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ABSTRACT 

Technology scaling has enabled improvements in the three major design optimization 
objectives: increased performance, lower power consumption, and lower die cost, while 
system design has focused on bringing more functionality into products at lower cost. 
While today's microprocessors, are much faster and much more versatile than their 
predecessors, they also consume much power. As operating frequency and integration 
density increase, the total chip power dissipation increases. This is evident from the fact 
that due to the demand for increased functionality on a single chip, more and more 
transistors are being packed on a single die and hence, the switching frequency increases 
in every technology generation. However, by developing aggressive and sophisticated 
mechanisms to boost performance and to enhance the energy efficiency in conjunction 
with the decrease of the size of transistors, microprocessors have become extremely 
complex systems, making the microprocessor verification and manufacturing testing a 
major challenge for the semiconductor industry. Manufacturers, therefore, choose to 
spend extra effort, time, budget and chip area to ensure that the delivered products are 
operating correctly. To meet high-dependability requirements, manufacturers apply a 
sequence of verification tasks throughout the entire life-cycle of the microprocessor to 
ensure the correct functionality of the microprocessor chips from the various types of 
errors that may occur after the products are released to the market. 

To this end, this work presents novel methods for ensuring the correctness of the 
microprocessor during the post-silicon validation phase and for improving the energy 
efficiency requirements of modern microprocessors. These methods can be applied 
during the prototyping phase of the microprocessors or after their release to the market. 
More specifically, in the first part of the thesis, we present and describe two different ISA-
independent software-based post-silicon validation methods, which contribute to 
formalization and modeling as well as the acceleration of the post-silicon validation 
process and expose difficult-to-find bugs in the address translation mechanisms (ATM) 
of modern microprocessors. Both methods improve the detection and diagnosis of a 
hardware design bug in the ATM structures and significantly accelerate the bug detection 
during the post-silicon validation phase. In the second part of the thesis we present a 
detailed system-level voltage scaling characterization study for two state-of-the-art 
ARMv8-based multicore CPUs. We present an extensive characterization study which 
identifies the pessimistic voltage guardbands (the increased voltage margins set by the 
manufacturer) of each individual microprocessor core and analyze any abnormal 
behavior that may occur in off-nominal voltage conditions. Towards the formalization of 
the any abnormal behavior we also present a simple consolidated function; the Severity 
function, which aggregates the effects of reduced voltage operation. We then introduce 
the development of dedicated programs (diagnostic micro-viruses) that aim to accelerate 
the time-consuming voltage margins characterization studies by stressing the 
fundamental hardware components. Finally, we present a comprehensive exploration of 
how two server-grade systems behave in different frequency and core allocation 
configurations beyond nominal voltage operation in multicore executions. This analysis 
aims (1) to identify the best performance per watt operation points, (2) to reveal how and 
why the different core allocation options affect the energy consumption, and (3) to 
enhance the default Linux scheduler to take task allocation decisions for balanced 
performance and energy efficiency. 

 

SUBJECT AREA: Computer Architecture  

KEYWORDS: Dependability, Correctness, Post-Silicon Validation, Design Bugs, 
Address Translation, Energy Efficiency, Voltage Margins



 

 



ΠΕΡΙΛΗΨΗ 

Σήμερα, η εξέλιξη της τεχνολογίας επιτρέπει τη βελτίωση τριών βασικών στοιχείων της 
σχεδίασης των επεξεργαστών: αυξημένες επιδόσεις, χαμηλότερη κατανάλωση ισχύος και 
χαμηλότερο κόστος παραγωγής του τσιπ, ενώ οι σχεδιαστές επεξεργαστών έχουν 
επικεντρωθεί στην παραγωγή επεξεργαστών με περισσότερες λειτουργίες σε χαμηλότερο 
κόστος. Οι σημερινοί επεξεργαστές είναι πολύ ταχύτεροι και διαθέτουν εξελιγμένες 
λειτουργικές μονάδες συγκριτικά με τους προκατόχους τους, ωστόσο, καταναλώνουν 
αρκετά μεγάλη ενέργεια. Τα ποσά ηλεκτρικής ισχύος που καταναλώνονται, και η 
επακόλουθη έκλυση θερμότητας, αυξάνονται παρά τη μείωση του μεγέθους των 
τρανζίστορ. Αναπτύσσοντας όλο και πιο εξελιγμένους μηχανισμούς και λειτουργικές 
μονάδες για την αύξηση της απόδοσης και βελτίωση της ενέργειας, σε συνδυασμό με τη 
μείωση του μεγέθους των τρανζίστορ, οι επεξεργαστές έχουν γίνει εξαιρετικά πολύπλοκα 
συστήματα, καθιστώντας τη διαδικασία της επικύρωσής τους σημαντική πρόκληση για τη 
βιομηχανία ολοκληρωμένων κυκλωμάτων. Συνεπώς, οι κατασκευαστές επεξεργαστών 
αφιερώνουν επιπλέον χρόνο, προϋπολογισμό και χώρο στο τσιπ για να διασφαλίσουν ότι 
οι επεξεργαστές θα λειτουργούν σωστά κατά τη διάθεσή τους στη αγορά. 

Για τους λόγους αυτούς, η εργασία αυτή παρουσιάζει νέες μεθόδους για την επιτάχυνση 
και τη βελτίωση της φάσης της επικύρωσης, καθώς και για τη βελτίωση της ενεργειακής 
απόδοσης των σύγχρονων επεξεργαστών. Στο πρώτο μέρος της διατριβής προτείνονται 
δύο διαφορετικές μέθοδοι για την επικύρωση του επεξεργαστή, οι οποίες συμβάλλουν 
στην επιτάχυνση αυτής της διαδικασίας και στην αποκάλυψη σπάνιων σφαλμάτων στους 
μηχανισμούς μετάφρασης διευθύνσεων των σύγχρονων επεξεργαστών. Και οι δύο 
μέθοδοι καθιστούν ευκολότερη την ανίχνευση και τη διάγνωση σφαλμάτων, και 
επιταχύνουν την ανίχνευση του σφάλματος κατά τη φάση της επικύρωσης. Στο δεύτερο 
μέρος της διατριβής παρουσιάζεται μια λεπτομερής μελέτη χαρακτηρισμού των 
περιθωρίων τάσης σε επίπεδο συστήματος σε δύο σύγχρονους ARMv8 επεξεργαστές. Η 
μελέτη του χαρακτηρισμού προσδιορίζει τα αυξημένα περιθώρια τάσης που έχουν 
προκαθοριστεί κατά τη διάρκεια κατασκευής του κάθε μεμονωμένου πυρήνα του 
επεξεργαστή και αναλύει τυχόν απρόβλεπτες συμπεριφορές που μπορεί να προκύψουν 
σε συνθήκες μειωμένης τάσης. Για την μελέτη και καταγραφή της συμπεριφοράς  του 
συστήματος υπό συνθήκες μειωμένης τάσης, παρουσιάζεται επίσης σε αυτή τη διατριβή 
μια απλή και ενοποιημένη συνάρτηση: η συνάρτηση πυκνότητας-σοβαρότητας. Στη 
συνέχεια, παρουσιάζεται αναλυτικά η ανάπτυξη ειδικά σχεδιασμένων προγραμμάτων 
(micro-viruses) τα οποία υποβάλουν της θεμελιώδεις δομές του επεξεργαστή σε μεγάλο 
φορτίο εργασίας. Αυτά τα προγράμματα στοχεύουν στην γρήγορη αναγνώριση των 
ασφαλών περιθωρίων τάσης. Τέλος, πραγματοποιείται ο χαρακτηρισμός των 
περιθωρίων τάσης σε εκτελέσεις πολλαπλών πυρήνων, καθώς επίσης και σε 
διαφορετικές συχνότητες, και προτείνεται ένα πρόγραμμα το οποίο εκμεταλλεύεται όλες 
τις διαφορετικές πτυχές του προβλήματος της κατανάλωσης ενέργειας και παρέχει 
μεγάλη εξοικονόμηση ενέργειας διατηρώντας παράλληλα υψηλά επίπεδα απόδοσης. 
Αυτή η μελέτη έχει ως στόχο τον εντοπισμό και την ανάλυση της σχέσης μεταξύ ενέργειας 
και απόδοσης σε διαφορετικούς συνδυασμούς τάσης και συχνότητας, καθώς και σε 
διαφορετικό αριθμό νημάτων/διεργασιών που εκτελούνται στο σύστημα, αλλά και 
κατανομής των προγραμμάτων στους διαθέσιμους πυρήνες.  
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ΣΥΝΟΠΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΔΙΔΑΚΤΟΡΙΚΗΣ ΔΙΑΤΡΙΒΗΣ 

Μέχρι και την προηγούμενη δεκαετία, η σχεδίαση των επεξεργαστών βασιζόταν στην 
κατασκευή ισχυρότερων και περισσότερων (σε πλήθος) πυρήνων με υψηλότερη 
συχνότητα και υψηλότερη κατανάλωση ισχύος, χρησιμοποιώντας μικρότερα και ταχύτερα 
τρανζίστορ. Σήμερα, η εξέλιξη της τεχνολογίας επιτρέπει τη βελτίωση τριών βασικών 
στοιχείων της σχεδίασης των επεξεργαστών: αυξημένες επιδόσεις, χαμηλότερη 
κατανάλωση ισχύος και χαμηλότερο κόστος παραγωγής του τσιπ, ενώ οι σχεδιαστές 
επεξεργαστών επικεντρώθηκαν στην παροχή επεξεργαστών με περισσότερες 
λειτουργίες σε χαμηλότερο κόστος. Ενώ οι σημερινοί επεξεργαστές είναι πολύ ταχύτεροι 
από τους προκατόχους τους, συνεχίζουν να καταναλώνουν μεγάλη ενέργεια. Τα ποσά 
ηλεκτρικής ισχύος που καταναλώνονται, και η επακόλουθη έκλυση θερμότητας, 
αυξάνονται παρά τη μείωση του μεγέθους των τρανζίστορ [29]. Τέτοια ποσοστά ενέργειας 
μειώνουν την αξιοπιστία των ολοκληρωμένων κυκλωμάτων και το προσδόκιμο ζωής 
τους, αυξάνουν το κόστος ψύξης, και μάλιστα, δημιουργούν περιβαλλοντικά προβλήματα 
που προέρχονται κυρίως από τα μεγάλα κέντρα δεδομένων (datacenters). Τα μεγάλα 
ποσοστά κατανάλωσης ισχύος δημιουργούν επίσης την ανάγκη συχνότερης φόρτισης 
στις φορητές συσκευές οι οποίες διαθέτουν μπαταρίες περιορισμένης χωρητικότητας. Με 
το πέρασμα του χρόνου, οι βελτιώσεις στην τεχνολογία των επεξεργαστών θα αρχίσουν 
να φθίνουν (π.χ., ο λόγος απόδοσης ανά μονάδα ισχύος θα κλιμακώνεται πιο αργά) χωρίς 
να παρέχουν τελικά οικονομικά αποδοτικές λύσεις στο πρόβλημα της ηλεκτρικής 
ενέργειας.   

Οι σημερινοί επεξεργαστές ενσωματώνουν διάφορους τύπους πυρήνων και λειτουργικών 
μονάδων (π.χ., κρυφές μνήμες, μονάδες πρόβλεψης διακλαδώσεων, κλπ.), και 
στοχεύουν στη δυναμική βελτιστοποίηση της απόδοσης αλλά και της ενέργειας. Για να 
είναι ισχυροί και αποδοτικοί οι σημερινοί επεξεργαστές, κάνουν χρήση εξελιγμένων 
μηχανισμών για την αύξηση της απόδοσης και της μείωσης της κατανάλωσης ισχύος. 
Αυτή η πίεση για αύξηση της απόδοσης συνοδεύεται φυσικά και από αύξηση στην 
ευπάθεια (ή ισοδύναμα μείωση στην αξιοπιστία) των επεξεργαστών καθώς η ποιότητα 
των ολοκληρωμένων κυκλωμάτων περιορίζεται εξαιτίας: (α) των αυστηρών 
χρονοδιαγραμμάτων τα οποία ορίζονται για να μειωθεί ο χρόνος που απαιτείται μέχρι το 
προϊόν να κυκλοφορήσει στην αγορά (άρα και ο χρόνος για τον έλεγχο της αξιοπιστίας 
του), και (β) των σύγχρονων τεχνικών κατασκευής και της αυξημένης πολυπλοκότητας 
της σχεδίασης των ολοκληρωμένων κυκλωμάτων, κάνοντάς τα όλο και πιο ευάλωτα στην 
ακτινοβολία και πιο επιρρεπή σε κατασκευαστικές ατέλειες. Ειδικότερα, οι σύγχρονοι 
επεξεργαστές αντιμετωπίζουν σοβαρά προβλήματα αξιοπιστίας κατά τη διάρκεια της 
ζωής τους εξαιτίας: (α) των σφαλμάτων που προέρχονται από την κοσμική ακτινοβολία 
και από τα φορτισμένα ηλεκτρικά σωματίδια που βάλλουν τα κυκλώματα ακόμα και στο 
επίπεδο της θάλασσας, (β) της γήρανσης και φθοράς των κυκλωμάτων με την πάροδο 
του χρόνου, και (γ) των κατασκευαστικών ατελειών που δημιουργούνται κατά την 
παραγωγή των ολοκληρωμένων κυκλωμάτων.  

Οι επεξεργαστές είναι πλέον εξαιρετικά πολύπλοκα συστήματα, καθιστώντας τη 
διαδικασία επαλήθευσης και επικύρωσης (pre-silicon verification, post-silicon validation) 
τους σημαντική πρόκληση για τη βιομηχανία των ημιαγωγών. Πάντα προσπαθώντας να 
παρέχουν υψηλότερες επιδόσεις και ενεργειακή αποδοτικότητα στους τελικούς χρήστες, 
οι κατασκευαστές επεξεργαστών αναγκάζονται να σχεδιάζουν σταδιακά όλο και πιο 
πολύπλοκα κυκλώματα, με αποτέλεσμα να απασχολούν πολύ μεγάλες ομάδες 
επαλήθευσης και επικύρωσης (verification and validation teams) για την έγκαιρη εξάλειψη 
κρίσιμων σφαλμάτων σχεδιασμού. Για τους παραπάνω λόγους, οι σχεδιαστές 
επεξεργαστών και κυκλωμάτων χρειάζεται να διασφαλίσουν υψηλά επίπεδα αξιοπιστίας 



 

 

και ενεργειακής απόδοσης των ολοκληρωμένων κυκλωμάτων πριν αυτά διοχετευθούν 
στην αγορά.  

Πιο συγκεκριμένα, κατά τη διάρκεια σχεδίασης και παραγωγής ενός επεξεργαστή, 
υπάρχουν δύο πολύ βασικές φάσεις ελέγχου της σωστής λειτουργίας του τσιπ: η φάση 
της επαλήθευσής του (pre-silicon verification), η οποία πραγματοποιείται κατά τη 
διαδικασία της σχεδίασης του ολοκληρωμένου κυκλώματος και πριν την παραγωγή του, 
και η φάση της επικύρωσής του, η οποία πραγματοποιείται αφού ολοκληρωθεί η φάση 
του σχεδιασμού και παραχθούν τα πρώτα τσιπ. Η φάση της επικύρωσης 
πραγματοποιείται στο πραγματικό τσιπ. Μόλις η σχεδίαση και η επαλήθευσή της φτάσουν 
στο τελικό στάδιο και έχουν διορθωθεί τυχόν σχεδιαστικά σφάλματα, οι εταιρίες παράγουν 
μερικές δεκάδες τσιπ ώστε να ξεκινήσει η φάση της επικύρωσης. Αυτή η φάση είναι η 
τελευταία και η πιο σημαντική, διότι είναι το στάδιο πριν την μαζική παραγωγή των τσιπ 
και την διάθεσή τους στην αγορά, και συνεπώς η τελευταία ευκαιρία των κατασκευαστών 
να διορθώσουν τυχόν λάθη που έχουν απομείνει. 

Σκοπός αυτής της διδακτορικής διατριβής είναι να προταθούν πρωτότυπες λύσεις που 
θα συμβάλλουν στη βελτίωση της αποτελεσματικότητας και επιτάχυνση της φάσης της 
επικύρωσης ενός οποιουδήποτε επεξεργαστή, όπως επίσης και στο να προταθούν 
τεχνικές και μέθοδοι οι οποίες συμβάλουν στην ενίσχυση της ενεργειακής αποδοτικότητας 
των επεξεργαστών. Εκτιμάται, ότι ο στόχος αυτός επιτυγχάνεται με την ολοκλήρωση 
αυτής της διατριβής και επιπλέον ένα ακόμη βασικό στοιχείο αυτής της διατριβής είναι ότι 
προτείνει ένα σύνολο αποτελεσματικών τεχνικών οι οποίες είναι δυνατό να υιοθετηθούν 
και να εφαρμοστούν άμεσα από τη βιομηχανία. Με άλλα λόγια, μια σημαντική πτυχή της 
διδακτορικής αυτής διατριβής είναι η έμφαση στη διευθέτηση πραγματικών προβλημάτων 
της βιομηχανίας (βελτίωση της αποτελεσματικότητας της φάσης της επικύρωσης των 
επεξεργαστών, καθώς και τη βελτίωση της ενεργειακής κατανάλωσής τους). 

