are represented using the JTS geometry class 6, and the
algorithm that computes the DE­9IM is the function relate7.

5.4 Evaluation

For the evaluation of the algorithms, and the overall DS­JedAI system, we compare GIA.nt
with GeoSpark and we examine the performance of the progressive algorithms in terms
of progressive Recall (PGR), Recall and Precision. Our experiments are performed using
real world datasets, widely used in the related literature [15, 41] and publicly available 8.
The technical characteristics of the datasets we use are reported in Table 4.

The datasets contain public data about area hydrography (AREAWATER), linear
hydrography (LINEARWATER), roads (ROADS) and all edges (EDGES) in the USA. They
also contain the boundaries of all lakes (Lakes), parks or green areas (Parks), roads and
streets (Roads) as well as of all buildings (Buildings) around the world. Each column of
Table 4 shows statistics for a pair (D1–D6) of interlinked datasets.

All experiments were performed in a standalone machine that contains 32 virtual cores9
at 2.20GHz and 128GB of memory. In all experiments we used 16 Executors with 2 cores
each and 7GB of memory. The implementation of DS­JedAI is in Scala 2.12 using Spark
2.4.

5.4.1 Evaluation of GIA.nt

To evaluate the effectiveness of our parallelized implementation of GIA.nt we compare it
with GeoSpark. Since GeoSpark does not compute the DE­9IM model, we examine only
the intersects relation between the geometries. The experiments using GeoSpark was
based on the examples provided in its repository10.

6https://locationtech.github.io/jts/javadoc/org/locationtech/jts/geom/Geometry.html
7https://locationtech.github.io/jts/javadoc/org/locationtech/jts/geom/Geometry.html#

relate-org.locationtech.jts.geom.Geometry-
8http://spatialhadoop.cs.umn.edu/datasets.html
9The system uses hyperthreading hence it has 16 physical cores
10https://github.com/apache/incubator-sedona/blob/master/examples/sql/src/main/scala/

ScalaExample.scala

G. Mandilaras 45

https://locationtech.github.io/jts/javadoc/org/locationtech/jts/geom/Geometry.html
https://locationtech.github.io/jts/javadoc/org/locationtech/jts/geom/Geometry.html##relate-org.locationtech.jts.geom.Geometry-
https://locationtech.github.io/jts/javadoc/org/locationtech/jts/geom/Geometry.html##relate-org.locationtech.jts.geom.Geometry-
http://spatialhadoop.cs.umn.edu/datasets.html
https://github.com/apache/incubator-sedona/blob/master/examples/sql/src/main/scala/ScalaExample.scala
https://github.com/apache/incubator-sedona/blob/master/examples/sql/src/main/scala/ScalaExample.scala

Transforming into RDF and Interlinking Βig Geospatial Data

D1 D2 D3 D4 D5 D6

0

100

200

9 11

39

135

76
5160

79

240 240 240 240

tim
e
(m
in
iu
te
s)

DS­JedAI vs GeoSpark

GIA.nt GeoSpark

Figure 10: Comparison between GIA.nt and GeoSpark using only the intersects relation

Figure 10 shows the performance of both systems for the six dataset pairs. We
timed out the execution of GeoSpark after 4 hours of execution. In all cases, GIA.nt
significantly outperformsGeoSpark, as even in the case with themost complicated dataset
(i.e., D4), GIA.nt was able to complete the calculation in approximately 2 hours, while
GeoSpark was not able to complete it even after 4 hours. Regarding D1 and D2, which
GeoSpark managed to complete, GIA.nt requires approximately 15% of the time needed
by GeoSpark. Despite the fact that GeoSpark uses spatial partitioning, it performs all the
verifications within the partitions and does not use any tiling­based filtering technique.

The performance of D4 is an outlier and requires double time than expected. This
is probably because it contains complex geometry collections instead of individual
geometries, thus requiring a time­consuming verification.

5.5 Evaluation of progressive algorithms

To assess the relative performance of progressivemethods by the rate of producing results
as more pairs are verified. We actually define Progressive Geometry Recall (PGR) as the
rate of detecting qualifying geometry pairs and quantify it by the area under the curve that
is formed by the corresponding lines in Figure 3a. The larger this area is, the earlier the
interlinked pairs are detected or more relations are computed, and the more effective is
the progressive method. We formalize this measure as

PGR =
∑i=1

|P |
P i
Q

PBU
Q

where P ⊆ S× T is the set of distinct geometry pairs that pass the Filtering step, |P | is its
size (i.e., the total number of candidate pairs), PBU

Q ⊆ P is the set of qualifying geometry
pairs within the given budget BU, and P i

Q is the total number of qualifying geometry pairs
that have already been detected when processing the ith candidate pair. PGR takes values
in [0, 1], with higher values indicating higher effectiveness.

To assess the effectiveness, we also use Recall and Precision. To better evaluate the
progressive algorithms, we have adjusted these metrics in terms of the given budget (BU)
and the number of qualifying pairs within the budget (PQ). Therefore, we calculate them
as:

Recall =
PD
Q

PBU
Q

Precision =
PD
Q

BU

G. Mandilaras 46

Transforming into RDF and Interlinking Βig Geospatial Data

(a) PGR of all approaches over D1 with BU = 10M (b) PGR of all approaches over D2 with BU = 10M

Figure 11: Evaluation of all progressive methods

where PD
Q stands for the number of detected qualifying pairs within the budget. For all

measures, higher values indicate higher effectiveness. However, the values of Precision
and PGR are defined by the size of the given budget and the number of qualifying
pairs within the budget, hence the optimal values are not always 1 but defined by the
characteristics of the problem. Consequently, for each case, we calculate and show the
optimal values.