Η διαδικασία της επικύρωσης ενός επεξεργαστή κατά τη διάρκεια παραγωγής του (post-
silicon validation) αποτελεί αναπόσπαστο και συνεχώς αυξανόμενης σημασίας και 
διάρκειας τμήμα του κύκλου ζωής ενός επεξεργαστή. Ενδεικτική είναι η συνεχώς 
αυξανόμενη πίεση που ασκείται στους μηχανικούς υλικού για να ολοκληρώσουν την 
αποσφαλμάτωση (debug) ενός επεξεργαστή. Στο πλαίσιο αυτό θα πρέπει να ληφθεί 
υπόψιν η εξαιρετικά μεγάλη πολυπλοκότητα των σύγχρονων επεξεργαστών, σε 
συνδυασμό με τα στενά χρονικά περιθώρια που τίθενται για την έγκαιρη διάθεση των 
επεξεργαστών στην αγορά. Η φάση της επικύρωσης έχει ως στόχο να διασφαλίσει ότι τα 
πρωτότυπα τσιπ που θα παραχθούν συμμορφώνονται με τις προδιαγραφές της αρχικής 
σχεδίασης του επεξεργαστή, εκτελώντας όσο το δυνατόν περισσότερα προγράμματα 
δοκιμής (validation tests). Επίσης, επιτρέπει την ανίχνευση λειτουργικών σφαλμάτων που 
είναι δύσκολο να εντοπιστούν σε προηγούμενες φάσεις ελέγχου, όπως στη φάση της 
επαλήθευσης του επεξεργαστή πριν την παραγωγή των πρωτότυπων τσιπ (pre-silicon 
verification), αλλά και των «ηλεκτρικών» σφαλμάτων τα οποία εκδηλώνονται μόνο όταν ο 
επεξεργαστής βρεθεί σε πραγματικές συνθήκες λειτουργίας. Αποτελεσματικές τεχνικές 
στο post-silicon validation καθίστανται ακόμη πιο αναγκαίες για την ανίχνευση 
σφαλμάτων σχεδίασης που παραμένουν μετά το pre-silicon verification και διάφορα 
ελαττώματα κατασκευής στα πρωτότυπα τσιπ.  

Το post-silicon validation σε πραγματικά πρωτότυπα τσιπ προσφέρει πολύ υψηλή 
απόδοση εκτέλεσης των ελέγχων, πρακτικά πολύ κοντά στις συνθήκες λειτουργίας του 
ολοκληρωμένου κυκλώματος στο τελικό σύστημα. Έτσι οι ομάδες επικύρωσης 
προσπαθούν να εκτελέσουν όσο το δυνατόν περισσότερα προγράμματα δοκιμής 
(validation tests) για να καλύψουν όσο το δυνατό περισσότερες περιπτώσεις ελέγχων 
(validation coverage) πριν από τη μαζική παραγωγή του ολοκληρωμένου κυκλώματος. 
Για τον σκοπό αυτό, το post-silicon validation επικεντρώνεται στην εκτέλεση εξαιρετικά 



 

μεγάλου αριθμού παραμετροποιήσημων τυχαίων προγραμμάτων δοκιμής 
(parameterized random-generated validation tests). Το σημαντικότερο όμως μειονέκτημα 
των τυχαίων προγραμμάτων δοκιμής είναι η δυσκολία ελέγχου των αναμενόμενων 
σωστών αποτελεσμάτων, τα οποία απαιτούνται για να προσδιοριστεί η ορθότητα της 
παραγωγής των πρωτοτύπων ολοκληρωμένων κυκλωμάτων. Για να ικανοποιηθεί αυτή η 
απαίτηση, ο εντοπισμός ενός σχεδιαστικού ή κατασκευαστικού σφάλματος προϋποθέτει 
την εκτέλεση του προγράμματος δοκιμής με τυχαιότητα αφενός στο πρωτότυπο μοντέλο 
του επεξεργαστή και αφετέρου σε έναν αρχιτεκτονικό προσομοιωτή (ο οποίος εκτελεί το 
ίδιο πρόγραμμα δοκιμής με το πρωτότυπο μοντέλο και εξάγει το σωστό-αναμενόμενο 
αποτέλεσμα). Στη συνέχεια, τα αποτελέσματα από τις δύο πηγές συγκρίνονται μεταξύ 
τους έτσι ώστε να προσδιοριστεί η ύπαρξη σφάλματος (διαφορά στα αποτελέσματα) ή η 
ορθή λειτουργία (ίδια αποτελέσματα). Συνεπώς, η διαδικασία του post-silicon validation 
περιορίζεται από την απόδοση του αρχιτεκτονικού προσομοιωτή, ο οποίος σε κάθε 
περίπτωση είναι από 3 έως 6 τάξεις μεγέθους πιο αργός από έναν πραγματικό 
επεξεργαστή. Για παράδειγμα, περίπου 200 δισεκατομμύρια κύκλοι προσομοιώθηκαν 
στη διάρκεια πολλών μηνών για τον έλεγχο ορθής λειτουργίας του επεξεργαστή Pentium 
4, αλλά αντ’ αυτού, στον πραγματικό επεξεργαστή με 1 GHz συχνότητα ρολογιού η ίδια 
εκτέλεση ολοκληρώθηκε σε 3 λεπτά [91].  

Στο πλαίσιο αυτής της διδακτορικής διατριβής παρουσιάζονται δύο θεμελιώδεις μέθοδοι 
για την επιτάχυνση της διαδικασίας της επικύρωσης (post-silicon validation) των 
μηχανισμών μετάφρασης διευθύνσεων μνήμης (address translation mechanisms) των 
σύγχρονων επεξεργαστών, καθώς και για την ανίχνευση σφαλμάτων που είναι δύσκολο 
να εντοπισθούν με τις υπάρχουσες μεθοδολογίες που χρησιμοποιούνται σήμερα στις 
κρυφές μνήμες των μηχανισμών μετάφρασης διευθύνσεων μνήμης (address translation 
caching arrays).  

Λόγω της αδιαφανούς λειτουργίας του μηχανισμού μετάφρασης διευθύνσεων ενός 
επεξεργαστή, η παρατηρησιμότητα και οι καθυστερήσεις ανίχνευσης σφαλμάτων είναι 
από τα πιο σημαντικά εμπόδια για τον έλεγχο της ορθής σχεδίασης και λειτουργίας του 
πρωτότυπου τσιπ. Λόγω της ραγδαίας εξέλιξης και χρήσης των εικονικών μηχανών 
(virtual machines) στους σύγχρονους επεξεργαστές (και της πολυπλοκότητας που 
αυξάνεται στους επεξεργαστές ώστε να είναι ικανοί να υποστηρίζουν πολλαπλές 
εικονικές μηχανές), η απόδοση και η ορθότητα των μηχανισμών μετάφρασης 
διευθύνσεων αποκτούν ιδιαίτερα μεγάλη σημασία σε σύγκριση με το πρόσφατο 
παρελθόν. Οι μηχανισμοί αυτοί ενός σύγχρονου επεξεργαστή περιλαμβάνουν σύνθετες 
δομές υλικού και μπορούν να αποτελέσουν κυρίαρχη πηγή σοβαρών διαφυγόντων 
σφαλμάτων, τα οποία είναι πολύ δύσκολο να ανιχνευθούν.  

Σε αντίθεση με άλλες λειτουργικές μονάδες του επεξεργαστή που είναι άμεσα 
προσπελάσιμες με εντολές μηχανής (καταχωρητές, κρυφές μνήμες, μονάδες 
περιφερειακών μονάδων ελέγχου, κλπ.), η έξοδος του μηχανισμού μετάφρασης 
διευθύνσεων (δηλαδή η φυσική διεύθυνση) δεν παρατηρείται σε ορατά σημεία ενός 
προγράμματος ή στα αρχιτεκτονικά στοιχεία του επεξεργαστή (π.χ., καταχωρητές). 
Επιπλέον, η διαδικασία μετάφρασης διευθύνσεων περιλαμβάνει διάφορα στάδια και 
διαφορετικές δομές υλικού (TLBs, MMU caches, κ.λπ.) και σφάλματα σχεδίασης σε κάθε 
μια από αυτές τις δομές μπορούν να οδηγήσουν σε λανθασμένες μεταφράσεις 
διευθύνσεων, και συνεπώς σε σοβαρά προβλήματα εκτέλεσης (είτε εσφαλμένα 
αποτελέσματα είτε μειωμένη απόδοση) των προγραμμάτων αλλά και των εικονικών 
μηχανών. 

Συγκεκριμένα, στις εργασίες [2] και [3] προτείνεται η πρώτη συνεισφορά αυτής της 
διδακτορικής διατριβής, στις οποίες περιγράφεται μια μέθοδος επικύρωσης του 
επεξεργαστή, που συμβάλλει στην επιτάχυνση της διαδικασίας ανίχνευσης σχεδιαστικών 



 

 

σφαλμάτων στους μηχανισμούς μετάφρασης διευθύνσεων των σύγχρονων 
επεξεργαστών. Αρχικά, προτείνεται ένα ολοκληρωμένο και περιεκτικό σύνολο μοντέλων 
σφαλμάτων που είναι πιθανόν να εμφανιστούν στους μηχανισμούς μετάφρασης 
διευθύνσεων μνήμης. Τα προτεινόμενα μοντέλα κατηγοριοποιούν τα αποτελέσματα των 
λειτουργικών και των «ηλεκτρικών» σφαλμάτων στις δομές υλικού που χρησιμοποιούνται 
για τη μετάφραση διευθύνσεων. Κατόπιν, προτείνεται μια μέθοδος για την επικύρωση του 
επεξεργαστή, η οποία είναι ανεξάρτητη από την αρχιτεκτονική συνόλου εντολών (ISA-
independent), και στη συνέχεια αξιολογείται ως προς την αποτελεσματικότητά της με τη 
χρήση των μοντέλων σφαλμάτων που προτάθηκαν. Η προτεινόμενη μέθοδος επιδιώκει 
να επιταχύνει σημαντικά την διαδικασία ανίχνευσης των σφαλμάτων στους μηχανισμούς 
μετάφρασης διευθύνσεων και εκμεταλλεύεται πλήρως την απόδοση του πρωτότυπου 
τσιπ.   

Αποδεικνύεται πειραματικά ότι, η προτεινόμενη μέθοδος επιταχύνει την ανίχνευση 
σφάλματος κατά 5 τάξεις μεγέθους σε σύγκριση με τις κλασσικές τεχνικές επικύρωσης (οι 
οποίες συγκρίνουν το αποτέλεσμα του πρωτότυπου με την όμοια εκτέλεση σε έναν 
αρχιτεκτονικό προσομοιωτή στο τέλος της εκτέλεσης του προγράμματος δοκιμής). Στο 
σημείο αυτό, είναι σημαντικό να τονιστεί ότι για την πειραματική αξιολόγηση της μεθόδου 
έγινε μια σημαντική ενίσχυση του προσομοιωτή Gem5, στον οποίο υλοποιήθηκε και 
ενσωματώθηκε η λειτουργία των κρυφών μνημών των μηχανισμών μετάφρασης 
διευθύνσεων μνήμης (MMU caches), με σκοπό να είναι ικανή η ολοκληρωμένη μίμηση 
της διαδικασίας της επικύρωσης σε έναν πλήρη σύγχρονο επεξεργαστή και να αποδειχθεί 
η αποτελεσματικότητα της προτεινόμενης μεθόδου κατόπιν ενδελεχούς πειραματικής 
αξιολόγησης. 

Ως συνέχεια της συνεισφοράς της διατριβής στην περιοχή της επικύρωσης του 
επεξεργαστή, στην εργασία [4] παρουσιάζεται μια νέα μέθοδος επικύρωσης 
(συμπληρωματική της προηγούμενης), η οποία εντοπίζει και αποκαλύπτει σπάνια 
σενάρια σφαλμάτων στις κρυφές μνήμες των μηχανισμών μετάφρασης διευθύνσεων των 
επεξεργαστών. Αυτές οι κρυφές μνήμες είναι από τις πιο σημαντικές δομές για τη 
λειτουργικότητα και κυρίως για την απόδοση των σύγχρονων επεξεργαστών, και τα 
σφάλματα που διαφεύγουν σε αυτές τις κρυφές μνήμες μπορούν να οδηγήσουν σε 
απρόβλεπτες συμπεριφορές του συστήματος κατά τη διάρκεια κανονικής λειτουργίας 
(εσφαλμένους υπολογισμούς ή επιβάρυνση στον χρόνο εκτέλεσης). Χρησιμοποιώντας 
μια περιεκτική πειραματική μελέτη, σε αυτή τη διατριβή παρουσιάζονται και αναλύονται 
αυτού του είδους τα σπάνια σενάρια σφαλμάτων, και εξηγείται ο λόγος που καθιστά 
δύσκολο τον εντοπισμό αυτών των σφαλμάτων. Ακόμα κι αν αυτού του είδους τα 
σφάλματα εκδηλώνονται με την εκτέλεση των κλασσικών μεθόδων επικύρωσης (με τη 
χρήση προσομοιωτών για τον έλεγχο των αποτελεσμάτων), η ανίχνευσή τους είναι 
απίθανη. Τέτοιου είδους σφάλματα, και ως εκ τούτου σπάνια, έχουν την ιδιότητα να 
«καλύπτονται» (masking) κατά τη διαδικασία εκτέλεσης προγραμμάτων επικύρωσης, ή 
να οδηγούν σε προβλήματα απόδοσης χωρίς να επηρεάζουν τη σωστή εκτέλεση των 
προγραμμάτων, με αποτέλεσμα οι εκτελέσεις των κλασσικών προγραμμάτων 
επικύρωσης να μην τα αντιλαμβάνονται και λανθασμένα να αποφαίνονται για την 
ορθότητα της εκτέλεσης. Η πειραματική μελέτη και αξιολόγηση που παρουσιάζεται στο 
σχετικό κεφάλαιο της διατριβής, αποδεικνύει ότι, σε αντίθεση με τις κλασσικές τεχνικές 
επικύρωσης, η μέθοδος που προτείνεται εντοπίζει αποτελεσματικά όλα τα σπάνια 
σφάλματα που δημιουργήθηκαν και εισήχθησαν στον αρχιτεκτονικό προσομοιωτή.   

Και οι δύο μέθοδοι που προτείνονται καθιστούν ευκολότερη και ταχύτερη την ανίχνευση 
σφαλμάτων κατά τη διάρκεια της φάσης της επικύρωσης του επεξεργαστή. Ωστόσο, 
κάποια σφάλματα (κυρίως «ηλεκτρικά» σφάλματα) τα οποία είναι πιθανό να διαφύγουν 
ακόμα και μετά απ’ τον πιο αυστηρό έλεγχο, που κάνουν ακόμα και κυκλώματα που 



 

θεωρητικά είναι κατασκευασμένα να λειτουργούν υπό τις ίδιες συνθήκες τελικά να 
λειτουργούν ορθά κάτω από διαφορετικές συνθήκες, συνήθως ωθούν τους 
κατασκευαστές ολοκληρωμένων κυκλωμάτων στην υιοθέτηση απαισιόδοξων (υψηλών) 
περιθωρίων τάσης λειτουργίας (pessimistic voltage margins), τα οποία κατ’ επέκταση 
θυσιάζουν την ενεργειακή απόδοση των προϊόντων.  

Επιπρόσθετα, η γήρανση των τρανζίστορ και η δυναμική διακύμανση της τάσης εισόδου 
και της θερμοκρασίας, που προκαλούνται από διαφορετικές αλληλεπιδράσεις φορτίου 
εργασίας και μικροαρχιτεκτονικής, έχουν επίσης αντίκτυπο στην υιοθέτηση απαισιόδοξων 
περιθωρίων τάσης λειτουργίας. Τόσο οι στατικές όσο και οι δυναμικές διακυμάνσεις στην 
τάση λειτουργίας του επεξεργαστή οδηγούν τους σχεδιαστές επεξεργαστών να 
εφαρμόζουν αυτά τα απαισιόδοξα περιθώρια τάσης για τη λειτουργία του επεξεργαστή, 
έτσι ώστε να διασφαλίζεται η σωστή του λειτουργία, ακόμη και στις χειρότερες συνθήκες. 
Ωστόσο, αυτά τα απαισιόδοξα υψηλά περιθώρια τάσης εμποδίζουν τη χαμηλή 
κατανάλωση ενέργειας και την υψηλή απόδοση, η οποία μπορεί να επιτευχθεί με τη 
μείωση της τάσης τροφοδοσίας ή την αύξηση της συχνότητας λειτουργίας, αντίστοιχα. 
Αρκετές τεχνικές και μέθοδοι σε επίπεδο μικροαρχιτεκτονικής έχουν προταθεί κατά 
καιρούς για την εξάλειψη ενός υποσυνόλου αυτών των απαισιόδοξων περιθωρίων τάσης 
που τίθεται από τους σχεδιαστές επεξεργαστών. Ωστόσο, όλες αυτές οι 
μικροαρχιτεκτονικές τεχνικές αυξάνουν το κόστος της επαλήθευσης και του ελέγχου 
ορθής λειτουργίας του τσιπ και περιορίζουν την ενσωμάτωση άλλων ή πιο αποδοτικών 
λειτουργικών μονάδων λόγω του επιπλέον χώρου που καταλαμβάνουν στο τσιπ. 

Η εύρεση και η αξιοποίηση των απαισιόδοξων περιθωρίων τάσης προσφέρει μια 
σημαντική ευκαιρία για ενεργειακά αποδοτικότερη λειτουργία των επεξεργαστών. Το 
πλήρες δυναμικό εξοικονόμησης ενέργειας μπορεί να εκτεθεί μόνο όταν μετριέται η 
διακύμανση της τάσης από πυρήνα σε πυρήνα, από τσιπ σε τσιπ και κυρίως με 
διαφορετικά προγράμματα. Όταν εντοπίζονται όλα αυτά τα επίπεδα διακύμανσης 
(variation), το λογισμικό του συστήματος (ή ο χρονοπρογραμματιστής) μπορεί να 
κατανείμει αποτελεσματικά τους πόρους υλικού στις εργασίες λογισμικού που ταιριάζουν 
στις δυνατότητες του υλικού και στις απαιτήσεις του λογισμικού, όσον αφορά την ενέργεια 
και την απόδοση.  Για παράδειγμα, κάποιες μονάδες υλικού (πυρήνες) χρειάζονται 
μεγαλύτερη τάση για να λειτουργήσουν σωστά, ενώ κάποιες άλλες μικρότερη. Ως εκ 
τούτου, προγράμματα που προκαλούν μεγάλες μεταβολές πρέπει να ανατεθούν στα 
πρώτα ενώ όσα προκαλούν μικρές στα δεύτερα. 