As baseline methods we consider the Optimal approach, which verifies all qualifying
pairs before the non­qualifying candidate ones, and the batch algorithm GIA.nt which
specifies a deterministic processing order for the input data. In GIA.nt the sequence of
the verifications is random, depending on the order of the geometries inside the datasets.

Since DS­JedAI works in parallel, each partition forms its own priority­queue consisting
of its top geometry pairs. Normally, the partitions perform the verifications in parallel and
discover the relations, however, this way we cannot compute the PGR as the verifications
are not performed sequentially. So, in order to compute these metrics, we collect the top
geometry pairs of each partition and we order them based on their weights. Then we
perform the verifications sequentially in descending order and compute PGR as well as
the other metrics. This procedure is executed only when we want to get the evaluation
metrics.

Tables 5 and 6 reports the performance of all progressive metrics, for all three weighting
schemes and for all the datasets, using two input budgets: 5 and 10 million verifications
respectively. In almost all cases, the progressive methods perform better than the random
prioritization of GIA.nt. Interestingly, there are certain cases, like in D5, where the
progressive methods perform twice as good as GIA.nt, discovering most of the qualifying
pairs. Notable is the performance of Reciprocal Geometry Top­k with Pearson′s χ2

weighting scheme, where using BU=10M manages to achieve Precision up to 0.935 in
the dataset D5, with almost all the verification performed, to be qualifying pairs.

From the experiments, we can observe that the JS and the χ2 weighting schemes
perform better than CF , except for the case of D2. Furthermore, Progressive GIA.nt
and Geometries Top­k, tends perform similarly and producing the same results. This is
also visible in Figure 11, as their curves overlap. Reciprocal Geometries Top­k performs
similarly with the other methods, but with some fluctuations. However, in Reciprocal
Geometries Top­k fewer geometry pairs are being verified as there are cases where there
are just a few common pairs between the top­k of source and target. In order to overcome

G. Mandilaras 47

Transforming into RDF and Interlinking Βig Geospatial Data

this issue, we used bigger budgets for each partition, but in cases like the D2 of Table 6
did not work. In the end, we conclude that there is not a single methods that stands out
from the rest, and the best choice depends on the geometries and their characteristics.

Regarding the execution time, we see that the overall time is dictated by the verification
of the pairs, and the Filtering and Scheduling steps have little impact to it. This is notable
by the fact that the overall time of GIA.nt, which does not apply any prioritization, is similar
with the overall time of the progressive methods.

Figure 11 shows the curves of all progressive methods with regards to the discovered
qualifying pairs per verification for D1 and D2 with BU=10M. We can observe that the
progressive methods have faster acceleration than GIA.nt and only Progressive GIA.nt
and Geometries Top­k manages to find all the qualifying pairs within the budget.

However, we notice that the progressive methods are not so effective with the datasets
D3, D4 and D6 . In our analysis, we observed that most of the pairs are assigned with
the same weights and hence the prioritization is useless. This is because most of the
geometries of those datasets are very small, while also contain a few very big geometries.
Therefore, most of the geometries are assigned to just a few tiles and hence the number
of the shared overlapping tiles are the same, for most of the pairs. In order to address
such issues, we are working on weighting schemes that considers other properties and
not just the number of common tiles, like the area of the intersection of the MBRs.

G. Mandilaras 48

Transforming into RDF and Interlinking Βig Geospatial Data

Table 5: Evaluation of progressive methods using all weighting schemes and 5M budget

Optimal GIA.nt Progressive GIA.nt TOP­K RECIPROCAL TOP­K
CF JS χ2 CF JS χ2 CF JS χ2

D1

Verifications 5,000,000 5,000,000 5,000,000 5,000,000 5,000,000 5,000,000 5,000,000 5,000,000 4,400,792 4,401,290 3,210,536
PD
Q 2,401,396 1,948,479 1,865,138 2,281,947 2,278,590 1,871,386 2,281,349 2,277,729 2,187,065 2,187,085 2,186,925

Recall 1 0.810 0.776 0.950 0.968 0.779 0.950 0.948 0.910 0.910 0.910
Precision 0.48 0.380 0.373 0.456 0.455 0.374 0.456 0.456 0.496 0.496 0.496
PGR 0.76 0.407 0.339 0.650 0.647 0.340 0.650 0.647 0.404 0.611 0.609
time (s) ­ 507 498 498 498 372 372 372 314 314 314

D2

Verifications 5,000,000 5,000,000 5,000,000 5,000,000 5,000,000 5,000,000 5,000,000 5,000,000 5,000,000 5,000,000 5,000,000
PD
Q 154,386 154,386 118,046 129,423 124,781 117,829 128,832 123,856 127,620 132,091 128,335

Recall 1 0.421 0.764 0.838 0.808 0.763 0.834 0.802 0.826 0.855 0.831
Precision 0.04 0.013 0.023 0.025 0.024 0.023 0.025 0.024 0.025 0.026 0.025
PGR 0.98 0.212 0.578 0.545 0.505 0.578 0.543 0.503 0.606 0.555 0.518
time (s) ­ 479 408 408 408 503 503 503 347 347 347

D3

Verifications 5,000,000 5,000,000 5,000,000 5,000,000 5,000,000 5,000,000 5,000,000 5,000,000 5,000,000 5,000,000 5,000,000
PD
Q 3,805,385 2,108,430 927,778 1,742,838 1,750,085 924,371 1,742,585 1,749,670 1,321,132 1,749,064 1,754,066

Recall 1 0.554 0.244 0.458 0.460 0.243 0.458 0.460 0.347 0.460 0.461
Precision 0.76 0.422 0.186 0.349 0.350 0.185 0.349 0.350 0.264 0.350 0.351
PGR 0.619 0.309 0.122 0.267 0.268 0.122 0.267 0.268 0.164 0.268 0.269
time (s) ­ 987 693 693 693 672 672 672 578 578 578

D4

Verifications 5,000,000 5,000,000 5,000,000 5,000,000 5,000,000 5,000,000 5,000,000 5,000,000 5,000,000 5,000,000 5,000,000
PD
Q 5,000,000 1,021,233 1,808,267 794,069 772,515 1,807,726 807,358 771,324 1,826,482 797,737 775,992

Recall 1 0.204 0.362 0.159 0.155 0.362 0.161 0.154 0.365 0.160 0.155
Precision 1 0.204 0.362 0.159 0.155 0.362 0.161 0.154 0.365 0.160 0.155
PGR 0.5 0.112 0.192 0.083 0.082 0.192 0.083 0.081 0.195 0.083 0.082
time (s) ­ 1,667 1,517 1,517 1,517 1,409 1,409 1,409 1,692 1,692 1,692

D5

Verifications 5,000,000 5,000,000 5,000,000 5,000,000 5,000,000 5,000,000 5,000,000 5,000,000 5,000,000 5,000,000 5,000,000
PD
Q 5,000,000 2,247,847 976,937 4,519,008 4,591,464 1,302,743 4,549,633 4,621,306 3,316,463 4,606,489 4,720,124

Recall 1 0.450 0.195 0.904 0.918 0.261 0.910 0.924 0.663 0.921 0.944
Precision 1 0.450 0.195 0.904 0.918 0.261 0.910 0.924 0.663 0.921 0.944
PGR 0.5 0.219 0.094 0.452 0.459 0.117 0.455 0.462 0.289 0.461 0.472
time (s) ­ 894 881 881 881 883 883 883 881 881 881

D6

Verifications 5,000,000 5,000,000 5,000,000 5,000,000 5,000,000 5,000,000 5,000,000 5,000,000 5,000,000 5,000,000 5,000,000
PD
Q 1,037,153 74,220 50,716 149,541 146,045 49,670 139,934 139,955 56,049 171,076 172,937

Recall 1 0.072 0.049 0.144 0.141 0.048 0.135 0.135 0.054 0.165 0.167
Precision 0.207 0.015 0.010 0.030 0.029 0.010 0.028 0.028 0.011 0.034 0.035
PGR 0.89 0.039 0.025 0.065 0.064 0.025 0.058 0.060 0.027 0.080 0.081
time (s) ­ 2,802 2,714 2,714 2,714 2,507 2,507 2,507 2,495 2,495 2,495

Table 6: Evaluation of all progressive methods using all weighting schemes and 10M budget

Optimal GIA.nt Progressive GIA.nt TOP­K RECIPROCAL TOP­K
CF JS χ2 CF JS χ2 CF JS χ2

D1

Verifications 6,309,676 6,309,676 6,309,676 6,309,676 6,309,676 6,309,362 6,306,739 6,304,539 4,400,792 4,401,290 4,402,420
PD
Q 2,401,396 2,401,396 2,401,396 2,401,396 2,401,396 2,401,396 2,401,396 2,401,396 2,187,065 2,187,085 2,186,925

Recall 1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.910 0.910 0.910
Precision 0.38 0.380 0.380 0.380 0.38 0.38 0.38 0.380 0.496 0.496 0.496
PGR 0.808 0.500 0.450 0.718 0.716 0.450 0.718 0.715 0.401 0.611 0.609
time (s) ­ 533 542 542 542 519 519 519 314 314 314

D2

Verifications 10,000,000 10,000,000 10,000,000 10,000,000 10,000,000 10,000,000 10,000,000 10,000,000 5,830,517 5,833,331 5,839,031
PD
Q 154,386 135,048 144,972 154,386 150,546 146,285 150,489 148,408 136,501 135,216 132,143

Recall 1 0.874 0.939 0.981 0.975 0.947 0.974 0.961 0.884 0.876 0.856
Precision 0.015 0.013 0.014 0.015 0.015 0.014 0.015 0.014 0.023 0.023 0.023
PGR 0.992 0.425 0.714 0.735 0.708 0.718 0.732 0.702 0.643 0.600 0.565
time (s) ­ 629 601 601 601 611 611 611 416 416 416

D3

Verifications 10,000,000 10,000,000 10,000,000 10,000,000 10,000,000 10,000,000 10,000,000 10,000,000 10,000,000 10,000,000 10,000,000
PD
Q 3,805,385 3,066,368 1,943,127 3,185,780 3,180,786 1,926,925 3,183,831 3,178,875 2,736,876 2,996,605 2,999,240

Recall 1 0.806 0.511 0.837 0.836 0.506 0.837 0.835 0.719 0.787 0.788
Precision 0.308 0.307 0.194 0.319 0.318 0.193 0.318 0.318 0.274 0.300 0.300
PGR 0.801 0.514 0.248 0.465 0.466 0.246 0.465 0.466 0.354 0.460 0.462
time (s) ­ 1,448 1,044 1,044 1,044 1,013 1,013 1,013 746 746 746

D4

Verifications 10,000,000 10,000,000 10,000,000 10,000,000 10,000,000 10,000,000 10,000,000 10,000,000 10,000,000 10,000,000 10,000,000
PD
Q 10,000,000 2,015,836 3,234,364 1,610,101 1,632,532 3,236,344 1,610,379 1,634,468 3,168,507 1,626,189 1,645,141