Στα πλαίσια αυτής της διδακτορικής διατριβής, και συγκεκριμένα αρχικά στις εργασίες 
[10] και [11], παρουσιάζεται μια λεπτομερής μελέτη χαρακτηρισμού των περιθωρίων 
τάσης για εκτελέσεις προγραμμάτων σε ένα πυρήνα (single-core executions), σε 
επεξεργαστές οι οποίοι βασίζονται στην αρχιτεκτονική ARMv8 και είναι κατασκευασμένοι 
σε τεχνολογία 28nm. Η βάση αυτής της μελέτης είναι ένα πλήρως αυτοματοποιημένο 
περιβάλλον σε επίπεδο ενός πλήρους υπολογιστικού συστήματος, το οποίο βασίζεται 
στον επεξεργαστή X-Gene 2 της εταιρείας Applied Micro (APM – σήμερα ονομάζεται 
Ampere Computing). Η αυτοματοποιημένη υποδομή που έχει δημιουργηθεί στοχεύει 
στην αύξηση της απόδοσης των μαζικών εκτελέσεων των προγραμμάτων που απαιτούν 
πολλαπλές όμοιες εκτελέσεις (δεδομένου ότι η πειραματική διαδικασία γίνεται σε 
πραγματικό επεξεργαστή, και συνεπώς μεταξύ όμοιων εκτελέσεων μπορεί να υπάρξουν 
μικροδιαφορές στα αποτελέσματα) σε διάφορα επίπεδα τάσης λειτουργίας και σε όλους 
τους διαθέσιμους πυρήνες του επεξεργαστή. Η αυτοματοποιημένη διαδικασία 
χαρακτηρισμού των περιθωρίων τάσης που υλοποιήθηκε στα πλαίσια αυτής της 
διατριβής απαιτεί ελάχιστη ανθρώπινη παρέμβαση και είναι ικανή να καταγράφει όλες τις 
πιθανές ανωμαλίες που οφείλονται στην μείωση της τάσης: αναντιστοιχία της εξόδου ενός 
προγράμματος χωρίς ειδοποίηση σφάλματος υλικού (silent data corruption), διορθωμένα 



 

 

σφάλματα (corrected errors), μη διορθωμένα (αλλά ανιχνευόμενα) σφάλματα 
(uncorrected errors), καθώς και σφάλματα του συστήματος (system crashes).   

Για την μελέτη και καταγραφή της συμπεριφοράς  του συστήματος υπό συνθήκες 
μειωμένης τάσης, παρουσιάζεται επίσης σε αυτή τη διατριβή μια απλή και ενοποιημένη 
συνάρτηση: η συνάρτηση πυκνότητας-σοβαρότητας (severity function). Η συνάρτηση 
πυκνότητας-σοβαρότητας συγκεντρώνει τα αποτελέσματα που προκύπτουν λόγω της 
λειτουργίας μειωμένης τάσης στους πυρήνες του επεξεργαστή, αναθέτοντας 
μεμονωμένες τιμές στις διάφορες μη φυσιολογικές συμπεριφορές που εμφανίστηκαν κατά 
τη διάρκεια του χαρακτηρισμού των περιθωρίων τάσης. Η θεμελιώδης αρχή αυτής της 
συνάρτησης είναι: όσο χαμηλότερη είναι η τάση, τόσο μεγαλύτερη είναι η τιμή του 
αποτελέσματος της συνάρτησης πυκνότητας-σοβαρότητας. Η συνάρτηση πυκνότητας-
σοβαρότητας εξυπηρετεί στην ταξινόμηση των όμοιων πυρήνων ενός επεξεργαστή για 
ένα δεδομένο σημείο αναφοράς: οι τιμές που παράγει η συνάρτηση, για διαφορετικούς 
πυρήνες και διαφορετικές τάσεις, οδηγούν σε διαφορετικές τιμές σοβαρότητας. Για 
παράδειγμα, ενώ το σύστημα παραμένει ευαίσθητο σε όλο το φάσμα των τιμών τάσης, 
σε κάποιές τιμές τάσης μπορεί δημιουργεί σφάλματα που ανιχνεύονται από τους 
μηχανισμούς ανίχνευσης και διόρθωσης σφαλμάτων του υλικού (ECC) ή σε κάποιες 
άλλες να παράγει αναντιστοιχία της εξόδου ενός προγράμματος χωρίς ειδοποίηση 
σφάλματος υλικού.  

Η λεπτομερής ανάλυση της συμπεριφοράς του επεξεργαστή χρησιμοποιώντας τη 
συνάρτηση πυκνότητας-σοβαρότητας μπορεί να βοηθήσει στις αποφάσεις ενεργειακής 
απόδοσης. Επίσης, ο πλήρης χαρακτηρισμός των περιθωρίων τάσης που παρουσιάζεται 
σε αυτή τη διατριβή (α) επιβεβαιώνει ότι μια διαφορετική μικροαρχιτεκτονική, σχεδίαση 
κυκλώματος ή τεχνολογία κατασκευής παρουσιάζει διαφορετική μη φυσιολογική 
συμπεριφορά όταν λειτουργεί πέρα από τις ονομαστικές (nominal) συνθήκες τάσης που 
έχουν οριστεί από τους σχεδιαστές του επεξεργαστή και (β) μπορεί να χρησιμοποιηθεί 
αποτελεσματικά για τη στήριξη αποφάσεων σχεδιασμού επεξεργαστών αλλά και 
λογισμικού, με σκοπό την αξιοποίηση των απαισιόδοξων περιθωρίων τάσης, και 
συνεπώς, τη βελτίωση της ενεργειακής απόδοσης, διατηρώντας παράλληλα την ορθή 
λειτουργία και τις επιδόσεις του επεξεργαστή. 

Δυστυχώς, οι μελέτες χαρακτηρισμού των περιθωρίων τάσης (όπως αυτή που 
παρουσιάζεται σε αυτή τη διατριβή) είναι μια χρονοβόρος διαδικασία. Η ακριβής 
αναγνώριση αυτών των ορίων σε ένα πραγματικό σύστημα απαιτεί μαζική εκτέλεση 
μεγάλου αριθμού προγραμμάτων σε όλους τους πυρήνες του επεξεργαστή (και όλων των 
διαφορετικών παραγόμενων τσιπ), για διαφορετικές τιμές τάσης και συχνότητας. Για 
παράδειγμα, για να προσδιοριστούν τα ασφαλή όρια τάσης, σε κάθε έναν από τους οκτώ 
πυρήνες του επεξεργαστή X-Gene 2 της Applied Micro (APM) για τη μέγιστη μόνο 
συχνότητα, χρησιμοποιήθηκαν τα μετροπρογράμματα SPEC CPU2006, και κάθε 
πείραμα εκτελέστηκε επαναληπτικά 10 φορές (για να περιοριστούν οι μικροδιαφορές που 
μπορεί να συμβούν μεταξύ όμοιων εκτελέσεων) ξεκινώντας από την ονομαστική τιμή 
τάσης (980 mV) μέχρι την τιμή τάσης στην οποία το σύστημα δεν ήταν πια λειτουργικό (~ 
880 mV). Αυτά τα πειράματα απαιτούσαν περίπου 2 μήνες για έναν πλήρη χαρακτηρισμό 
των ορίων τάσης για όλους τους πυρήνες ενός τσιπ.   

Για την επίτευξη της διαδικασίας του χαρακτηρισμού των περιθωρίων τάσης γρήγορα και 
αποτελεσματικά, σε αυτή τη διατριβή, και συγκεκριμένα στην εργασία [12], παρουσιάζεται 
αναλυτικά η ανάπτυξη ειδικά σχεδιασμένων προγραμμάτων (micro-viruses) που 
αποσκοπούν στο να δημιουργήσουν μεγάλο φορτίο εργασίας στις θεμελιώδεις δομές του 
επεξεργαστή. Με αυτά τα προγράμματα, μπορούν να χαρακτηριστούν (μεμονωμένα ή σε 
συνδυασμούς) όλες οι θεμελιώδεις δομές του επεξεργαστή: (α) οι κρυφές μνήμες εντολών 
και δεδομένων 1ου επιπέδου, οι ενιαίες κρυφές μνήμες 2ου επιπέδου, και το τελευταίο (3ο) 



 

επίπεδο κρυφής μνήμης, και (β) οι δύο πιο θεμελιώδεις μονάδες της διοχέτευσης (η 
αριθμητική και λογική μονάδα, και η μονάδα κινητής υποδιαστολής). 

Αυτά τα προγράμματα εκτελούνται σε πολύ σύντομο χρονικό διάστημα (περίπου σε 3 
ημέρες για το συνολικό χαρακτηρισμό των περιθωρίων ασφαλούς τάσης για κάθε 
μεμονωμένο πυρήνα και για κάθε chip) σε σύγκριση με τα κανονικά μετροπρογράμματα, 
όπως αυτά της σουίτας SPEC CPU2006 που χρειάστηκαν περίπου 2 μήνες εκτέλεσης 
για κάθε ένα τσιπ (δηλαδή 6 περίπου μήνες για τα τρία διαφορετικά τσιπ που 
χρησιμοποιήθηκαν). Ο σκοπός αυτών των ειδικών προγραμμάτων είναι να αποκαλύψουν 
την διακύμανση των περιθωρίων ασφαλούς τάσης στους διαφορετικούς πυρήνες του 
επεξεργαστή, και επίσης να συμβάλλουν στη διάγνωση των απρόσμενων συμπεριφορών 
εκθέτοντας και κατηγοριοποιώντας την ανώμαλη συμπεριφορά κάθε τσιπ (αλλοιώσεις 
δεδομένων, σφάλματα στις κρυφές μνήμες, κλπ.). 

Τέλος, σε αυτή τη διατριβή και συγκεκριμένα στην εργασία [13], πραγματοποιείται ο 
χαρακτηρισμός των περιθωρίων τάσης σε εκτελέσεις πολλαπλών πυρήνων, καθώς 
επίσης και σε διαφορετικές συχνότητες, και προτείνεται ένα πρόγραμμα το οποίο 
εκμεταλλεύεται όλες τις διαφορετικές πτυχές του προβλήματος της κατανάλωσης 
ενέργειας και παρέχει μεγάλη εξοικονόμηση ενέργειας διατηρώντας παράλληλα υψηλά 
επίπεδα απόδοσης. Σε αυτό το μέρος της διατριβής, αρχικά εκτίθενται τα απαισιόδοξα 
περιθώρια τάσης σε εκτελέσεις πολλαπλών πυρήνων δύο επεξεργαστών βασισμένοι 
στην ARMv8 αρχιτεκτονική (κατασκευασμένοι σε 28nm και 16nm - το X-Gene 2 και X-
Gene 3, αντίστοιχα). Η βασική συνεισφορά αυτής της μελέτης συγκριτικά με την 
προηγούμενη (που αφορούσε τον χαρακτηρισμό μεμονωμένων πυρήνων του 
επεξεργαστή) είναι ότι αποδεικνύεται πειραματικά πως καθώς ο αριθμός των ενεργών 
νημάτων/διεργασιών στον επεξεργαστή αυξάνεται, η διακύμανση των περιθωρίων 
ασφαλούς τάσης στους διαφορετικούς πυρήνες αλλά και των διαφορετικών 
προγραμμάτων που εκτελούνται έχουν ελάχιστη επίδραση στα περιθώρια ασφαλούς 
τάσης του επεξεργαστή. 

Στη συνέχεια παρουσιάζονται μετρήσεις και αποτελέσματα σχετικά με τη σχέση των 
περιθωρίων ασφαλούς τάσης και το μέγεθος της διακύμανσης της τάσης σε διαφορετικές 
συχνότητες λειτουργίας του επεξεργαστή, και αποδεικνύεται ότι σε πολυπύρηνες 
εκτελέσεις, οι απότομες διακυμάνσεις τάσης (οι οποίες τελικά συμβάλλουν στον 
προσδιορισμό της τάσης ασφαλούς λειτουργίας) συμβαίνουν ανεξάρτητα από το 
πρόγραμμα που εκτελείται την κάθε στιγμή. Ωστόσο, για εκτελέσεις σε έναν μόνο ή πολύ 
λίγους πυρήνες, η μεταβλητότητα των πυρήνων και των προγραμμάτων συνεχίζει να 
υφίσταται. Κατόπιν, παρουσιάζεται μια εκτενής μελέτη για τον εντοπισμό και την ανάλυση 
της σχέσης μεταξύ ενέργειας και απόδοσης σε διαφορετικούς συνδυασμούς τάσης και 
συχνότητας, καθώς και σε διαφορετικό αριθμό νημάτων/διεργασιών που εκτελούνται στο 
σύστημα, αλλά και κατανομής των προγραμμάτων στους διαθέσιμους πυρήνες. Η 
ανάλυσή που παρουσιάζεται, αποκαλύπτει ότι, ανάλογα με τα χαρακτηριστικά ενός 
προγράμματος και τον αριθμό των ενεργών νημάτων, υπάρχει ένας βέλτιστος 
συνδυασμός τάσης, συχνότητας και κατανομής των προγραμμάτων στους διαθέσιμους 
πυρήνες για τη βέλτιστη  ενεργειακή απόδοση. 

Έτσι, εκμεταλλευόμενοι όλες τις παραπάνω παρατηρήσεις, παρουσιάζεται η υλοποίηση 
ενός προγράμματος παρακολούθησης (monitoring daemon), το οποίο παρακολουθεί τις 
τρέχουσες διεργασίες του συστήματος και καθοδηγεί τον χρονοπρογραμματιστή του 
συστήματος ώστε να λάβει τις κατάλληλες αποφάσεις σχετικά με: (α) τον πυρήνα στον 
οποίο πρέπει να ανατεθεί μια νέα διεργασία και (β) όταν μία ή περισσότερες διεργασίες 
πρέπει να μεταφερθούν σε άλλους πυρήνες (process migration). Ταυτόχρονα, το 
πρόγραμμα ρυθμίζει δυναμικά την τάση και την συχνότητα του επεξεργαστή σύμφωνα με 
τις βέλτιστες πολιτικές ενέργειας-απόδοσης οι οποίες προέκυψαν από την εκτενή μελέτη 



 

 

που προηγήθηκε. Τέλος, παρουσιάζεται η αξιολόγηση των προτεινόμενων πολιτικών 
εξοικονόμησης ενέργειας εκτελώντας ένα ρεαλιστικό σενάριο λειτουργίας ενός 
διακομιστή, το οποίο 

▪ επιλέγει τυχαία τα προγράμματα που θα εκτελεστούν,  

▪ μετακινεί δυναμικά τις τρέχουσες διεργασίες στο σύστημα, και  

▪ ρυθμίζει δυναμικά την τάση και τη συχνότητα.  

Αναφέρονται αρκετές συγκρίσεις μεταξύ διαφορετικών περιπτώσεων για να αποδειχθεί η 
αποτελεσματικότητα της προτεινόμενης πολιτικής, η οποία μπορεί τελικά να πετύχει κατά 
μέσο όρο 25,2% εξοικονόμηση ενέργειας στο X-Gene 2 και 22,3% στο X-Gene 3, με 
ελάχιστη μείωση της απόδοσης στο 3,2% για το X-Gene 2 και στο 2,5% για το X-Gene 3 
σε σύγκριση με τις αρχικές συνθήκες τάσης και συχνότητας του επεξεργαστή. 

Συνοψίζοντας, ο βασικός στόχος όλων των μεθόδων που παρουσιάζονται στη διατριβή 
αυτή είναι, αφενός μεν να βελτιώσουν και να επιταχύνουν τη φάση της επικύρωσης των 
επεξεργαστών, και αφετέρου να βελτιώσουν την ενεργειακή απόδοση των σύγχρονων 
επεξεργαστών.  

Η δομή της διδακτορικής διατριβής είναι η ακόλουθη: Το Κεφάλαιο 1 είναι μια εισαγωγή 
που περιγράφει τα προβλήματα που αντιμετωπίζουν οι σύγχρονοι επεξεργαστές όσον 
αφορά την κατανάλωση ισχύος αλλά και τη διαδικασία της επικύρωσης. Το Κεφάλαιο 2 
περιγράφει τις πρώτες δύο συνεισφορές της διατριβής ως προς την επιτάχυνση και την 
αποκάλυψη σπάνιων σφαλμάτων σχεδίασης στους μηχανισμούς μετάφρασης 
διευθύνσεων κατά τη φάση της επικύρωσης του επεξεργαστή. Το Κεφάλαιο 3 περιγράφει 
την τρίτη συνεισφορά της διατριβής που αφορά τον χαρακτηρισμό των ασφαλών 
περιθωρίων τάσης σε εκτελέσεις ενός πυρήνα, καθώς και την τέταρτη συνεισφορά που 
αφορά την παρουσίαση διαγνωστικών προγραμμάτων που στοχεύουν στην επιτάχυνση 
της διαδικασίας του χαρακτηρισμού των περιθωρίων τάσης. Στο Κεφάλαιο 4 
παρουσιάζεται η πέμπτη κατά σειρά συνεισφορά της διατριβής η οποία αναδεικνύει τη 
συμπεριφορά των προγραμμάτων σε πολυπύρηνες εκτελέσεις σε μειωμένες συνθήκες 
τάσης, και παρουσιάζεται η ανάπτυξη ενός προγράμματος που στοχεύει στη μείωση της 
συνολικής ενέργειας κατά τη λειτουργία του επεξεργαστή. Τέλος, το Κεφάλαιο 5 είναι μία 
ανασκόπηση συμπερασμάτων στα συγκεκριμένα θέματα της διατριβής και μερικές 
προτάσεις για μελλοντικές ερευνητικές κατευθύνσεις στα θέματα της επικύρωσης και της 
ενεργειακής απόδοσης των επεξεργαστών. 
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 INTRODUCTION 

1.1 Transistor Scaling and Microprocessor Evolution 

Gordon Moore famously predicted in his 1965 paper that the number of components per 
chip would continue to increase every year by a factor of two [14]. The aim of Moore’s 
law is to reduce the cost and the power consumption per integrated circuit component. In 
1975, Moore updated his initial prediction stating that components per chip would 
increase by a factor of two every two years, as a result of the combination of component 
size scaling and the chip area increase [15]. Back in 1965, the industry was producing 
chips using a minimum feature size of approximately 50mm with a total of approximately 
50 components per chip. The leading chips of today use a minimum feature size of about 
7nm and incorporate several billion transistors. 