Recall 1 0.202 0.323 0.161 0.163 0.324 0.161 0.163 0.317 0.163 0.165
Precision 1 0.202 0.323 0.161 0.163 0.324 0.161 0.163 0.317 0.163 0.165
PGR 0.5 0.107 0.175 0.081 0.080 0.175 0.081 0.080 0.176 0.081 0.081
time (s) ­ 1,912 1,561 1,561 1,561 1,566 1,566 1,566 1,398 1,398 1,398

D5

Verifications 10,000,000 10,000,000 10,000,000 10,000,000 10,000,000 10,000,000 10,000,000 10,000,000 10,000,000 10,000,000 10,000,000
PD
Q 10,000,000 4,190,668 2,182,571 8,971,887 9,101,636 2,702,275 9,028,098 9,167,172 7,496,133 9,143,726 9,351,004

Recall 1 0.419 0.218 0.897 0.910 0.270 0.903 0.917 0.750 0.914 0.935
Precision 1 0.419 0.218 0.897 0.910 0.270 0.903 0.917 0.750 0.914 0.935
PGR 0.5 0.216 0.105 0.448 0.455 0.129 0.451 0.458 0.338 0.457 0.466
time (s) ­ 956 891 891 891 901 901 901 905 905 905

D6

Verifications 10,000,000 10,000,000 10,000,000 10,000,000 10,000,000 10,000,000 10,000,000 10,000,000 10,000,000 10,000,000 10,000,000
PD
Q 1,037,153 119,082 79,133 235,026 236,252 78,383 221,462 221,705 158,241 296,186 295,982

Recall 1 0.115 0.076 0.227 0.228 0.076 0.214 0.214 0.153 0.286 0.285
Precision 0.103 0.012 0.008 0.024 0.024 0.008 0.022 0.022 0.016 0.030 0.030
PGR 0.948 0.068 0.040 0.110 0.112 0.039 0.105 0.107 0.066 0.153 0.154
time (s) ­ 2,821 2,465 2,465 2,465 2,524 2,524 2,524 2,515 2,515 2,515

G. Mandilaras 49

Transforming into RDF and Interlinking Βig Geospatial Data

5.6 Summary

In this chapter we introduced the algorithms GIA.nt, Progressive GIA.nt, Geometry Top­k
and Reciprocal Geometry Top­k for batch and progressive Holistic Geospatial Interlinking.
Furthermore we show how we have implemented and parallelized them in the system
DS­JedAI that works on top of Apache Spark. In the end we present detailed evaluation
of the algorithms and we show that progressive algorithms are able to discover most of
the relations by performing fewer verifications.

G. Mandilaras 50

Transforming into RDF and Interlinking Βig Geospatial Data

6. POLAR USE­CASE1

In this chapter we present the polar use case, in which we use both tools in order to
interlink satellite images with in­situ ice observations, with the view to provide better ice
monitoring capabilities. The end result is useful for building training sets with satellite
images associated with high quality ground observations and essential for the construction
of a robust automatically derived mapping product that could be updated frequently. Most
importantly, by expressing the end result as RDF statements, we can leverage a wealth of
Semantic Web tools for performing analytics, reasoning as well as visualization. A crucial
aspect in this process is the time efficiency, as the large volume of data calls for scalable
techniques.

6.1 Ice Monitoring

The safety of ship navigation in the Arctic relies on the continuous task of monitoring sea
ice and icebergs. This task has recently become more critical, due to changes in ice
conditions in the Arctic driven by climate change that have made the ice more mobile and
driven an increase in ship traffic. To address it, automatic techniques are now used to
combine in­situ observational data with satellite images. Such in­situ data can be used to
validate and improve the interpretation of satellite images, and subsequently to improve
routine ice chart products and assist in building training sets for the future development of
machine learning algorithms.

In more detail, the Ice Watch project2 of the Norwegian Meteorological Institute collects
data from ships performing visual sea ice observations while navigating the Arctic. These
in­situ observational data record the time, point locations, and other important properties
of sea ice.

In this work, we work with a set of satellite images provided by the EU Copernicus
Programme, that cover the Arctic and coincide spatially and temporally with the in­situ
observations. Our goal is to interlink these two data sources, so as to identify in­situ
observations that match closely in time and space to satellite images.

This process takes as input three datasets:

• a set containing observation points

• a set containing ice observation data

• a set containing information about the satellite images

The observation point set contains the time and the location of each observation. The ice
observation set contains detailed information about the ice (such as ice thickness, snow
thickness, floe size, etc), which were recorded by the observer, along with an observation
id that links back to the observation. The ice observation set contains more than 20,000
observations, however, since it is only updated when a cruise has been out in the Arctic

1The results of this chapter appear in the paper ”Ice Monitoring With ExtremeEarth”, in proceedings of
the Large Scale RDF Analytics (LASCAR) workshop of ESWC 2020

2https://icewatch.met.no/

G. Mandilaras 51

https://icewatch.met.no/

Transforming into RDF and Interlinking Βig Geospatial Data

Figure 12: The results as they are presented to the user.

and uploaded its data, there are large gaps with no observations. These sets are provided
by the Ice Watch project.

The set of satellite images contains information about images captured by Sentinel­13 and
is provided by the Copernicus project. This information includes the location of the image,
the satellite acquisition date and time, the coverage (geographic extents of the images),
as well as some other useful properties. Note that the data source of satellite images is
updated on a daily basis and contains more than 200K images.

6.2 Approach

Our approach starts by transforming the datasets into RDF graph using GeoTriples­Spark.
In the mapping file of GeoTriples­Spark, we define a specialized ontlogy 4 we have
developed based on the Sea Ice GeoReferenced Information and Data ­ SIGRID­3
document [23], which describes a set of standards to code, exchange, and archive digital
ice charts. The generated triples are stored in the N­Triples format.

Then we use DS­JedAI to discover the relations between the in­situ observations and
satellite images. In more details we wanted to find which satellite images captured the
ice observation points at the same day that the observations occurred. Consequently, the
temporal dimension has a deterministic role as we are examining ice thickness which can
alter from days to days. Therefore, we focus on the contains relation and we also use
temporal filtering to ensure that the interlinked geometries are not over 24 hours apart.
This way, we link the images to the observation points that are spatially contained in the
coverage of the image and also their timestamp is within a range of a day from the time
that the image was shot.

We store the produced RDF graphs and the discovered relations in the spatiotemporal
RDF store Strabon [26] a state­of­the­art open­source spatiotemporal triplestore that
efficiently executes GeoSPARQL and stSPARQL queries. Finally we visualize our results
via Sextant [30], which constitutes a web­based application for exploring, interacting, and
visualizing time­evolving linked geospatial data. The results are shown in Figure 12 and

3https://www.esa.int/Applications/Observing_the_Earth/Copernicus/Sentinel-1
4http://pyravlos-vm5.di.uoa.gr/polarUC.svg

G. Mandilaras 52

https://www.esa.int/Applications/Observing_the_Earth/Copernicus/Sentinel-1
http://pyravlos-vm5.di.uoa.gr/polarUC.svg

Transforming into RDF and Interlinking Βig Geospatial Data

you can see the whole visualization as a GIF in [1], which exactly how it was presented to
the user.

G. Mandilaras 53

Transforming into RDF and Interlinking Βig Geospatial Data

7. CONCLUSION

In this work we focus on the transformation of big geospatial data into RDF graphs, by
presenting GeoTriples­Spark, a new version of GeoTriples able to perform transformation
on scale. Furthermore, we also focus on the field of Geospatial Interlinking by presenting
novel algorithms for batch and progressive Holistic Geospatial Interlinking. All these
algorithms are implemented in the system DS­JedAI that runs on top of Apache Spark and
it is able to perform Geospatial Interlinking at scale. We also present detailed evaluation
of both systems and algorithms and we show that they can operate on big geospatial data.

As for future work for GeoTriples­Spark, we plan to extend it in order to be able to transform
data from other geospatial sources like big KML and GML documents, and from systems
that are build on top of Hadoop, like Apache Hive1 and Apache Accumulo2. Moreover, we
plan to extend both GeoTriples and GeoTriples­Spark to support the GeoSPARQL+ [19]
vocabulary, for handling raster formats of geospatial data.

Regarding Geospatial Interlinking, we examine new weighting schemes and new
scheduling approaches based on the frequencies of the pairs and the area of their MBRs’
intersection. Additionally, we try to reduce the cost of verification by using different libraries
like the s2geometry3, or by developing our own algorithm able to determine the relations
between a pair of geometries by considering the least possible points. Last but not least,
wework on the development of meta­progressive algorithmswhich will improve scheduling
by producing a better order of geometry pairs, i.e., fewer false positives. We believe we
can achieve this by combining the ranking lists of N weighting schemes into a single one.

Both systems (i.e. GeoTriples­Spark, DS­JedAI) were developed as part of the
ExtremeEarth project4 , which focuses on Artificial Intelligence and Big Data technologies
that scale to the petabytes of big Copernicus data. ExtremeEarth applies these
technologies in two of the thematic exploitation platforms of the European Space Agency:
one dedicated to Food Security and one dedicated to the Polar regions. Its goal
is to develop techniques and software that will enable the extraction of information
and knowledge from big Copernicus data using deep learning techniques and extreme
geospatial analytics, making this information and knowledge available as linked data.

1https://hive.apache.org/
2https://accumulo.apache.org/
3https://s2geometry.io/
4http://earthanalytics.eu/index.html

G. Mandilaras 54

https://hive.apache.org/
https://accumulo.apache.org/
https://s2geometry.io/
http://earthanalytics.eu/index.html

Transforming into RDF and Interlinking Βig Geospatial Data

ACRONYMS

OSM OpenStreetMap
EO Earth Observation
LOD Linked Open Data
RDF Resource Description Framework
SPARQL SPARQL Protocol and RDF Query Language
URI Uniform Resource Identifier
W3C World Wide Web Consortium
KG Knowledge Graph
WKT Well­Known Text
OGC Open Geospatial Consortium
DE­9IM Dimensionally Extended 9­Intersection Model
RDD Resilient Distributed Dataset
IM Intersection Matrix
RML RDF Mapping Language
R2RML RDB to RDF Mapping Language
MBR Minimum Bounding Rectangle
HDFS Hadoop Distributed File System
GIA.nt Geospatial Interlinking At large
RF Reference Point
PQ Priority Queue
CF Co­occurrence Frequency
JS Jaccard Similarity
DS­JedAI Distributed ­ Spatial Java gEneric DAta Integration

G. Mandilaras 55

Transforming into RDF and Interlinking Βig Geospatial Data

REFERENCES

[1] Extremeearth polar use­casein­situ ice observations interlinked with satellite images, 2020.
[2] J. Abdul, M. Alkathiri, and M. B. Potdar. Geospatial hadoop (gs­hadoop) an efficient mapreduce

based engine for distributed processing of shapefiles. In 2nd International Conference on Advances
in Computing, Communication, Automation (ICACCA), 2016.