In 1974, Robert Dennard and his colleagues described a scaling methodology for metal-
oxide-semiconductor-field-effect-transistors (MOSFETs), which would consistently 
improve the transistor area, performance and power reduction [16]. The methodology 
involved the scaling of the transistor gate length, gate width, gate oxide thickness, and 
supply voltage all by the same scale factor, and increasing channel doping by the inverse 
of the same scale factor. The result would be transistors with a smaller area, a higher 
drive current (higher performance) and lower parasitic capacitance (lower active power). 
This method of scaling MOSFET transistors is generally referred to as "classic" or 
"traditional" scaling (“Dennard scaling”) and was used by the industry very successfully 
up to the generation of 130nm in the early 2000s [17]. 

The combination of Moore's law and Dennard's scaling methodology has given the 
microprocessor industry many generations of smaller and faster transistors resulting in 
higher performance microprocessors (Figure 1). When gate-oxide scaling began to slow 
down due to increased gate leakage, classical MOSFET scaling techniques were 
successfully followed until around the generation of 90nm. The limitation posed by gate 
leakage became so severe that there was virtually no scaling of gate-oxide thickness from 
the 90nm to the 65nm generation, and for the high-performance logic process, many 

Figure 1: CPU transistor count and feature size trend [18]. 
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companies converged on a SiO2 thickness close to 1.2nm. If the thickness of the gate-
oxide can no longer be scaled, then critical other MOSFET parameters, such as supply 
voltage, cannot be further scaled to obtain improved transistor performance [18]. 

One of the first transistor innovations in the 2000’s has been the introduction of strained-
silicon technology in 2003 to improve transistor performance for Intel's 90nm 
microprocessors [19] [20]. The 65nm generation introduced in 2005 further improved 
these strain techniques to increase the performance of the transistor, although the gate - 
oxide thickness remained at approximately the same 1.2nm value to prevent increased 
leakage current [21]. Strained silicon is an example of a revolutionary technology that 
delivered improved performance without following traditional methods of MOSFET 
scaling. Moore’s law remained valid for some time despite Dennard’s scaling end. 

Although strained silicon provided valuable performance improvements for generations 
of 90nm and 65nm, the gate-oxide thickness limit (and corresponding leakage issues) 
needed to be addressed for subsequent technologies. Intel's 45nm logic technology was 
the first to introduce high-κ dielectric transistors with a metal gate to improve performance 
and reduce leakage [22] [23]. A dielectric based on hafnium replaced SiO2 with a 
physically thicker gate-oxide that had reduced leakage but a thinner electrical 
equivalence, which had improved transistor performance. Polysilicon was replaced by 
special metal-gate materials to further reduce the thickness of electrical oxide to a value 
of 1.0nm (from 1.2nm). In addition to the performance and leakage benefits of the 45nm 
high-κ/metal-gate (HK+MG) transistors, the decreased electrical thickness also helped to 
reduce the variability of the transistor's Vt (threshold voltage); an essential factor in 
circuits' ability to use scaled devices [24]. These 45nm HK+MG transistors provided an 
average drive current increase of 30 percent over the previous generation of 65nm. 
Equivalently, these transistors can reduce sub-threshold (Ioff) leakage by more than five 
times. 

On the other hand, unlike transistors, interconnections are not getting faster as they scale, 
so the industry has gradually increased the number of interconnect layers to address this 
problem. This approach has enabled some layers to use wider / thicker wires for rapid 
signal propagation, while other layers have a tight pitch for density improvement. Besides, 
new interconnecting materials were introduced to improve RC delay1 and current carrying 
capacity. In the 2010’s, copper replaced aluminum as a means of increasing conductivity 
and improving resistance to electro-migration. In order to reduce wire capacity, a series 
of dielectrics have been introduced that have both signal speed and active power 
reduction advantages. Implementing more interconnected layers and improved materials 
has enabled many generations of scaled interconnections, but interconnections will 
remain a problem requiring a combination of process, design, and architectural solutions 
to be overcome. 

Intel's 45nm technology uses nine copper interconnect layers, one more than the 
generation of the previous 65nm. A particular layer to provide low-resistance power 
routing to minimize voltage droops was introduced in this generation. Intel's 32nm logic 
technology uses second-generation high-κ+ metal-gate transistors, fourth-generation 
strained silicon, nine interconnecting copper layers with low-κ dielectrics and minimum 
pitches scaled up to 70 percent from 45nm [25] [26]. A mixture of increased drive current 
and reduced gate capacitance increases transistor performance by more than 22 percent 

                                            

1 The delay in signal speed through the circuit wiring as a result of the resistance (R) and capacitance (C) 
effects. Resistance is the difficulty an electrical current has in passing through a conducting material, and 
capacitance is the degree to which an insulating material holds a charge. 
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compared to 45nm transistors. Over the past several generations, transistor drive 
currents continued to increase while scaling gate pitch and maintaining constant 
subthreshold leakage.   

Just as transistors evolved more than just scaled dimensions, so did microprocessors 
evolve. Introduced in 1971, the first microprocessor (Intel 4004) processed 4 bits of data 
per cycle. It contained 2300 transistors and had a 100kHz clock rate. Microprocessor 
performance has increased rapidly from that point of departure closely following the 
predictions of Moore's Law. Scaling technology has made it possible to build more and 
more complex designs. Integrating multiple pipeline execution engines into 
microprocessors has enabled microarchitectural innovations to exploit parallelism within 
a sequential program and allow multiple instructions to be executed in each clock cycle. 
Speculation was used to get instructions and execute them based on predicting the 
control flow of the program. Out-of-order and register renaming techniques were used to 
remove stalls if instructions were not ready for execution. The width of the memory 
address has increased to 64 bits allowing access to large memories, while integrated 
multi-level caches have made effective access to memory faster. Multithreading was 
introduced to enable instructions from independent program threads to efficiently exploit 
the parallel execution engines of the microprocessor. Microprocessors are now 
integrating multiple processing cores on a single chip [18]. 

In addition to enabling advances in microarchitecture, faster transistors have been 
produced by technology scaling. An essential contributor to microprocessor performance 
gains was the clock frequency increase. Clock systems evolved from a simple buffer tree 
to global clock grids driven by a distributed buffer hierarchy. In order to generate multiple 
clock frequency domains, on-chip PLLs for clock generation were integrated. In order to 
minimize the skew across the die, active de-skewing schemes using delay lines were 
used [27]. The combination of more complex microarchitectures and higher operating 
frequencies has resulted in a primary design constraint for power consumption. To disable 
idle circuitry and save power, clock systems have evolved to implement clock gating. 
They also include tuning and debugging circuits, e.g., the Locate Critical Path (LCP) 
mode, which is based on programmable delay drivers activated in local clock drivers and 
controlled by configuration registers that allow adjustment of local clock arrival times after 
the silicon's production [28]. However, power consumption per unit area (power density) 
has increased significantly in increasing functionality per unit area. 

1.2 Power Reduction Techniques 

Technology scaling has enabled improvements in the three major design optimization 
objectives: increased performance, lower power consumption, and lower die cost, while 
system design has focused on bringing more functionality into products at lower cost. 
While today's microprocessors, are much faster and much more versatile than their 
predecessors, they also consume much power; in fact, so much power that their power 
densities and consequent heat generation are rapidly approaching levels comparable to 
nuclear reactors (Figure 2) [29]. As shown in Figure 2, in 0.5μm technology, 
microprocessors have surpassed hot-plate power density. The active power scales by 
~30-80% (it is not stay constant) for each process generation. 

To date, the approach has been to lower voltage with each process generation. But as 
voltage is lowered, leakage current and energy increase, contributing to higher power. 
These high-power densities impair the reliability of chips and life expectancy, increase 
cooling costs, and even raise environmental concerns primarily due to large data centers. 
Power problems also pose issues for smaller mobile devices with limited battery capacity. 
While these devices could be implemented using faster microprocessors and larger 
memories, their battery life would be further diminished. Improvements in microprocessor 
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technology will eventually come to a standstill without cost-effective solutions to the power 
problem.  

Power and energy are commonly defined as the work performed by a system. Energy is 
the total amount of work performed by a system over some time, whereas power is the 
rate at which the system performs the work. In formal terms,  

 𝑃 =
𝑊

𝑇
 ( 1 )  

 𝐸 = 𝑃 ∗ 𝑇 ( 2 )  

where P is power, E is energy, T is a specific time interval, and W is the total work 
performed in that interval. Energy is measured in joules (J), while power is measured in 
watts (W) [29]. 

The concepts: work, power, and energy are used in different contexts differently. Work 
involves activities related to running programs in the context of microprocessors (e.g., 
subtraction, memory operations, addition), power is the rate at which electrical energy is 
consumed by the microprocessor (or dissipates it as heat) during these activities, and 
energy is the total electrical energy consumed by the microprocessor (or dissipates as 
heat) over time. This difference between power and energy is essential because power-
reduction techniques do not necessarily reduce energy [29].  

For instance, by halving the frequency of the input clock, the power consumed by a 
microprocessor can be reduced. If the microprocessor, however, takes twice as long to 
run the same programs, the total energy consumed is the same. Whether power or energy 
should be reduced depends on the context. Reducing energy is often more critical in data 
centers because they occupy an area of a few football fields, contain tens of thousands 
of servers, consume electricity of small cities and utilize expensive cooling mechanisms.  

Figure 2: Power densities rising [29]. 
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There are two forms of power consumption, dynamic power consumption and static power 
consumption. Dynamic power consumption is caused by circuit activity such as input 
changes in an adder or values in a register. As the following equation shows, the dynamic 
power (Pdynamic), depends on four parameters namely, supply voltage (Vdd), clock 
frequency (f), physical capacitance (C) and an activity factor (a) that relates to how many 
0 → 1 or 1 → 0 transitions occur in a chip: 

 𝑃𝑑𝑦𝑛𝑎𝑚𝑖𝑐 = 𝑎𝐶𝑉2𝑓 ( 3 )  

An example is the 45nm Intel® Core™ i7 Processor, formerly known as Nehalem (Figure 
3). This is a complex system on a chip (SoC) with multiple functional units and multiple 
interfaces, including four cores, modular L3 cache from 2 to 24MB, integrated memory 
controller, DDR3 I/O and QPI I/O [30]. There are 11 PLL circuits, 23 master DLL circuits 
and 5 digital thermal sensors located around the chip providing multiple clocking domains 
and local control. NMOS sleep transistors are used in the cache to shut off leakage in 
inactive sub-blocks. They provide a 5x to 10x cache leakage reduction during 
retention/standby [31]. Power-gate transistors are integrated on the chip to shut off both 
active and leakage power on cores that are idle. These on-die power gates are enabled 
by a 45nm process, which uses a 7μm thick top metal layer that provides very low power-
distribution impedance combined with ultra-low leakage transistors with low on-
resistance.  

Nehalem introduces a turbo mode, where core frequency can be boosted in response to 
workload demands, and thus, dynamically delivering optimal performance and energy 
efficiency. An integrated Power Control Unit (PCU) incorporates real-time sensors for 
current/power, voltage and temperature and individually controls settings for each core 
(Figure 4). An adaptive frequency system adjusts clock frequency upwards during voltage 
supply spikes and reduces frequency during voltage supply droops, thus allowing the 
cores to operate at optimal performance and power without excessive guardbanding or 
adding excessive decoupling capacitance [18] [32].  

Several techniques have been proposed over time to reduce the power consumption of 
the microprocessor chips. These techniques are applied at various levels ranging from 

Figure 3: A 45nm CoreTM i7 processor (Nehalem) [18]. 
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circuits to architectures, architectures to system software, and system software to 
applications [29]. 

Circuit and Logic Level Techniques: Transistor features and logic design can 
contribute to reduce the dynamic power consumption by reducing the transistors’ width, 
implementing a different arrangement of transistors in a circuit or rearranging the gates 
and their input signals. Numerous techniques have been applied in this category, such 
as transistor sizing [33] [34], transistor reordering [35] [36], technology mapping [37] [38] 
[39], low-power flip-flops [40] [41] [42] [43] [44], low-power control logic design [45], delay-
based dynamic-supply voltage adjustment [46]. 

Low-Power Interconnect: Interconnect heavily affects power consumption since it is the 
medium of most electrical activity. Efforts to improve chip performance are resulting in 
smaller chips with more transistors and more densely packed wires carrying larger 
currents. The wires in a chip often use materials with poor thermal conductivity [47]. The 
most popular ways of reducing the power consumed in buses contains: Bus Encoding 
and CrossTalk [48] [49], Low Swing Buses [50], Bus Segmentation [51], Adiabatic Buses 
[52], Network-On-Chip [53] [54] [55] [56]. 

Low-Power Memories and Memory Hierarchies: There are high-level architectural 
principles that apply across the spectrum of memories. They attempt to reduce the energy 
dissipation of memory accesses in two ways, either by reducing the energy dissipated in 

Figure 4: Nehalem power control unit (PCU). The PCU integrates proprietary microcontroller, 
which shifts control from hardware to embedded firmware. It also contains real-time sensors for 

voltage, current, power, and temperature [18].   



Methods for Robust and Energy-Efficient Microprocessor Architectures 

G. Papadimitriou 47 

a memory accesses, or by reducing the number of memory accesses. Some of the major 
techniques are: Splitting Memories into Smaller Subsystems [57] [58] [59], Augmenting 
the Memory Hierarchy with Specialized Cache Structures [60]. 

Low-Power Processor Architecture Adaptations: Programs exhibit wide variations in 
behavior. Researchers have been developing hardware structures whose parameters 
can be adjusted on demand so that one can save energy by activating just the minimum 
hardware resources needed for the code that is executing. Some of the major techniques 
are: adaptive caches [61] [62] [63], Adaptive Instruction Queues [64] [65] [66], Algorithms 
for Reconfiguring Multiple Structures [67] [68] [69] [70] [71] [72] [73] [74] [75] [76]. 

Dynamic Voltage and Frequency Scaling: Dynamic voltage and frequency scaling 
(DVS) addresses the problem of how to modulate a microprocessor’s clock frequency 
and supply voltage in lockstep as programs execute. The premise is that a 
microprocessor’s workloads vary, and when the microprocessor has less work, it can be 
slowed down without affecting performance adversely [77]. There are multiple 
technologies supported by each microprocessor architecture to optimize the power 
consumption, like the x86’s P-states (performance states - optimization of the voltage and 
clock frequency during operation). More specifically, during the execution of code, the 
operating system and CPU can optimize power consumption through different P-states. 
Depending on the requirements, a CPU is operated at different frequencies. P0 is the 
highest frequency (with the highest voltage). 

Cross-Layer Adaptations: Power consumption depends on decisions spanning the 
entire stack from transistors to applications. To this end, there are several holistic 
approaches that integrate information from multiple levels (e.g., compiler, OS, hardware) 
into power management decisions. There are already a number of systems being 
developed to explore cross-layer adaptations, e.g., [78] [79] [80]. 

1.3 Supply Voltage Scaling 

Reducing supply voltage is one of the most efficient techniques to reduce the dynamic 
power consumption of the microprocessor, because dynamic power is quadratic in 
voltage (as Eq. 3 shows). However, supply voltage scaling increases subthreshold 
leakage currents, increases leakage power, and also poses numerous circuit design 
challenges. Process variations and temperature parameters (dynamic variations), caused 
by different workload interactions are also major factors that affect microprocessor’s 
energy efficiency. Furthermore, during microprocessor chip fabrication, process 
variations can affect transistor dimensions (length, width, oxide thickness etc. [81]) which 
have direct impact on the threshold voltage of a MOS device [82]. As technology scales 
further down, the percentage of these variations compared to the overall transistor size 
increases and raises major concerns for designers, who aim to improve energy efficiency. 
This variation is classified as static variation and remains constant after fabrication. Both 
static and dynamic variations lead microprocessor architects to apply conservative 
guardbands (operating voltage and frequency settings), as shown in Figure 5a to avoid 
timing failures and guarantee correct operation, even in the worst-case conditions excited 
by unknown workloads, environmental conditions, and aging [5] [83]. The guardband 
results in faster circuit operation under typical workloads than required at the target 
frequency, resulting in additional cycle time, as shown in Figure 5b. In case of a timing 
emergency caused by voltage droops, the extra margin prevents timing violations and 
failures by tolerating circuit slowdown. While static guardbanding ensures robust 
execution, it tends to be severely overestimated as timing emergencies rarely occur, 
making it less energy-efficient [84]. 
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These pessimistic guardbands impede power consumption and performance, and block 
the savings that can be derived by reducing the supply voltage and increasing the 
operation frequency, respectively, when conditions permit. Several microarchitectural 
techniques have been proposed that eliminate a subset of these guardbands (Figure 5c) 
for efficiency gains over and above what is dictated by the design conservative 
guardbands. However, all of these techniques are associated with significant design, test 
and measurement overheads that limit its application in the general case. For instance, 
in the Razor technique [46], support for timing-error detection and correction has to be 
explicitly designed into the processor microarchitecture which has significant verification 
overheads and circuits costs itself. Similarly, in adaptive-clocking approaches [84], 
extensive test and verification effort is required until the microprocessor is released to the 
market. Ensuring the eventual success of these techniques requires a deep 
understanding of dynamic margins and their manifestation during normal code execution. 

Revealing and harnessing the pessimistic design-time voltage margins offers a significant 
opportunity for energy-efficient computing in modern multicore CPUs. The full energy 
savings potential can be exposed only when accurate core-to-core, chip-to-chip, and 
workload-to-workload voltage scaling variation is measured. When all these levels of 
variation are identified, system software can effectively allocate hardware resources to 
software tasks to provide the best energy efficiency. 

As operating frequency and integration density increase, the total chip power dissipation 
increases. This is evident from the fact that due to the demand for increased functionality 
on a single chip, more and more transistors are being packed on a single die and hence, 
the switching frequency increases in every technology generation. However, by 
developing aggressive and sophisticated mechanisms to boost performance and 
enhance the energy efficiency in conjunction with the decrease of the size of transistors, 
microprocessors have become extremely complex systems, making the microprocessor 
verification and manufacturing testing a major challenge for the semiconductor industry. 