[3] Abdullah Fathi Ahmed, Mohamed Ahmed Sherif, and Axel­Cyrille Ngonga Ngomo. RADON2 ­ a
buffered­intersection matrix computing approach to accelerate link discovery over geo­spatial RDF
knowledge bases: OAEI2018 results. In Pavel Shvaiko, Jérôme Euzenat, Ernesto Jiménez­Ruiz,
Michelle Cheatham, and Oktie Hassanzadeh, editors, Proceedings of the 13th International Workshop
on Ontology Matching co­located with the 17th International Semantic Web Conference, OM@ISWC
2018, Monterey, CA, USA, October 8, 2018, volume 2288 of CEUR Workshop Proceedings, pages
197–204. CEUR­WS.org, 2018.

[4] Sören Auer, Jens Lehmann, and Sebastian Hellmann. Linkedgeodata: Adding a spatial dimension
to the web of data. In Abraham Bernstein, David R. Karger, Tom Heath, Lee Feigenbaum, Diana
Maynard, Enrico Motta, and Krishnaprasad Thirunarayan, editors, The Semantic Web ­ ISWC 2009,
8th International Semantic Web Conference, ISWC 2009, Chantilly, VA, USA, October 25­29, 2009.
Proceedings, volume 5823 of Lecture Notes in Computer Science, pages 731–746. Springer, 2009.

[5] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl, Seif Haridi, and Kostas Tzoumas.
Apache flink™: Stream and batch processing in a single engine. IEEE Data Eng. Bull., 38(4):28–38,
2015.

[6] Edward P. F. Chan and Jimmy N. H. Ng. A general and efficient implementation of geometric operators
and predicates. In Michel Scholl and Agnès Voisard, editors, Advances in Spatial Databases, 5th
International Symposium, SSD’97, Berlin, Germany, July 15­18, 1997, Proceedings, volume 1262 of
Lecture Notes in Computer Science, pages 69–93. Springer, 1997.

[7] Kevin Chentout and Alejandro A. Vaisman. Adding spatial support to R2RML mappings. In On the Move
to Meaningful Internet Systems: OTM 2013 Workshops ­ 2013, volume 8186, pages 398–407.

[8] Eliseo Clementini, Paolino Di Felice, and Peter van Oosterom. A small set of formal topological
relationships suitable for end­user interaction. In David J. Abel and Beng Chin Ooi, editors, Advances in
Spatial Databases, Third International Symposium, SSD’93, Singapore, June 23­25, 1993, Proceedings,
volume 692 of Lecture Notes in Computer Science, pages 277–295. Springer, 1993.

[9] Eliseo Clementini, Jayant Sharma, and Max J. Egenhofer. Modelling topological spatial relations:
Strategies for query processing. Comput. Graph., 18(6):815–822, 1994.

[10] Alexander de León, Victor Saquicela, Luis M. Vilches, Boris Villazón­Terrazas, Freddy Priyatna, and
Oscar Corcho. Geographical linked data: A Spanish use case. In Proceedings of the 6th International
Conference on Semantic Systems. ACM, 2010.

[11] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on large clusters.
Commun. ACM, 51(1):107–113, 2008.

[12] Anastasia Dimou, Miel Vander Sande, Pieter Colpaert, Ruben Verborgh, Erik Mannens, and Rik Van
deWalle. RML: A generic language for integrated RDFmappings of heterogeneous data. In Proceedings
of the Workshop on Linked Data on the Web, International World Wide Web Conference (WWW 2014),
volume 1184, 2014.

[13] Jens­Peter Dittrich and Bernhard Seeger. Data redundancy and duplicate detection in spatial join
processing. In David B. Lomet and Gerhard Weikum, editors, Proceedings of the 16th International
Conference on Data Engineering, San Diego, California, USA, February 28 ­ March 3, 2000, pages
535–546. IEEE Computer Society, 2000.

[14] Max J. Egenhofer and Robert D. Franzosa. Point set topological relations. Int. J. Geogr. Inf. Sci.,
5(2):161–174, 1991.

[15] Ahmed Eldawy and Mohamed F. Mokbel. SpatialHadoop: A MapReduce Framework for Spatial Data.
In 31st IEEE International Conference on Data Engineering, ICDE 2015, Seoul, South Korea, April
13­17, 2015, pages 1352–1363, 2015.

[16] John R. Herring. OpenGIS Implementation Standard for Geographic information ­ Simple feature
access ­ Part 2: SQL option. Open Geospatial Consortium standard, 2010. http://portal.
opengeospatial.org/files/?artifact_id=25354.

[17] Johannes Hoffart, Fabian M. Suchanek, Klaus Berberich, Edwin Lewis­Kelham, Gerard de Melo, and
Gerhard Weikum. YAGO2: exploring and querying world knowledge in time, space, context, and many
languages. InWWW, 2011.

G. Mandilaras 56

http://portal.opengeospatial.org/files/?artifact_id=25354
http://portal.opengeospatial.org/files/?artifact_id=25354

Transforming into RDF and Interlinking Βig Geospatial Data

[18] Johannes Hoffart, Fabian M. Suchanek, Klaus Berberich, and Gerhard Weikum. YAGO2: A spatially
and temporally enhanced knowledge base from Wikipedia. Artif. Intell., 194, 2013.

[19] Timo Homburg, Steffen Staab, and Daniel Janke. Geosparql+: Syntax, semantics and system for
integrated querying of graph, raster and vector data. In Jeff Z. Pan, Valentina A. M. Tamma, Claudia
d’Amato, Krzysztof Janowicz, Bo Fu, Axel Polleres, Oshani Seneviratne, and Lalana Kagal, editors, The
Semantic Web ­ ISWC 2020 ­ 19th International Semantic Web Conference, Athens, Greece, November
2­6, 2020, Proceedings, Part I, volume 12506 of Lecture Notes in Computer Science, pages 258–275.
Springer, 2020.