1.4 Microprocessors’ Dependability Life-Cycle 

As the computer architecture field evolves and transistor size shrinks, computer architects 
are continuously facing more challenges to ensure that the products they deliver meet 
high-quality standards. Dependability is defined as the trustworthiness of a computing 
system which allows reliance to be justifiably placed on the service it delivers [85] [86]. A 
product that fails to meet its reliability requirements could result in a manufacturer's 
financial loss or even endanger human life if the product is used in safety-critical 
computing areas such as automotive or aerospace.   
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Figure 5. Voltage guardband ensures reliability by inserting an extra timing margin. Reduced 
voltage margins improve total system efficiency without affecting the reliability of the 

microprocessor. 
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Manufacturers, therefore, choose to spend extra effort, time, budget and chip area to 
ensure that the delivered products are operating correctly. To meet high-dependability 
requirements, manufacturers apply a sequence of verification tasks throughout the entire 
life-cycle of the microprocessor to ensure the correct functionality of the microprocessor 
chips from the various types of errors that may occur after the products are released to 
the market. These processor life-cycle verification tasks are illustrated in Figure 6 and 
summarized below:   

• Reliability Estimation [221]: Computer architects evaluate the expected level of 
reliability of a microprocessor for any fault model (e.g., transient, permanent or 
intermittent faults) during this task. A microprocessor's early reliability assessment 
is vital for two reasons. First, to determine the parameters of microarchitectural 
design that could influence the product's vulnerability in order to meet the defined 
reliability requirements of the design planning phase. For example, besides its 
performance, the size and design specifics of the hardware structures can 
influence the processor's vulnerability. Secondly, to determine the design 
decisions related to the mechanisms required in the field for error detection and 
recovery/repair in the presence of faults. These mechanisms may impose 
significant area, power and performance overheads. Thus, inaccurate assessment 
of the reliability during the early design phases could easily make the cost of 
protection unaffordable or lead to an expensive, over-designed chips with 
unnecessary protection mechanisms. For example, typical memory error 
protection and detection techniques can have a cost that ranges from 1% to 125% 
in terms of extra memory capacity for the purposes of protection, depending on 
the complexity of the protection mechanism [87]. Moreover, detection and 
protection mechanisms against any fault model must be decided as early as 
possible in order to avoid costly redesign cycles for late integration of such 
mechanisms. 

• Pre-Silicon Verification [222]: This verification task is based primarily on 
simulation using RTL model tests that are compared to golden architectural model 

Figure 6: Processor dependability life-cycle. 

Microprocessor 

Reliability

Life-cycle



Methods for Robust and Energy-Efficient Microprocessor Architectures 

G. Papadimitriou 50 

tests. During this stage, any discrepancies and design bug indicators are identified 
and fixed. Besides simulation, pre-silicon verification engineers use formal 
methods based on mathematical evidence to ensure that certain types of design 
errors are not present. Unfortunately, when they target complex RTL models, these 
methods lack scalability. 

• Post-Silicon Validation [222]: This is the design verification task in which the 
validation and debugging of a new microprocessor design on its first silicon 
prototype chips take place. The goal of this task is to detect any “difficult” bugs that 
escaped from the pre-silicon verification task (which typically “catches” less difficult 
bugs) and to ensure that a chip’s actual silicon implementation matches its 
specification as was defined in the early design planning phase. When a bug is 
detected in this stage, the RTL model (or even earlier model than RTL) has to be 
modified to fix the bug, and the manufacturing process of some prototypes must 
start again. The re-designing process of the prototypes cannot be repeated too 
many times (basically due to increased manufacturing costs), but it is limited to a 
period of couple of months. 

• Manufacturing Testing: This is the next task after the post-silicon validation task. 
During manufacturing testing important coverage metrics are used like stuck-at 
coverage, transition fault coverage, and N-detect coverage. When for each single 
manufactured chip, a sufficient level of coverage is obtained the chip is ready for 
market release. Manufacturing testing techniques aim to maximize the coverage 
of faults while minimizing the time and the resources cost of testing (expensive 
“big iron” testers are employed in high-volume manufacturing testing – HVM). 
Traditional manufacturing test approaches are classified into functional and 
structural test approaches [88]. Functional approaches such as Software-Based 
Self-Testing (SBST) use on-chip programmable resources to apply the test at -
speed and collect memory test responses to make the final pass/fail decision. On 
the contrary, structural test approaches (such as scan-based testing) use circuit 
structure knowledge and the corresponding fault model to generate test patterns. 
Structural testing usually places the design in a specific self-test mode and can 
result in excessive power consumption and over-testing; hence, the yield loss of 
structural approaches is higher than the loss of functional methods. 

• In-field Verification: Protection mechanisms are implemented on microprocessor 
chips to ensure their functionality after being released on the market and to collect 
essential information from exposed bugs during pre- or post-silicon validation. The 
designers are not interacting with the product at this stage; therefore, they should 
have carefully implemented effective protection mechanisms against the effects of 
aging and wear-out, failures that may be the result of manufacturing defects that 
escaped manufacturing testing and also process variations and failures resulting 
from environmental conditions such as cosmic rays, alpha particles, and 
electromagnetic interference. Debug and diagnosis mechanisms have also been 
implemented so that even if a bug or defect cannot be fixed, the designer can 
understand and collect essential information for future microprocessor releases. 
Dual- and triple- modular redundancy are some essential protection techniques, 
but come at very high costs. Also, parity and Error Correction Code (ECC) 
techniques are necessary to protect buses, memories or other array-based 
structures of the microprocessor. Finally, there are many proposed techniques to 
protect SRAM caches [89], pipeline flip-flops and combinational logic [90]. 
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1.5 Failures During Microprocessor’s Life-Cycle 

There are different types of failures that can be introduced during the lifetime of a 
microprocessor. The distribution and the nature of these failures during the processor 
dependability life-cycle are presented in Figure 7 and summarized below:  

• Design bugs: This category contains all the logic, electrical and process-related 
bugs [91] [92] that are introduced during the design planning and the development 
phase. The common sources of these bugs are [93]: (i) the limited throughput of 
the pre-silicon (simulation-based) verification techniques that cannot keep pace 
with the complexity and the large amount of code that is used to design the modern 
microprocessors, (ii) the synthesis tools that may impede the accuracy of the 
synthesized design leading to functional inaccuracies between the intended and 
the developed design, (iii) the inaccuracies that are created during the place and 
route process may be leading to some violations of the design specifications during 
the layout process, and (iv) the combination of process variations and smaller 
design margins that prevents microprocessors to work at the intended frequency 
and voltage levels. 

• Manufacturing defects: This category contains all the manufacturing-related 
defects that are introduced in the design during the high-volume manufacturing 
(HVM) phase. These inaccuracies can be the result of optical proximity effects, 
and processing material defects. Moreover, as the gate oxides have become so 
thin, transistors functionality can be easily affected by the variations of the current. 
Most of these defects are detected by dedicated machines (testers) with a very 
time-consuming procedure; but still some untested defects escape to the field [94]. 

• In-field errors: This category contains all the failures that can be manifested after 
the chip is released to the market. These malfunctions can be: (i) transient errors 
that can be created by Single Event Upsets (SEUs), which potentially corrupt the 
computational logic and the state bits, (ii) intermittent and permanent errors that 

Figure 7: Distribution of failures during 
microprocessor’s life-cycle. 

Distribution of 

failures 

during 

microprocessor 

life-cycle



Methods for Robust and Energy-Efficient Microprocessor Architectures 

G. Papadimitriou 52 

can come from material aging and wear-out effects, or they could have also 
escaped from the high-volume production testing, and (iii) process variation 
defects that make microprocessors chips that are designed to be identical to 
present divergences in terms of performance and power consumption.  

For the manufacturers, the detection of any kind of malfunction is of great importance to 
take place as soon as possible during the life-cycle. The reason is that the cost of product 
re-design and fix of the detected bug or the addition of any protection mechanism 
increases significantly throughout the microprocessor life-cycle. Figure 8 illustrates the 
relative cost of finding bugs for all the phases of the microprocessor’s lifetime [95]. The 
cost to re-start the design planning phase when the manufacturer detects a bug before 
the start of the layout process ranges to hundreds of dollars, while the cost explodes to 
more than tens of million dollars when the detection of the bug takes place after the 
massive release of the product to the market. 

1.6 Contribution of This Thesis 

Microprocessors integrate various types of cores and functional units and are highly 
adaptive for dynamically optimizing the peak performance, power efficiency, and idle 
power consumption. Today microprocessors are complex, heterogeneous machines that 
contain different cores for different types of workloads. This complexity and heterogeneity 
bring forward the difficult task of design verification and validation. Even for most 
established microprocessor vendors, the task of verifying a modern microprocessor and 
ensuring correct operation is increasingly challenging [96]. Always trying to deliver higher 
performance but also energy efficiency to end-users, manufacturers are forced to 
gradually design more complex circuits and employ very large verification teams to 
eliminate all design bugs (if possible) in a timely manner. 

The contributions of this thesis belong to two important areas: (a) Post-Silicon Validation 
for the Address Translation Mechanisms of Modern Microprocessors and (b) Energy 
Efficiency for Multicore CPUs by Harnessing Pessimistic Voltage Margins. In particular: 

Post-Silicon Validation for the Address Translation Mechanisms of Modern 
Microprocessors: Post-silicon validation aims to ensure that the first “real” thing (not 
models of the design), i.e., the prototype chips, conform to microprocessor design 
specifications. It allows detection of rare functional design bugs, but also electrical bugs 

Figure 8: Relative cost of finding bugs throughout microprocessor life-cycle [95]. 
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that manifest themselves only under certain operating conditions, such as thermal effects 
or process variations [1]. Due to the very high program execution throughput of post-
silicon validation (at the speed of the actual prototype chip), the design verification teams 
attempt to execute as many test programs as possible (such as automatically generated 
random and directed random test programs). This way, they can obtain the most 
extensive possible validation coverage (as many potential validation scenarios as 
possible are adapted) before massive chip production to detect any anomalous behavior 
[97] [98].  

The major downside, however, of random test programs is the difficulty to obtain the 
expected correct results (the correct output of these programs is unknown because they 
are randomly generated), which are required to determine the correctness of the output 
of the prototype chips being validated. To meet this requirement, validation process 
mainly resorts either to multi-pass consistency end-of-test checking methods (each test-
case is executed multiple times (’passes’) and the end-of-test values of some system 
resources (e.g., memory, registers) are compared for consistency) [98], or to golden 
responses generated by architectural simulators.  

However, the throughput difference between native chip execution and simulation (at 
different levels) is between 3 and 6 orders of magnitude [99]; for example, about 200 
billion cycles were simulated in many months for Pentium 4 processor’s validation, but 
instead, in the actual 1 GHz clock processor the execution completed in 3 minutes [91]. 
Therefore, architectural simulators demand powerful server farms to generate exhaustive 
simulation traces in parallel, to get the known-correct outcome of test programs [100]. 
Moreover, both approaches suffer from the same limitation: by detecting a mismatch only 
at the end of the validation test (after many thousands or millions of executed 
instructions), debug engineers devote excessive effort to identify the root cause of the 
bugs by examining long execution traces back in simulators [98] [101].  

With the galloping adoption of virtualization today (and the complexity its support adds to 
ISAs and microarchitectures), the performance and correctness of the address translation 
mechanisms (ATMs) get more critical. The ATM of a modern microprocessor includes 
complex hardware structures and can be a predominant source of severe escaped bugs 
which are, however, very hard to detect as recent reports have shown [102] [103] [104] 
[105]. Unlike other hardware components (functional blocks, registers, memory 
subsystem, peripheral control units, etc.) the output of the ATM of a microprocessor (i.e., 
the physical address) is not observable to any program or architectural visible locations 
(e.g., architectural register). Because of the “hidden” operation of a microprocessor’s 
address translation subsystem, observability and long bug detection latencies are critical 
obstacles for its post-silicon validation and debug. Moreover, the address translation 
process involves several stages and several different hardware structures (i.e., 
Translation Lookaside Buffers - TLBs), aiming to improve the total microprocessor’s 
performance, and bugs in each of these blocks may lead to wrong address translations, 
and thus, to unpredictable system behaviors. 

To this end, in this thesis we present two contributions on the post-silicon validation of 
the address translation mechanisms of modern microprocessors. More specifically, in [2] 
and [3] we present  

▪ a self-checking ISA-independent post-silicon validation method, which accelerates 
the bug detection process in the address translation mechanisms of modern 
microprocessors, and 

▪ a comprehensive set of address translation mechanism bug models, which classify 
the effects of both functional and electrical bugs in the hardware structures 
employed in address translation. 
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The method is easily applied to any ISA and we demonstrate that it reduces the bug 
detection latency by 5 orders of magnitude compared to traditional end-of-test checking 
techniques (i.e., architectural simulators) by fully resembling a post-silicon validation 
bare-metal setup. We contribute to the most critical part of functional post-silicon 
validation, the one based on bare-metal-infrastructure. During functional post-silicon 
validation, only random-generated test programs and legacy tests are applied, not normal 
applications. Other post-silicon validation phases focus on full-system configuration with 
an operating system layer and application software on top of it. We also make an 
important enhancement of the Gem5 simulator [120] by integrating recently proposed 
MMU caches [121] [122] to emulate our validation method in a complete modern 
microprocessor design and demonstrate its effectiveness. 

The second contribution of this thesis, which is presented in [4], further enhances the 
post-silicon validation phase of the ATM by presenting another novel self-checking 
validation method that unveils and detects rare bug scenarios in Address Translation 
Caching Arrays (ATCA). ATCAs are among the most important structures for 
microprocessor functionality and performance and escaped bugs in these arrays can lead 
to unpredictable system behaviors in the field. Using a comprehensive experimental 
study, we first present and analyze rare bug scenarios and demonstrate the reason why 
they are difficult to detect. Our goal is to unveil and detect difficult bugs in ATCAs. Even 
if bugs manifest themselves by executing traditional validation tests, detecting them is 
unlikely due to the high possibility of masking during the execution of a traditional 
validation test. Another reason is that there are bugs in ATCAs that may affect only the 
performance of the microprocessor and not its functionality. For these reasons, we 
propose a novel method that guarantees detection of such difficult bugs in the silicon 
prototype. Our validation method is self-checking (like the previous one) and does not 
require any hardware instrumentation. We demonstrate that, unlike traditional end-of-test 
checking techniques, this method effectively detects all the injected bugs we created, by 
using common use-cases of a real hardware prototype.  

Both methods make debugging and diagnosis of a bug easier and also significantly 
reduce the bug detection latency during the post-silicon validation phase. 

Energy Efficiency for Multicore CPUs by Harnessing Pessimistic Voltage Margins: 
The third contribution of this thesis is a system-level voltage scaling characterization study 
for ARMv8-based multicore CPUs manufactured in 28nm ([10] [11]). The primary targets 
of this study are 

1. to identify the pessimistic voltage guardbands (the increased voltage margins set 
by the manufacturer) of each individual microprocessor core by exposing their safe 
Vmin. Safe Vmin is defined as the minimal working voltage of the microprocessor for 
any workload or operating condition at a specific clock frequency, and 

2. to characterize and analyze any abnormal behavior that occur in voltage levels 
below the safe Vmin. 

The study’s backbone is a fully automated system-level framework built around Applied 
Micro’s (APM) X-Gene 2 micro-server. The automated infrastructure aims to increase the 
throughput of massive undervolting campaigns that require multiple benchmarks 
execution at several voltage supply levels of all individual cores. The characterization 
process requires minimal human intervention and records all possible abnormalities due 
to undervolting: silent data corruptions (SDC, e.g., program output mismatches without 
any hardware error notification), corrected errors, uncorrected (but detected) errors 
(provided by Linux EDAC driver [136]), as well as application and system crashes [10].  
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Towards the formalization of the any potential behavior in undervolting conditions we also 
present a simple consolidated function; the Severity function. Severity function 
aggregates the effects of reduced voltage operation in the cores of a multicore CPU by 
assigning values to the different abnormal observations. The lower the voltage level, the 
higher the value of the severity function. The severity function assists an undervolting 
classification of the cores of a CPU chip for a given benchmark: different core, benchmark 
and voltage values lead to different severity patterns, some with an abrupt increase to the 
severity (e.g., the benchmark keeps executing correctly until a voltage level at which the 
system crashes), while others have a “smooth” severity increase while voltage is reduced 
(the system remains responsive throughout a range of voltage values but it generates 
ECC errors or produces SDCs). The fine-grained analysis of the behavior of the machine 
using the severity function can assist energy efficiency decisions for task-to-core 
allocation by the system software.  

Characterization campaigns (like the previous one) with many different benchmarks and 
for many different microprocessor chips are very time-consuming. The accurate 
identification of the voltage under-scaling limits in a real multicore system requires 
massive execution of a large number of real workloads in all the cores of the chip (and all 
different chips of a system), for different voltage and frequency values. For instance, to 
identify the Vmin of each one of the eight cores of the Applied Micro’s (APM) X-Gene 2 
microprocessor, we used the SPEC CPU2006 benchmarks and repeated each 
experiment 10 times2 starting from the nominal voltage value (980mV) until their crash 
voltage value (~880mV). These experiments required about 2 months for a complete 
characterization for all the cores of one microprocessor chip.  

To accelerate the characterization process, we introduce the development of dedicated 
programs (diagnostic micro-viruses), which are presented in [12] and is the fourth 
contribution of this thesis. The micro-viruses aim to stress the most fundamental hardware 
components of the microprocessor aiming to provide quickly the safe Vmin. With our 
diagnostic micro-viruses, we effectively stress (individually or simultaneously) all the main 
components of the chip:  

a. the caches (the L1 data and instruction caches, the unified L2 caches and the last 
level L3 cache of the chips) and  

b. the two main functional components of the pipeline (the ALU and the FPU). 

These diagnostic micro-viruses are executed in very short time (~3 days for the entire 
massive characterization campaign for each individual core of one microprocessor chip) 
compared to normal benchmarks, such as those of the SPEC CPU2006 suite, which need 
2 months for a detailed characterization of the same microprocessor chip. The micro-
viruses’ purpose is to reveal the variation of the safe voltage margins across cores of the 
multicore chip and also to contribute to diagnosis by exposing and classifying the 
abnormal behaviour of each CPU unit (silent data corruptions, bit-cell errors, and timing 
failures).  

The fifth contribution of this thesis, which presented in [13], is to complete the voltage 
margins characterization for multicore executions and for different clock frequencies. In 
that part of the thesis, we also present a new software-based scheme for server-grade 

                                            

2 System-level studies in actual microprocessor chips present a non-deterministic behavior among repeated 
experiments. To this end, we repeat each and every experiment multiple times to eliminate the divergencies 
between the same executions and produce safe results. 
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machines, which provides large energy savings while maintaining high performance 
levels. Particularly, in this part of the thesis: 

▪ We expose the pessimistic voltage guardbands of two state-of-the-art ARMv8 
microprocessors (manufactured in 28nm and 16nm – the X-Gene 2 and X-Gene 
3, respectively) to identify the safe Vmin points of the CPU chips in multicore 
executions. We show that as the number of active threads increases, core-to-core 
and workload-to-workload variability has a minimal impact on Vmin. 

▪ We present measurements on the correlation of the safe Vmin to the voltage droop 
magnitude, and show that in multicore executions the emergency voltage droop 
events occur regardless of the workload. However, for executions in a single or 
very few cores, core-to-core and workload-to-workload variability exist to a larger 
extend.  

▪ We perform an extensive study to identify and analyze the tradeoffs between 
energy and performance at different voltage and frequency combinations, as well 
as at different thread scaling and core allocation configurations. Our analysis 
reveals that depending on the course-grain characteristics of a program and the 
number of active threads, there is an optimal combination of voltage, frequency 
and core allocation for better energy efficiency. 

▪ We also developed a simple online monitoring daemon which monitors the running 
processes on the system and guides the Linux scheduler to take the appropriate 
decisions regarding: (a) the core(s) to which a new process should be assigned, 
and (b) when one or more running processes should be migrated to other cores. 
At the same time, the daemon dynamically adjusts the V/F settings according to 
the optimal policies.  

▪ Finally, we evaluate the optimal energy efficient scheme by running the monitoring 
daemon in a realistic scenario of a server’s operation, which (a) randomly selects 
the issued programs, (b) dynamically migrates the running processes on the 
system, and (c) dynamically adjusts the voltage and frequency settings for lower 
energy consumption. We report several comparisons among different 
configurations to present a detailed evaluation of the optimal scheme, and show 
that it can achieve on average 25.2% energy savings on X-Gene 2, and 22.3% 
energy savings on X-Gene 3, with a minimal performance penalty of 3.2% on X-
Gene 2 and 2.5% on X-Gene 3 compared to the default voltage and frequency 
microprocessor’s conditions. 

1.7 Thesis Outline 

The remainder of this thesis is organized as follows: 

Chapter 2 presents the contributions of this thesis regarding the post-silicon validation of 
the address translation mechanisms of modern microprocessors. It is divided into two 
parts: the first part presents a novel method for accelerating the post-silicon validation of 
the address translation mechanisms, and the second part presents a complementary 
method aims to detect difficult-to-find bugs in address translation caching arrays. 

Chapter 3 and Chapter 4 present the contributions of this thesis regarding the energy 
efficiency of modern microprocessors. Chapter 3 is divided into two parts: the first part 
presents an extensive characterization study of three different ARMv8-compliant 
microprocessor chips in order to expose the pessimistic voltage margins for single-core 
executions. It also discusses ways that harness the revealed pessimistic voltage margins 
for increasing the microprocessors’ energy efficiency. The second part presents the 
development of diagnostic micro-viruses, which aim to accelerate the time-consuming 
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characterization phase. Micro-viruses can successfully accelerate the characterization of 
pessimistic voltage margins. 

Chapter 4 presents essential observations of multicore executions regarding the voltage 
margins. Based on these observations, in this chapter we present a software-based 
solution for dynamically adjusting the voltage and frequency levels of the microprocessor, 
and guiding the Linux scheduler to make optimal energy-efficient decisions. 

Finally, Chapter 5 presents the conclusions of this thesis and discusses possible 
directions for future work. 
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 Post-Silicon Validation of the Address Translation Mechanisms 

2.1 Address Translation Mechanisms 

 Overview 

In a modern computing system with virtual memory and virtualization support, the role of 
address translation is crucial for the correctness and the performance of programs 
execution. The CPU-memory performance gap is successfully bridged by multi-level 
caches hierarchies, but the need for frequent virtual-to-physical addresses translation 
may become a serious performance bottleneck. Every running process generates 
multiple accesses to its virtual address space (including references to code, stack, and 
heap segments). If the translation of the virtual addresses to the physical memory space 
of the system is not fast enough, the execution throughput of the system can dramatically 
decline. The address translation mechanisms (ATMs) of modern microprocessors 

▪ map the virtual pages (VPs) of software processes to the physical frames (PFs) of 
the system memory, 

▪ keep track of the access permission rights for each page (user vs. kernel pages, 
etc.), and 

▪ record the pages’ status (accessed, modified, etc.). 

Altogether, the mapping, permissions and status information about the virtual pages and 
the physical frames of the system are stored in page tables (PTs), which can have 
different organizations and contents in different microprocessors. Every page table 
contains Page Table Entries (PTEs) for each virtual-to-physical mapping, as well as other 
attributes (read/write, user/kernel, etc.), which uniquely characterize each frame in the 
physical memory space. Page tables are stored in the main memory and secondary 
storage, so when an address translation needs to access them the latency is very high 
(several hundreds of clock cycles).  

Caching of address translations is a very effective way to reduce the very high access 
latency of PTEs. All microprocessors realize address translation caching through 
associative Translation Lookaside Buffers (TLBs – which store the most recent VP to PF 
mappings as well as access permissions and page reference status information. TLBs 
are accessed through a Virtual Page Number (VPN). On a TLB hit, the translation is 
promptly available and execution continues. On a TLB miss, the PT is “walked” and the 
translation is located. When located, the translation is stored in the TLB for future use.  

Some processor vendors (e.g., Intel and AMD) design structures that not only cache 
PTEs from the first level of multilevel page tables (in the TLB), but also cache entries from 
higher levels of the tree in small per-core Memory Management Unit (MMU) caches [122]. 
MMU caches are accessed on TLB misses (details in subsection 2.1.3); MMU cache hits 
enable skipping multiple memory references in the page table walk (reducing the entire 
walk to just a single memory reference in the best case) [121]. The primary goal of any 
caching in a microprocessor ATM subsystem is to keep the address translation latency 
off the critical path of memory access. 

Figure 9 shows a high-level diagram for the address translation process of any 
microprocessor architecture: 

▪ The CPU core generates a virtual address (VA) , which consists of a Virtual 

Page Number (VPN)  and an Offset  (the Offset shows the position of the word 

in both the virtual page and the physical frame).  
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▪ The ATM calculates the Page Table Entry Physical Address (PTEPA)  and 

fetches the corresponding PTE from the PT in memory  (this happens when the 

TLB of the ATM does not already contain the PTE). 

▪ The ATM uses the Physical Frame Number (PFN)  that the PTE contains along 

with the same Offset  to form the Physical Address (PA)  and access the 

memory word . 

▪ When the ATM’s internal TLB already contains the VPN to PFN mapping, steps  

and  are skipped and the PA is immediately formed using the TLB contents and 

the Offset. 

 ATM Organizations 

We briefly discuss the ATM hardware specifics of three major microprocessors ISAs: 
POWER8, x86-64, ARMv8-A. Table 1 summarizes the virtual memory features of the 
three ISAs. Although the high-level operation of the address translation in all three ISAs 
is the one that Figure 9 outlines, there are several important differences among them. 
The purpose of this subsection is twofold: (a) to demonstrate the structure and complexity 
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Microprocessor
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Data
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Figure 9: Address translation process overview. 

Table 1: Comparison of virtual memory features in major ISAs. 

 x86-64 POWER8 ARMv8-A 

Address Space 
Protection 

Segments Segments 
Address Space 

Identifiers 

Virtual Address 48-bit 64-bit 48-bit 

Page Table Support 
Four-level 

Hierarchical PT 
Inverted hashed PT 

Four-level 
Hierarchical PT 

TLB Model 
L1 Harvard 
L2 Unified 

Single-Level 
Unified 

L1 Harvard 
L2 Unified 

Physical Address 52-bit 60-bit 48-bit 

Page Sizes 4KB, 2MB and 1GB 4KB, 64KB or more 
4KB, 16KB and 

64KB 
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of the ATMs, and (b) to facilitate understanding of the ATM bug models (sections 2.2.1 
and 2.7.3) and the silicon validation methods (section 2.3 and 2.8). 

 x86-64 Address Translation 

The address translation mechanism of x86-64 microprocessors is based on the 64-bit 
extension of the IA-32 architecture (known as AMD64 or IA-32e, for AMD and Intel chips, 
respectively). The base x86 ISA (Instruction Set Architecture) is a segmented 
architecture, similar to IBM’s POWER8 (next subsection).  However, x86-64 uses a flat 
model, in which segmentation is generally disabled, creating a flat linear-address space. 
The x86-64 uses 48-bit linear addresses (LAs) and generates up to 52-bit physical 
addresses (PAs) using three different page sizes: 4KB, 2MB, and 1GB. It translates LAs 
using a 4-level hierarchical page table as Figure 10 shows (for 4KB pages). Every 
structure of the page table levels is (at least) 4KB large, each entry is 64-bit long, for a 
total of (at least) 512 entries in each structure. CR3 register contains the first physical 
address of the whole page table tree. 

The microprocessor generates a 48-bit LA (byte address). The LA’s 12 low-order bits is 
the Offset and the 36 high-order bits are split into 4 groups of 9 bits, each of which is 
associated with an entry of the 512-entry (=29) nodes of the corresponding page table 
level. The pointed entry of a node contains a pointer to the next-level table. The fourth-
level table contains a PTE with a 40-bit address, which is concatenated with the 12-bit 
offset resulting in the final 52-bit PA [112] [122].  

PML4 (9 bits) Directory ptr (9 bits) Directory (9 bits) Page Table (9 bits) Offset (12 bits)

PML4E

PDPTE

Page Directory 
pointer table

PDE PTE

PA

CR3 register

0111220212930383947

48-bit Linear Address

9 bits

9 bits

40 bits

4KB PagePage 
Directory

Page Table

Figure 10: Paging with 4KB page size in x86-64 ISA (PA=Physical Address, PTE=Page Table Entry, 
PDE=Page Directory Entry, PDPTE=Page Directory Pointer Entry, PML4=Page Map Level 4). 
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In x86-64 processors TLBs and MMU caches are used to accelerate the translation 
process. TLBs cache PTEs (Figure 11) from the first level of multilevel page tables (Page 
Table). MMU caches contain three different cache levels: the Page Map Level 4 (PML4) 
cache, which caches PML4Es from the fourth level of multilevel page tables, the Page 
Directory Pointer (PDP) cache, which caches PDPTEs from the third level of multilevel 
page tables, and the Page Directory (PD) cache, which caches PDEs from the second 
level of multilevel page tables. 

Software enables paging in x86-64 systems by using the MOV to CR0 instruction to set 
the CR0.PG bit. Before doing so, software should ensure that control register CR3 
contains the physical address of the first paging structure that the processor will use for 
LA translation and that structure is properly initialized [112]. 

 POWER8 Address Translation 

The ATM of the POWER8 architecture microprocessors maps an application’s 64-bit 
Effective Address (EA) onto a global flat 78-bit virtual address (VA) space. Conversion of 
an EA to a VA is realized after a look-up at the Segment Lookaside Buffer (SLB), which 
specifies the mapping between Effective Segment IDs (ESIDs) and Virtual Segment IDs 
(VSIDs) and is managed completely by software. The SLB is a 32-entry-per-thread, fully 
associative buffer, which can support 256MB or 1TB segment sizes. The SLB entries also 
contain a group of important fields with information about the type of access, if the 
segment contains executable instructions or not, the segment size and if it is a valid one. 

After a 78-bit VA is generated, it is mapped to a final 60-bit Physical Address (PA) either 
through the TLB (if it contains the PTE) or through an access to the Page Table. The TLB 
in POWER8 is a 2048-entry, 4-way set associative buffer, which stores the most recently 
used translations for both instructions and data. On a TLB miss, the ATM hardware looks 
up the Hashed Page Table (HTAB)3. In order to locate the PTE that contains the 

                                            

3 The HTAB is a variable-sized data structure storing the mapping between VPNs and PFNs, where the 
PFN of a Physical Frame is the low-order 48 bits of the address of the first byte in the frame. The HTAB 
contains Page Table Entry Groups (PTEGs). A PTEG contains eight Page Table Entries (PTEs) of 16 bytes 
each; each PTEG is thus 128 bytes long. PTEGs are entry points for searches of the Page Table [209] 
[210] [211]. 
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Figure 11: An x86-64 Page Table Entry (PTE). 
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translation of a given VA, up to two hash functions are used. The Primary Hashing uses 
a 39-bit hash value consisting of the VPN and the Segment Descriptor Register (SDR1), 
which contains information about the total HTAB’s size and the PA of the page table itself. 
If the Secondary Page Table search is enabled and the Primary Hashing does not lead 
to the PTE, the Secondary Hashing takes place and the 60-bit PA is formed. 

 ARMv8-A Address Translation 

The address translation mechanism of the ARMv8-A architecture has many similarities 
with the x86-64 model. Its translation system in 64-bit mode supports expanded virtual 
and physical address spaces, compared to the legacy (32-bit) mode of ARMv8 
architecture.  

The 64-bit mode of ARMv8-A uses up to 48-bit virtual addresses (VAs) and generates up 
to 48-bit physical addresses (PAs) using three different page sizes: 4KB, 16KB, or 64KB. 
It translates VAs using an up to 4-level hierarchical page table. Every structure of the 
page table levels is (at least) 4KB large, for a total of (at least) 512 entries in each 
structure. The microprocessor generates a 48-bit VA, whose 12 low-order bits is the 
Offset and the 36 high-order bits are split into up to 4 groups of 9 bits, each of which is 
associated with an entry of at most 512-entry (=29) nodes of the corresponding page table 
level. The pointed entry of a node contains a pointer to the next-level table. The fourth-
level table contains a PTE with an up to 36-bit address, which is concatenated with the 
12-bit offset resulting in the final 48-bit PA. In addition, there is a Translation Table Base 
Register (TTBR), which indicates the base address of the first translation table required 
for the mapping from VA to PA. 

Translation table entries can be cached in a TLB, to reduce the average latency of a 
memory access by caching the results of translation table walks. In order to eliminate the 
need for TLB maintenance on context switches, it is possible to distinguish Global pages 
from Process-specific pages. The Address Space Identifier (ASID) identifies pages 
associated with a specific process and provides a mechanism for changing process-
specific tables without having to maintain the TLB structures. As an example, the Cortex-
A57 MPCore has two levels of TLBs. The first level is a fully associative, Harvard-style 
TLB with 48 entries for instructions and 32 entries for data. The second-level TLB is a 
unified 4-way set associative structure with 1024 entries. 

 Terminology and Assumptions 

Different microprocessor vendors use different terminology for their ATM subsystems. A 
major difference is the term used for the address that an application produces when 
executed in the microprocessor. This address is called Linear Address (LA) on x86-64, 
Effective Address (EA) on POWER8, and Virtual Address (VA) on ARMv8. To avoid 
confusion and keep the description of our bug models and silicon validation methods 
uniform, we use a consistent terminology from this point forward.  

▪ For the address produced by the application and is the input address to the ATM, 
we use the term Virtual Address (VA). 

▪ For the final address that is the output of the ATM, we use the term Physical 
Address (PA). 

Regarding the different page tables structures, the POWER8 uses an Inverted Page 
Table (or Hashed Page Table) while x86-64 and ARMv8 use Hierarchical Page Table 
structures organized in multi-level trees. We use the term Page Table (PT) to refer to any 
of the organizations. 
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Finally, for the purposes of our description and without losing the generality of our 
methodology, we assume that: 

▪ A memory word is 64-bits long (8-bytes). 

▪ A virtual page or physical frame contains 4KB. 

2.2 Reducing the Bug Detection Latency for ATM Post-Silicon Validation 

All major microprocessor vendors regularly extend the ISAs for new functionalities and 
the microarchitectures with extra hardware support for performance and programmability. 
Virtual memory is a very mature abstraction that is widely implemented through dedicated 
ISA and microarchitecture support in most computing systems today. By providing the 
illusion of an unlimited memory space, it facilitates easier system and application 
programming and supports efficient system resources protection among tasks [209].  

Virtual-to-physical addresses translation is the key step that a microprocessor is required 
to implement correctly and efficiently for a successful realization of virtual memory. With 
the galloping adoption of virtualization today (and the complexity its support adds to ISAs 
and microarchitectures now requiring multi-level address translation), the performance 
and correctness of address translation get critical. As we described in the previous 
subsections, larger TLBs and more complex microarchitectural caching structures are 
used to improve the speed of address translation, which is invoked multiple times as 
instructions and data are fetched from the memory hierarchy. 

The address translation subsystem of a modern microprocessor is one among several 
complex mechanisms realized in state-of-the-art microarchitectures today. However, 
address translation (or the virtual memory support hardware in general) is probably the 
most difficult subsystem for correctness validation [105]. Unlike other hardware 
components (functional blocks, registers, caches) the output of the address translation 
mechanism (ATM) of a microprocessor (the physical address) is not observable to 
architecturally visible locations (registers, memory). Moreover, the address translation 
process involves several stages (see Figure 10) and can be a predominant source of 
severe escaped bugs which are, however, very hard to detect [102] [103] [104] [105], as 
shown in Table 2, which lists escaped ATM bugs into volume production published in 
official errata sheets from major microprocessor vendors. 

As the complexity of microprocessor designs continues to grow, we are seeing an 
increasing gap between their design and verification. Consequently, effective post-silicon 
validation techniques are necessary to detect design bugs that remain after pre-silicon 
verification and manufacturing defects in prototype chips. Post-silicon validation on actual 
chip prototypes offers very high execution throughput, so design verification teams 
attempt to execute as many test programs as possible to obtain the largest possible 
validation coverage before massive chip production. For this purpose, post-silicon 
validation focuses on extremely large numbers of parameterized random test-programs.  

The major downside, however, of random test programs is the difficulty to obtain the 
expected correct results (the correct output of these programs is unknown because they 
are randomly generated), which are required to determine the correctness of the output 
of the prototype chips being validated. To meet this requirement, validation process 
mainly resorts either to multi-pass consistency end-of-test checking methods (each test-
case is executed multiple times (’passes’) and the end-of-test values of some system 
resources (e.g., memory, registers) are compared for consistency) [98], or to golden 
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responses generated by architectural simulators. However, the throughput difference 
between native chip execution and simulation (at different levels) is between 3 and 6 
orders of magnitude. Therefore, both approaches (they are also known as “end-of-test 
checking techniques”) suffer from the same limitation: by detecting a mismatch only at 
the end of the validation test, debug engineers devote excessive effort to identify the root 
cause of the bug because the mismatch is identified after thousands or millions of 
executed instructions [98] [101].  