[20] Theofilos Ioannidis, George Garbis, Kostis Kyzirakos, Konstantina Bereta, and Manolis Koubarakis.
Evaluating geospatial RDF stores using the benchmark geographica 2. CoRR, abs/1906.01933, 2019.

[21] Mahmoud Ismail, Ermias Gebremeskel, Theofilos Kakantousis, Gautier Berthou, and Jim Dowling.
Hopsworks: Improving user experience and development on hadoop with scalable, strongly consistent
metadata. In 37th IEEE International Conference on Distributed Computing Systems, ICDCS 2017,
pages 2525–2528.

[22] Mahmoud Ismail, Salman Niazi, Mikael Ronström, Seif Haridi, and Jim Dowling. Scaling HDFS to more
than 1 million operations per second with hopsfs. In Proceedings of the 17th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing, CCGRID 2017, pages 683–688, 2017.

[23] JCOMM Expert Team on Sea Ice. Sigrid­3: A vector archive format for sea ice georeferenced
information and data. 2014.

[24] Wajdi Al Jedaibi and Sufian Khamis. Towards measuring the project management process during large
scale software system implementation phase. ISC Int. J. Inf. Secur., 11(3):161–172, 2019.

[25] Nikolaos Karalis, Georgios M. Mandilaras, and Manolis Koubarakis. Extending the YAGO2 knowledge
graph with precise geospatial knowledge. In Chiara Ghidini, Olaf Hartig, Maria Maleshkova, Vojtech
Svátek, Isabel F. Cruz, Aidan Hogan, Jie Song, Maxime Lefrançois, and Fabien Gandon, editors, The
Semantic Web ­ ISWC 2019 ­ 18th International Semantic Web Conference, Auckland, New Zealand,
October 26­30, 2019, Proceedings, Part II, volume 11779 of Lecture Notes in Computer Science, pages
181–197. Springer, 2019.

[26] Kostis Kyzirakos, Manos Karpathiotakis, Konstantina Bereta, George Garbis, Charalampos Nikolaou,
Panayiotis Smeros, Stella Giannakopoulou, Kallirroi Dogani, and Manolis Koubarakis. The
spatiotemporal RDF store strabon. In Advances in Spatial and Temporal Databases ­ 13th International
Symposium (SSTD), volume 8098, pages 496–500, 2013.

[27] Kostis Kyzirakos, Dimitrianos Savva, Ioannis Vlachopoulos, Alexandros Vasileiou, Nikolaos Karalis,
Manolis Koubarakis, and Stefan Manegold. Geotriples: Transforming geospatial data into RDF graphs
using R2RML and RML mappings. Journal of Web Semantics, 52­53, 2018.

[28] Jens Lehmann, Gezim Sejdiu, Lorenz Bühmann, Patrick Westphal, Claus Stadler, Ivan Ermilov,
Simon Bin, Nilesh Chakraborty, Muhammad Saleem, Axel­Cyrille Ngomo Ngonga, and Hajira Jabeen.
Distributed semantic analytics using the sansa stack. In Proceedings of 16th International Semantic
Web Conference ­ Resources Track (ISWC’2017), pages 147–155. Springer, 2017.

[29] Salman Niazi, Mahmoud Ismail, Seif Haridi, Jim Dowling, Steffen Grohsschmiedt, and Mikael
Ronström. Hopsfs: Scaling hierarchical file system metadata using newsql databases. In 15th USENIX
Conference on File and Storage Technologies, FAST 2017, pages 89–104.

[30] Charalampos Nikolaou, Kallirroi Dogani, Konstantina Bereta, George Garbis, Manos Karpathiotakis,
Kostis Kyzirakos, and Manolis Koubarakis. Sextant: Visualizing time­evolving linked geospatial data. J.
Web Semant., 35:35–52, 2015.

[31] George Papadakis, Georgios M. Mandilaras, Luca Gagliardelli, Giovanni Simonini, Emmanouil
Thanos, George Giannakopoulos, Sonia Bergamaschi, Themis Palpanas, and Manolis Koubarakis.
Three­dimensional entity resolution with jedai. Inf. Syst., 93:101565, 2020.

[32] George Papadakis, Leonidas Tsekouras, Emmanouil Thanos, George Giannakopoulos, Themis
Palpanas, and Manolis Koubarakis. Jedai: The force behind entity resolution. In Eva Blomqvist,
Katja Hose, Heiko Paulheim, Agnieszka Lawrynowicz, Fabio Ciravegna, and Olaf Hartig, editors, The
Semantic Web: ESWC 2017 Satellite Events ­ ESWC 2017 Satellite Events, Portorož, Slovenia, May 28
­ June 1, 2017, Revised Selected Papers, volume 10577 of Lecture Notes in Computer Science, pages
161–166. Springer, 2017.

[33] Thorsten Papenbrock, Arvid Heise, and Felix Naumann. Progressive duplicate detection. IEEE Trans.
Knowl. Data Eng., 27(5):1316–1329, 2015.

[34] Kostas Patroumpas, Michalis Alexakis, Giorgos Giannopoulos, and Spiros Athanasiou. Triplegeo: an
ETL tool for transforming geospatial data into RDF triples. In Proceedings of the Workshops of the
EDBT/ICDT 2014 Joint Conference (EDBT/ICDT 2014), volume 1133, pages 275–278, 2014.