Table 2: Published ATM-related bugs from official errata sheet. 

Prototype Bug description Effect 

AMD 
Athlon64/Opteron 
[107] 

Possible use of stale translations even after 
software has performed a TLB flush. 

Unpredictable 
system failure 

IBM PowerPC 
750GX/750GL [111] 

A mtsr or mtsrin operation, followed closely 
by an instruction that causes data page 
address translation, can cause contention 
for the segment registers, which proceeds 
using data from the wrong segment 
register. 

Access to 
incorrect PA or 
false translation 
and data access 

exceptions 

Intel® Xeon® 
Processor 5100 Series 
[113] 

When an unaligned access is performed on 
paging structure entries, accessing a 
portion of two different entries 
simultaneously, the processor may live 
lock. 

The processor 
may live lock 

causing a system 
hang 

AMD 
Athlon64/Opteron 
[107] 

INVLPG instruction with address prefix 
does not correctly invalidate the requested 
translation in the TLB. 

Unpredictable 
system 

failure 

Intel® Xeon® 
Processor E3-1200v3 
[115] 

The Intel® VT-d supporting the Processor 
Graphics device may not report ATM faults 
detected on Display Engine memory 
accesses when the Context Cache is 
disabled or during time periods when 
Context Cache is being invalidated. 

Display Engine 
accesses that fault 

is correctly 
aborted but may 

not be reported in 
the fault reporting 

register 

AMD K10 (Family 10h) 
[108] 

The processor may use an incorrect 
cached copy of translation tables when it is 
in legacy Physical Address Extension 
(PAE) mode and the guest address 
translation tables reside in physical page 
zero. 

Unpredictable 
system behavior 

Intel® Xeon® 
Processor E3-1200v3 
[115] 

If a logical processor has EPT (Extended 
Page Tables) enabled, it uses 32-bit PAE 
paging, and accesses the virtual-APIC 
page then a complex sequence of internal 
micro-architectural events may cause an 
incorrect address translation or machine 
check on either logical processor. 

Uncorrectable TLB 
error, a guest or 
hypervisor crash, 

or other 
unpredictable 

system behavior. 
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To this end, we present and discuss two complementary ISA-independent software-
based post-silicon validation methods, which quickly expose difficult-to-find bugs in the 
address translation mechanisms of modern microprocessors. Both methods make 
debugging and diagnosis of a bug more effective and significantly reduce the bug 
detection latency during the post-silicon validation phase. 

 ATM Bug Models 

Bugs in a microprocessor’s ATM can manifest themselves in arbitrary ways (which is also 
the case for any other hardware structures). However, the definition of a bounded but 
comprehensive set of the effects that ATM design bugs can have is an important 
formulation, which can assess the effectiveness of corresponding post-silicon validation 
methods, assist engineers to identify the root cause of a bug, and accelerate the 
validation and debugging process. They can be also used to guide research in 
microprocessor address translation hardware validation methods allowing the 
comparison of different approaches.  

The bug models are ISA-independent and cover all hardware structures involved in 
address translation in a modern microprocessor. Our ATM bug models’ definitions are 
the result of the  

▪ published descriptions from errata reports of real microprocessor ATM-related 
bugs of Intel, AMD and IBM chips ([107] [108] [109] [110] [111] [112] [113] [114] 
[115] [116]) that slipped in volume production, and  

▪ close interaction with IBM’s specialized microprocessor validation teams. 

We define a comprehensive set of bug models in ATM hardware, which describe the 
effect of ATM bugs in any ISA (including x86-64, POWER8 and ARMv8 discussed 
previously); similarly, bug models for other parts of a microprocessor have been defined 
in [118] [123] [124]. 

Each bug model category describes a divergence from the expected behavior, i.e., the 
effect of a bug. The diverging behavior is attributed to a functional bug or an electrical 
defect and can appear in any hardware structure or interconnection involved in address 
translation. The bug modeling categories are enumerated below: 

(1) Unintended Modification – Due to a bug, an ATM-related component (or one of 
its entries) is unintentionally modified. For example, an unintended update of the 
CR3 register takes place in an x86-64 microprocessor; also, an unintentional 
update of a TLB entry in the x86-64, POWER8 or ARMv8 architecture belongs to 
this category. 

(2) Ignored Modification – Due to a bug, a modification of an entry of an ATM-related 
component fails. For example, a group of entries in the Page Table (PT) is 
updated, but the corresponding TLB invalidation fails and the previous contents 
of the TLB are kept. 

(3) Wrong Value – Due to a bug, a wrong value is written to the correct ATM-related 
component entry. This bug model supplements the two previous models. The 
selected entry is correct, but the value written to it is wrong. 

(4) Dirty Read – Apart from the updates to registers and entries (Figure 10 and Figure 
11) of ATM-related components (TLBs etc.), the ATM hardware also performs 
reads from these components. A Dirty read happens when the value of a register 
or an entry is correct, but due to a bug upon a read, the microprocessor reads a 
wrong value or it reads from a wrong location; but the correct value still exists in 
the register or entry. A real-life example of this category is a serious bug in Intel® 
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Xeon® Processor E3-1200v3, in which when 32-bit paging is in use, the processor 
should use a page directory located at the 32-bit physical addresses specified in 
bits 31:12 of the CR3; the upper 32 bits of CR3 should be ignored. Due to a bug, 
the processor uses a page directory located at the 64-bit physical address 
specified at the 63:12 of CR3 register [115]. 

(5) Timeout – Due to an error, the microprocessor is trapped to a deadlock or a live 
lock. For instance, Intel® Xeon® Processor 5100 Series suffers from a potential 
live lock when an unaligned access is performed on paging structure entries, 
accessing a portion of two different entries simultaneously [113]. 

(6) Unintended Exception – Due to an error, an unintended ATM-related exception 
is raised. For example, a Page-Table Exception Fault is raised, although the 
required (Page Table Entry) PTE already exists in the Page Table (PT). 

(7) Ignored Exception – Due to an error, an exception that should have been raised 
does not happen. For example, an access rights violation to a physical frame is 
ignored, and the ATM and permits access to addresses in the frame. 

(8) Wrong Exception – Due to a bug, a wrong exception handling routine is invoked. 

The eight bug model categories described above are mutually exclusive. The effect of a 
local bug in any ATM-related structure of the different ISAs is uniquely classified in one 
of the categories. 

2.3 Proposed Method 

Special purpose verification languages support automatic stimulus generation to enable 
better specification and design coverage, such as IBM’s Genesys-Pro [214] and 
Synopsys’ Vera [215]. These frameworks allow design engineers to express pseudo 
random test program generation along with complex event scenarios using generic Test 
Templates [216] [217]. A Test Template defines any desired verification scenario, and 
based on the microprocessor’s architecture, the corresponding post-silicon validation 
programs are generated [212] [213]. 

Figure 12 shows the proposed framework for post-silicon validation of the ATM hardware. 
As we explain in the next subsection, our methodology does not require previously 
generated golden responses by a simulator (a major requirement to facilitate the 
execution of very large numbers of post-silicon validation programs).  

The Program Generation Engine takes as inputs: 

▪ a detailed model of the ATM paths (existing framework), 

▪ a Test Template, which specifies the overall silicon validation plan and describes 
the test scenarios (existing framework), 

▪ the Page Table information (proposed enhancement), and 

▪ a corresponding memory image (proposed enhancement). 

The above scenarios are translated by the Program Generation Engine into complete 
post-silicon validation programs. The final self-checking validation programs completely 
stress and validate the ATM hardware of the microprocessor. Subsequently, the 
validation programs are loaded into the prototype chip (also referred to as the device 
under validation – DUV) and the validation process begins. In the next subsections we 
describe the enhancements required in the traditional flow. 

 Page Table Setup 

The role of the page table in the proposed method is twofold:  
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(a) Post-silicon validation of microprocessor prototype chips is performed for long 
periods in a bare-metal configuration (e.g., a single-process validation program is 
executed at a time directly on the silicon chip without any operating system 
support). To detect bugs in the ATM in a bare-metal configuration we need to 
construct an initial page table in the system memory, so that the ATM of the 
microprocessor operates normally (as if the system was in normal mode), and 
thus, all translation paths of normal system operation are comprehensively excited 
(coverage). The page table contains the virtual address (VA) to physical address 
(PA) translations and several status/permission bits required by the generated 
validation program. By setting the parameters of the validation program 
generation flow (as presented in subsection 2.3.5), we can both validate the 
address translation for arbitrary physical memory areas and cover all entries of 
the ATM hardware structures (TLBs, MMU caches, control registers, etc.).  

(b) We exploit the contents of the page table during validation, since random test 
generators have knowledge about them (Figure 12). The known page table 
contents (Figure 13b) are used to provide the expected correct results of ATM 
(this is the fundamental reason for which our method holds the self-checking 
property and does not resort to any already known externally derived response), 
as it is described in the next subsections. 

Figure 12: The proposed ATM silicon validation framework. 
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 Memory Image for ATM Post-Silicon Validation 

Applying existing validation approaches to the ATM hardware would require availability 
of golden responses (e.g., from architectural simulators or from emulators). In such a 
setup, the (correctness) checking phase would be performed at the end of the validation 
test. However, for ATM validation there is no way for the validation program to have direct 
access to the generated physical address, which is the output of ATM for a given virtual 
address. Figure 13 shows a comparison of a typical validation flow (Figure 13a) and the 
proposed self-checking flow (Figure 13b). Aiming to improve the observability of ATM 
hardware and also to reduce the bug detection latency (eliminating the checking phase 
at the end of the test), we present the following method. 

Before the execution of the validation programs, the physical memory locations that the 
test program will validate (of course these should be different than the ones holding the 
validation program itself or the page table) are written with data values equal to their 
actual physical address (i.e., every physical address A in the range being validated 
contains value A).  

While storing the desired data in memory, the microprocessor operates in real-addressing 
mode (details in subsection 2.3.4) during this phase, so that the ATM is disabled and 
does not impede the proper memory initialization of the desired data (otherwise a bug in 
ATM could threaten the initial state of the physical memory). This is a key for the proposed 
methodology, because we must ensure that the initial data in memory must be correct 
before the validation process begins. Additionally, in most of the cases, the DRAM in a 
commercial server is ECC protected, so we are sure that the stored data in memory are 
not jeopardized.  

Figure 13: a) A conventional post-silicon validation flow vs. b) the proposed self-checking 
validation flow. 
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For example, if the physical address 0x123456000 belongs to the area being validated, 
the data value 0x123456XXX is stored in it. The last 12 bits can have any value since 
they represent the Offset (see Figure 9 and Figure 10). We take advantage of these 
unused bits to detect ATM bugs related to the control bits (not only to address mappings) 
of the address translation process (see subsection 2.3.3). Therefore, when for example 
a virtual address VA=0xAABBCCXXX is mapped to the physical address 
PA=123456XXX, the fetched datum will be equal to 0123456XXX. 

Assume for example that a VA=0xAABBCCXXX is mapped to the PA=0x123456XXX. 
Figure 14 and Figure 15 outline the proposed validation concept that does not need end-
of-test known-correct results to decide if the result is correct. In Figure 14 we can see a 
correct (bug-free) operation of the validation program, in which the data value returned to 
the validation program by a load instruction is similar to its physical address. After the 
datum is fetched from the physical memory it is compared during the execution of the 
validation program to the known Physical Address that the ATM should generate. Given 
that the comparison is correct, the validation program continues its execution without any 
notification of a mismatch. In case of a mismatch in this comparison an ATM bug is 
detected right after its manifestation. As we can see in Figure 15, the ATM provides a 
wrong PA (due to a bug in the ATM), and as a result the fetched datum from physical 
memory is different from its PA. After a mismatch is detected (due to the incorrect 
comparison), the validation test halts execution and provides specific results to the 
debugging process (e.g., the correct and faulty PA). 

The proposed validation method, therefore, does not need simulated or emulated results 
as golden responses, which is the case of traditional flow as shown in Figure 13a, or other 
time-consuming methods that provide the known-correct results at the end of the 
program, because the physical addresses that the validation programs traverse contain 
data values equal to the physical address. As a result, if a bug in the ATM occurs, our 
method can instantaneously detect it, after a few cycles (more details in subsection 2.3.6) 
– and not at the end of the test after several thousands of clock cycles.  

Figure 14: The Validation Program accesses memory through the ATM. The ATM translates the VA 
to the correct PA and the fetched (pre-stored) data value is returned back to the validation 

program, which compares it with the expected PA. 
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 Utilizing Unused Bits in Physical Addresses 

When a microprocessor operates in 64-bit mode, all physical addresses that indicate the 
stored data in memory are 64-bit long. However, not all available bits of the PA are used. 
Some of them are used for the Physical Frame Number (PFN) and the 12 low-order bits 
hold the offset into the frame (for 4KB frames). As shown in Figure 16, the POWER8 ISA 
uses the middle 48 bits, the x86-64 uses the middle 40 bits and the ARMv8-A uses the 
middle 32 bits to form the PFN. All three ISAs use the 12 low-order bits for the Offset, and 
the remaining high-order bits are unused. 

The 12-bit Offset does not participate in the address translation process (it is not stored 
in the PTs, the TLBs or any other ATM structure).  

Instead of storing arbitrary values to the 12 low-order bits of the 64-bit physical memory 
locations (the three X nibbles mentioned above); we use them to store useful information 

PFN

63 60 59 12 11 0

OffsetUnused(a)

PFN

63 52 51 12 11 0

OffsetUnused(b)

PFN

63 44 43 12 11 0

OffsetUnused(c)

Figure 16: A 64-bit PA and the PFN bits, the Offset bits and the unused bits in (a) 
POWER8, (b) x86-64, and (c) ARMv8-A. 

Figure 15: The Validation Program accesses memory through the ATM. The ATM translates the VA 
to a wrong PA and the fetched (pre-stored) data value is returned back to the validation program, 

which compares it with the expected PA. A mismatch occurs indicating the bug.  
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about the translation process. Apart from checking for correctness the PFN that the ATM 
produces, it is also mandatory to validate the other available attributes that a PTE 
contains (control bits). For example, one of the most challenging aspects to validate is a 
bug that leads to an access to unprivileged locations in memory; when a physical frame 
is read-only but a write to that frame is not prohibited. Thus, the useful information about 
those attributes contained in PTE is also pre-stored on each frame to the 12 low-order 
bits. This information (the correct values of this bits) should also be kept in the validation 
program similarly to the virtual to physical address translation. 

Assuming, for example, the x86-64 PTE organization. Figure 11 above shows the control 
bits of a PTE. Apart from the PFN, there are also several useful attribute bits that should 
be validated to ensure coverage of the bug models related to these attribute bits. 

 ISA-Independent Data Loading in Physical Memory 

Two mode of memory addressing are typically used: the real addressing mode, in which 
the generated address is mapped one-to-one into a physical location in memory (the ATM 
is bypassed); and the protected addressing mode, in which the ATM is used to translate 
a virtually generated address to a physical one. A microprocessor boots in real mode, 
where the ATM is disabled and does not interfere with the microprocessor’s functionality. 
We take advantage of this property to setup the microprocessor and the physical memory 
for the validation flow. 

We set the microprocessor in the real addressing mode to store the desired memory 
contents to the physical memory, and to set up the page table, the global descriptor table 
and other fundamental data structures. After this, the kernel switches to the protected 
mode, and the validation process begins. We analyze this process in subsection 2.4.1, 
where we present our bare-metal setup and experimental results.  

Modern microarchitectures, such as x86-64, ARMv8 and IBM POWER, support the real 
and the protected memory addressing modes, which are controlled by specific control 
registers; each microarchitecture has its own control registers and control logic. For 
example, if the PG bit (bit 31) of CR0 control register is disabled (CR0.PG = 0), the 
Address Translation Mechanism in x86-64 is ignored and the logical processor treats all 
virtual addresses as if they were physical addresses. In ARMv8, address translation 
stages are disabled by setting the M bit (bit 0) of a system control register (SCTLR) to 0 
(SCTLR.M = 0). POWER8 has similar features, which can enable and disable the address 
translation depending on the microprocessor’s operation. POWER8 includes a special 
Machine State Register (MSR). MSR provides a set of control bits for handling the status 
of the address translation. As a result, in modern microarchitectures the address 
translation process is optional and can be enabled or disabled by each 
microarchitecture’s control registers, and thus, our proposed method is ISA-independent.  

 Transformation of Validation Tests 

A validation method for a particular hardware structure must fully stress the hardware for 
all different modes of operation and corner cases to deliver high validation coverage. For 
the extensive stressing of the ATM hardware our method augments existing random 
validation tests into new tests, which exploit the self-checking property of our method, 
and thus, embed our method and accelerate the overall validation flow. The validation 
programs contain raw information about the virtual-to-physical address mappings and 
their associated status/permission bits from Page Table, as shown in Figure 12 above. 
This is required for the realization of the self-checking property, and to improve the 
observability of the ATM hardware, which is vital for debugging purposes. 
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As shown in Figure 17, before the execution of each load instruction, validation tests are 
augmented to store to an architectural register the expected physical address. After the 
execution of a load instruction, any type of comparison between the expected PA to the 
fetched datum can be applied (a conditional branch, a compare instruction followed by a 
jump) in order to check the matching between the expected correct physical address and 
the fetched datum from a memory location. The comparison should succeed in a correct 
design because our proposed self-checking method (described in the previous 
subsections) pre-stores data values equal to their actual physical address, and should fail 
on an incorrect design. The main role of this program transformation is to decouple the 
traditional end-of-test checking phase from validation tests that are going to be loaded 
and executed in the prototype chips and to improve the observability of the ATM 
hardware. 

 Reducing the Error Detection Latency 

Due to the exploitation of the full performance of prototype chips by using the pre-stored 
physical addresses, control bits and the enhanced validation tests, the elapsed time 
between bug manifestation and its detection is significantly decreased by our method. As 
shown in Figure 18a, in a traditional post-silicon validation flow, the detection of a bug 
occurs when the validation test finishes. Then a comparison between end-of-test golden 
results and the silicon’s final state takes place to ensure correctness. Instead, by using 
the proposed post-silicon validation method (Figure 18b), the potential error in prototype 
is detected right after its manifestation, because the results of each individual address 
translation are known a priori and they have been pre-stored in the memory. 