G. Mandilaras 57

Transforming into RDF and Interlinking Βig Geospatial Data

[35] Kostas Patroumpas, Dimitrios Skoutas, Georgios M. Mandilaras, Giorgos Giannopoulos, and Spiros
Athanasiou. Exposing points of interest as linked geospatial data. In Proceedings of the 16th
International Symposium on Spatial and Temporal Databases, SSTD 2019, pages 21–30.

[36] Tzanina Saveta, Irini Fundulaki, Giorgos Flouris, and Axel­Cyrille Ngonga Ngomo. Spgen : A
benchmark generator for spatial link discovery tools. In Denny Vrandecic, Kalina Bontcheva,
Mari Carmen Suárez­Figueroa, Valentina Presutti, Irene Celino, Marta Sabou, Lucie­Aimée Kaffee, and
Elena Simperl, editors, The Semantic Web ­ ISWC 2018 ­ 17th International Semantic Web Conference,
Monterey, CA, USA, October 8­12, 2018, Proceedings, Part I, volume 11136 of Lecture Notes in
Computer Science, pages 408–423. Springer, 2018.

[37] Mohamed Ahmed Sherif, Kevin Dreßler, Panayiotis Smeros, and Axel­Cyrille Ngonga Ngomo. Radon ­
rapid discovery of topological relations. In Satinder P. Singh and Shaul Markovitch, editors, Proceedings
of the Thirty­First AAAI Conference on Artificial Intelligence, February 4­9, 2017, San Francisco,
California, USA, pages 175–181. AAAI Press, 2017.

[38] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler. The hadoop distributed
file system. In Mohammed G. Khatib, Xubin He, and Michael Factor, editors, IEEE 26th Symposium
on Mass Storage Systems and Technologies, MSST 2012, Lake Tahoe, Nevada, USA, May 3­7, 2010,
pages 1–10. IEEE Computer Society, 2010.

[39] Giovanni Simonini, Sonia Bergamaschi, and H. V. Jagadish. BLAST: a loosely schema­aware
meta­blocking approach for entity resolution. Proc. VLDB Endow., 9(12):1173–1184, 2016.

[40] Panayiotis Smeros and Manolis Koubarakis. Discovering spatial and temporal links among RDF
data. In Sören Auer, Tim Berners­Lee, Christian Bizer, and Tom Heath, editors, Proceedings of the
Workshop on Linked Data on the Web, LDOW 2016, co­located with 25th International World Wide
Web Conference (WWW 2016), volume 1593 of CEUR Workshop Proceedings. CEUR­WS.org, 2016.

[41] Dimitrios Tsitsigkos, Panagiotis Bouros, Nikos Mamoulis, and Manolis Terrovitis. Parallel in­memory
evaluation of spatial joins. In Farnoush Banaei Kashani, Goce Trajcevski, Ralf Hartmut Güting,
Lars Kulik, and Shawn D. Newsam, editors, Proceedings of the 27th ACM SIGSPATIAL International
Conference on Advances in Geographic Information Systems, SIGSPATIAL 2019, Chicago, IL, USA,
November 5­8, 2019, pages 516–519. ACM, 2019.

[42] Julius Volz, Christian Bizer, Martin Gaedke, and Georgi Kobilarov. Silk ­ A link discovery framework
for the web of data. In Christian Bizer, Tom Heath, Tim Berners­Lee, and Kingsley Idehen, editors,
Proceedings of the WWW2009 Workshop on Linked Data on the Web, LDOW 2009, Madrid, Spain,
April 20, 2009, volume 538 of CEUR Workshop Proceedings. CEUR­WS.org, 2009.

[43] Steven Euijong Whang, David Marmaros, and Hector Garcia­Molina. Pay­as­you­go entity resolution.
IEEE Trans. Knowl. Data Eng., 25(5):1111–1124, 2013.

[44] Jia Yu, Jinxuan Wu, and Mohamed Sarwat. Geospark: a cluster computing framework for processing
large­scale spatial data. In Proceedings of the 23rd SIGSPATIAL International Conference on Advances
in Geographic Information System, pages 70:1–70:4, 2015.

[45] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy McCauly,
Michael J. Franklin, Scott Shenker, and Ion Stoica. Resilient distributed datasets: A fault­tolerant
abstraction for in­memory cluster computing. In Proceedings of the 9th USENIX Symposium on
Networked Systems Design and Implementation, NSDI, pages 15–28, 2012.

[46] Matei Zaharia, Reynold S. Xin, Patrick Wendell, Tathagata Das, Michael Armbrust, Ankur Dave,
Xiangrui Meng, Josh Rosen, Shivaram Venkataraman, Michael J. Franklin, Ali Ghodsi, Joseph
Gonzalez, Scott Shenker, and Ion Stoica. Apache Spark: a unified engine for big data processing.
Commun. ACM, 59(11):56–65, 2016.

G. Mandilaras 58

	CONTENTS
	INTRODUCTION
	PRELIMINARIES
	Semantic Web
	Geospatial data
	Systems for Big Data management
	Summary

	RELATED WORK
	Transformation into RDF graph
	Geospatial Interlinking
	Summary

	Transforming Big Geospatial Data into Linked Data
	GeoTriples
	Transformation of big geospatial data
	Evaluation
	Summary

	Geospatial Interlinking
	Geospatial Interlinking At large (GIA.nt)
	Progressive Geospatial Interlinking
	Progressive GIA.nt
	Geometry Top-k
	Reciprocal Geometry Top-k

	Massive Parallelization
	Evaluation
	Evaluation of GIA.nt

	Evaluation of progressive algorithms
	Summary

	POLAR USE-CASE
	Ice Monitoring
	Approach

	CONCLUSION
	ACRONYMS
	REFERENCES