Detecting bugs right after their manifestation and not after the execution of millions of 
instructions [117] [118], provides a simple and rapid way to determine the divergences 
from the expected behaviors. Additionally, by recognizing the incorrect PA that manifests 
the bug and thereby facilitating the localization of the particular bug, when an error in 
silicon occurs, it is easier for debug engineers to identify the root cause of complex bugs 
(such as bugs caused by electrical defects). 

End-of-Test Checking 

ld $r2, VA1

<non-load instructions>

ld $r3, VA2 

:

<non-load instructions>

ld $r4, VA3

:

<non-load instructions>

End of Program

End-of-Test Checking →

Mismatch Detected

$r1  PA1 # known PA

ld $r2, VA1

Self-Checking→ OK

:

<non-load instructions>

$r1  PA2 # known PA

ld $r3, VA2

Self-Checking → Bug Detected

End of Program

Self-Checking 

Figure 17: A conventional example of a validation program (left) that checks for 
correctness at the end of execution vs. the proposed transformations to achieve 

the self-checking property (right) that checks for correction right after each 
memory access. 
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2.4 Experimental Evaluation 

 Simulator Setup and Methodology 

The proposed silicon validation methodology for microprocessor ATM subsystems can 
be adapted to any ISA and specific microarchitecture. When existing validation tests are 
enhanced with the proposed methodology, very large numbers of validation programs 
can be applied to the microprocessor under validation without resorting to any golden 
responses generated by time-consuming simulations. 

As Table 3 summarizes, the combination of the original validation programs and the self-
checking enhancement we presented, leads to very high coverage of all ATM bug models 

Table 3: Bug coverage of the proposed ATM validation method. 

ATM Bug Model Bug Coverage 

Unintended Modification 
Detected when entry accessed 

(self-check mismatch) 

Ignored Modification 
Detected when entry accessed 

(self-check mismatch) 

Wrong Value 
Detected when entry accessed 

(self-check mismatch) 

Dirty Read 
Detected 

(self-check mismatch) 

Timeouts 
Detected 

(visible failure) 

Unintended Exception 
Detected 

(traditional validation test) 

Ignored Exception 
Detected 

(traditional validation test) 

Wrong Exception 
Detected 

(traditional validation test) 

Figure 18: a) A conventional validation process with end-of-test checking, and b) the 
proposed self-checking validation process. 

Validation 

Process Begins

Bug 

manifestation
Bug detection

Bug detection

Validation 

Process Ends

a)

b)
Validation 

Process Begins

Bug 

manifestation

Validation 

Process Ends



Methods for Robust and Energy-Efficient Microprocessor Architectures 

G. Papadimitriou 75 

described in 2.2.1. A well-known difficulty of assessing validation methods is to quantify 
the coverage of errors that can be detected (mainly electrical defects or rare functional 
bugs) that could exist in the silicon. Therefore, to demonstrate the effectiveness of our 
post-silicon validation method and potential usage scenarios we emulate an actual bare-
metal silicon validation infrastructure using the x86-64 model of the Gem5 simulator [120], 
by injecting a large number of bugs that could occur in ATMs, as well as known ATM bugs 
reported in the official errata sheets. 

We implement an important enhancement of the Gem5 simulator. We model MMU 
caches – a very important modern ATM structure realized in state-of-the-art 
microprocessors. MMU caches significantly reduce the TLB miss penalty and improve 
program execution. As shown in Figure 19, we have also modified the Gem5 simulator to 
support injection of random, non-deterministic bugs (in random clock cycles and in 
random bits) in the address translation structures of the x86-64 model. With these 
approaches we resemble a realistic “buggy” microprocessor prototype chip (with many 
different types of bugs in the ATM). We also developed from scratch a custom minimal 
kernel to prepare a realistic bare-metal post-silicon validation “environment” and execute 
our validation programs. The most critical part of functional post-silicon validation is the 
one based on bare-metal-infrastructure and we contribute to this part. 

During functional post-silicon validation only random-generated test programs are 
applied, not normal applications4. Bare-metal modeling on Gem5 was a major part of our 
work to resemble the real hardware infrastructure that is needed for the method to be 
applied to actual silicon prototypes. Our kernel initiates all the required procedures to set 

                                            

4 Other post-silicon validation phases focus on full-system configuration with an operating system layer and 
application software on top of it. 

Figure 19: Proposed post-silicon validation flow and the experiment setup. 
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up the paging interface required to operate in Long Mode (x86-64) (Figure 19). It also 
offers a fundamental infrastructure for virtual memory mapping. The initial state of the 
memory (physical addresses and control bits), which is presented in subsection 2.3.2 is 
achieved using the simulator's boot loader. A chunk of 32 MB is initialized for the needs 
of our validation requirements.  

 Validation Programs Implementation 

We implemented the validation tests and the “buggy” behavior of the microprocessor as 
shown in Figure 19 with the following way: we executed the enhanced random-generated 
validation tests (according to the proposed method); each test targets a unique bug model 
category. During program execution, we injected incorrect behaviors to the simulator in 
random clock cycles (one injection per execution) to check if the proposed method is able 
to detect them. We relied on injection of bugs at random clock cycles in order to achieve 
the non-deterministic manifestation of errors for a comprehensive evaluation of our 
method.  

We have developed four different validation programs each targeting a different bug 
model of subsection 2.2.1. Since our method involves a transformation of existing well-
established random tests to realize the software-based self-checking approach of our 
method, we employ random-generated validation programs to traverse as many address 
translation paths as possible. Our transformation is applied to all programs. 

Unintended Modifications (generic; any ISA) – Validation Program #1 (VP1): The 
program starts by mapping different virtual pages (VPs) to physical frames (PFs) of the 
initialized memory. It then goes through the VP and initiates loads on different offsets. It 
aims to detect unintended modifications of the matching TLB entry upon access (right 
after). The program can only miss the very rare cases when a TLB entry gets corrupted 
on the last access. 

For the validation runs of this experiment, Gem5 was modified to corrupt a TLB entry 
upon its access, after performing a translation, on a rate of 0.01% (an entry corruption 
every 10,000 accesses), thus emulating the buggy behavior. 

Unintended Modifications (x86-64 specific) – Validation Program #2 (VP2): This is an 
x86-64 ISA-specific scheme to check whether a TLB flush was unintentionally (due to a 
bug) initiated. The program first maps a VP to a PF, it requests a TLB flush to update the 
translation, and then asks for a load on that address, to ensure that the translation is 
placed on the TLB. It finally remaps the VP to another PF without flushing the TLB. 

The TLB should have a stale translation at this point that corresponds to the first mapping. 
A loop of loads goes through the entire VP and compares the read values with the initial 
translation. If the TLB gets flushed, the translation will be updated to the new mapping 
and the self-check comparison will report a mismatch. 

For the runs of this experiment, Gem5 was modified to initiate some unintentional (not 
normal) TLB flushes, thus emulating the buggy behavior.  

Ignored Modifications (x86-64 specific) – Validation Program #3 (VP3): This validation 
scheme is again x86-64 specific. The program examines if TLB flushes occur upon 
update of the CR3 register, as described by the ISA specification. The program maps a 
single VP to a PF of the initialized memory. It then requests a TLB flush and performs 16 
loads on different offsets of the mapped page. It compares the values with the expected 
physical addresses. After the 16 loads, it will re-map the page to a different frame and 
again request a TLB flush. The process goes through the entire 32MB of initialized 
memory. If the ATM hardware fails to flush the TLB, it will use a stale translation and it 
will cause a mismatch on the first load instruction of the new page map (offset 0). 
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For the runs of this experiment, Gem5 was modified to skip 1% of the requested TLB 
flushes, thus emulating the buggy behavior.  

Wrong Values (generic; any ISA) – Validation Program #4 (VP4): The program intends 
to detect all of the wrong values delivered by the page walking process. It starts by 
mapping different VPs to PFs of the initialized memory. It then performs loads on the 
mapped VA to compare the loaded value with the requested mapping. If the value 
matches the expected physical address, it moves on to the next frame until going through 
all of the 32MB of initialized memory. If no mismatches are found, the program reports 
success. 

 Results 

We executed each of the four validation programs 1000 times and the bug occurrence 
ratio was adjusted to one bug per simulation. Practically, there is no need to inject more 
than one bug per simulation, because, as we already described, the validation process 
terminated when the first bug is detected. Table 4 reports: (a) the number of injected bugs 
(1000 in each case – 4000 bugs total covering all hardware components involved in 
address translation; second column); (b) the number of virtual pages and physical frames 
(third and fourth columns) that are covered by the emulated validation process for every 
different validation program; and (c) the number of self-checking comparisons that each 
validation program performs (fifth column). The validation programs were also simulated 
against the golden (unmodified) Gem5 and reported success on the bug-free executions. 

Validation programs VP1 and VP2 require a significantly larger number of self-checking 
comparisons than programs VP3 and VP4. The reason is that programs VP3 and VP4 
are designed to detect bugs that are more promptly excited by accesses to the 
corresponding entries, while programs VP1 and VP2 are designed to detect bugs, which 
require much longer execution before the modified entry is again accessed. Finally, 
program VP2 requires a very large number of checks because the entire TLB and the 
MMU caches are frequently flushed compared to program VP1. 

To measure the detection latency in our experiments, we defined a time slot that begins 
when the bug manifests itself and ends when its detection occurs. Figure 20 presents the 
bug detection latency for each one of the injected bugs in four validation programs. It 
demonstrates that, by using our self-checking method, the bug detection latency is around 
10,000 cycles (small variations among the different validation programs), while on the 
other hand the traditional end-of-test validation techniques have, on average, 5 orders of 
magnitude longer duration (given that the detection occurs at the end of the validation 
test), taking into account a validation program of 2B cycles long. All graphs of Figure 20 
are shown in the same scale to demonstrate the differences among detection latencies 
for each program category. For instance, the line of the proposed method of validation 

Table 4: Experimental results on the bare-metal setup in the x86-64 model of the enhanced Gem5. 

Test Total Bugs Virtual Pages Physical Frames Translation Checks 

VP1 1000 7,680 7,680 122,880 

VP2 1000 1 
7,680 

(remapped frames) 

3,932,160 

(checks for stale translation) 

VP3 1000 1 
7,680 

(remapped frames) 
7,680 

VP4 1000 7,680 7,680 7,680 
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Figure 20: Bug detection latency for traditional end-of-test checking methods and the proposed 
self-checking. 



Methods for Robust and Energy-Efficient Microprocessor Architectures 

G. Papadimitriou 79 

program VP2 shows increased detection latencies in contrast to validation programs VP3 
and VP4, given that this group of bugs (as it is already described) need more checks that 
the other groups of bugs. 

In summary, our experiment evaluation of the method reveals its very fast detection 
capabilities compared to traditional end-of-test validation approaches as well as the high 
validation coverage it delivers for the bug models proposed in this work. 

2.5 Bug Coverage and Method Limitations 

Given that the data in memory is pre-stored before the validation process begins their 
values can be aligned to 8B, 4B, 2B or 1B. If, for example, the pre-stored values stored 
as 8-byte words, the validation test should access only 8-byte words. Another limitation 
of the proposed method is related to store operations. If the original ATM validation 
program performs a store that can affect the pre-loaded data values, the self-checking 
property is jeopardized (there will always be a mismatch between the physical address 
and the stored data in that address without a bug). This limitation may mask some cache 
coherency bugs. Fortunately, this is an easy limitation to avoid by properly guiding the 
random validation program generation. 

Moreover, due to the self-checking nature of the methodology, ATM-related bugs that do 
not result in a wrong operation (e.g., wrong translation or incorrect privileges and thus 
exception) but only lead to performance loss (extra execution cycles) are not detected. 
Of course, such bugs are less severe than bugs that affect correctness and are due to 
the address translation caching arrays (e.g., TLBs) that exist in the ATM to improve 
performance. In addition to that, several publicly available official errata reports from 
major microprocessor vendors present severe escaped bugs also in address translation 
caching arrays (e.g., Translation Lookaside Buffers) that persist across generations.  
These bugs may affect both the performance and functionality of the microprocessors 
[113] [116] [125] [126] [127] [128] [129] [130] [131] [132].  

In order to face some of the limitations of the proposed method and to enhance the post-
silicon validation flow to be able to expose difficult-to-find bugs in address translation 
mechanisms, and mainly in address translation caching arrays, we present the following 
method, which is the second major contribution of the thesis in the area of post silicon 
validation of ATM. 

2.6 Unveiling Difficult Bugs in Address Translation Caching Arrays 

As we previously discussed, the address translation mechanism (ATM) of modern 
microprocessors is one of several complex mechanisms realized in state-of-the-art 
microarchitectures today. It is also probably one of the most difficult subsystems to 
validate for correctness ([102] [103] [104] [105]), due to the intricate functionality provided 
by its caching arrays. Address translation caching arrays (ATCA) such as Translation 
Lookaside Buffers (TLBs) and Memory Management Unit (MMU) Caches [122], minimize 
the address translation latency by significantly reducing multiple memory accesses that 
aim to translate virtual addresses into physical ones. Escaped bugs in these arrays, which 
do not necessarily result in a wrong operation but only in significant performance loss, 
are difficult to detect using traditional validation tests. This occurs because they barely 
affect the correct functionality, making their occurrence hard to observe. Bugs that 
manifest themselves only under certain operating conditions and their manifestation does 
not result in an incorrect architectural level output  are massively reported from major 
microprocessor vendors ([113] [116] [125] [126] [127] [128] [129] [130] [131] [132]), which 
escaped even from comprehensive post-silicon validation.  
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To this end, we present the second contribution of this thesis, which describes a post-
silicon self-checking validation method that unveils and detects rare bug scenarios in 
address translation caching arrays (ATCA) and is presented in [4]. ATCAs are among the 
most important structures for microprocessor functionality and performance. Escaped 
bugs in these arrays can lead to unpredictable system behaviors in the field. Using a 
comprehensive experimental study, we present and analyze rare bug scenarios and 
demonstrate the reasons why they are difficult to detect. Our goal is to unveil and detect 
difficult bugs particularly in ATCAs. Even if such bugs are excited by executing traditional 
validation tests, detecting them is unlikely due to the high possibility of masking during 
the execution of the validation test (as we demonstrate in subsection 2.7.3). For that 
reason, we present a novel method that detects such difficult bugs in CPU prototypes. 

Our validation method is self-checking (like the one presented in the previous sections) 
and does not require any hardware instrumentation. We demonstrate that, in contrast to 
traditional validation tests, our proposed method effectively detects all of the injected bugs 
we created, according to bug scenarios shown later in Table 6. For our experimentation, 
we use the enhanced the Gem5 simulator with modern MMU Caches, as described 
before, to have a more detailed representation of a commercial and state-of-the-art 
microprocessor chip. 

2.7 Impact of Bugs in Address Translation Caching Arrays 

 Motivation 

Escaped bugs or faults in performance structures (other than address translation caching 
arrays), such as branch prediction units (BPU) or prefetchers, lead only to performance 
degradation and not to incorrect functionality [134]. However, a bug in an ATCA may 
affect both the performance and the correct functionality of the microprocessor. Massive 
published errata from microprocessor vendors demonstrated recently that severe 
escaped bugs in ATCAs can persist across generations (shown in Table 5) [113] [116] 
[125] [126] [127] [128] [129] [130] [131] [132]. Clearly, traditional post-silicon validation 
methods are not adequate to detect specific kinds of bugs. 

Table 5 lists the most significant hardware bugs that escaped to the market according to 
official errata documents published from major microprocessor vendors, with a short 
description of the bug. The last column classifies each bug into a bug scenario described 
in subsection 2.7.3. The last decade has seen specific types of bugs that affect 
microprocessor functionality, which persist across newer microprocessor generations. 
Our experimental study demonstrates and explains why these bugs are difficult to detect. 

 Evaluating the Impact of Bugs in Address Translation Caching Arrays 

It is essential to study the behavior of the microprocessor during the execution of actual 
workloads to gain a deeper understanding of rare and difficult bugs in ATCAs, and the 
conditions that prevent these bugs (shown in Table 5) from being discovered during post-
silicon validation. For this experimental study, we employed the benchmarks of MiBench 
suite [135] and the Gem5 simulator [120] in x86-64 mode, which was enhanced with MMU 
caches [122].  

MiBench programs have been used in reliability studies and have significant similarities 
to SPEC CPU2006 [141] benchmarks in terms of instruction mix and throughput [208], 
and thus, they are essential programs for these studies. The Gem5 simulator was 
configured for our experiments to have 64 Instruction TLB (ITLB) entries, 64 Data TLB 
(DTLB) entries, 2 Page Map Level 4 (PML4) cache entries, 8 Page Directory Pointer 
(PDP) cache entries and 32 Page Directory (PD) cache entries (for data and instructions). 
These sizes are based on an Intel Core i7 microprocessor [121]. Our experiments are 
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based on bug injection in random clock cycles and in random entry fields, to all available 
entries of each ATCA structure.  

In all ATCAs, there are three different fields for each entry: the virtual address field, which 
is practically the tag; the data field, with physical address and attributes; and the valid bit, 
which is cleared upon a requested invalidation, usually when a context switch or a page 
table modification occurs. For each benchmark, we injected 680 different bugs in the 
virtual address field (2.6% error margin for 99% confidence level) and 680 different bugs 
in data field (5% error margin for 99% confidence level). For the valid bit, we injected 65 
bugs on average; this depended on the number of invalidations requested by each 
program’s execution. 

For the valid bit case, we ran experiments with one benchmark assigned to one core, to 
study the invalidations due to page table modifications for a single process. Furthermore, 
we ran two benchmarks also assigned to one core, to force multiple context switches from 
different processes during the whole execution. Each process is given a fixed time 
quantum from the Linux kernel scheduler, so each benchmark runs concurrently with 
another benchmark. The scheduling algorithm depends on the kernel. For our 
experiments we used the Linux kernel 2.6.22 with O(1) scheduler. For all (single and pairs 
of) benchmarks, we counted the total amount of invalidations (N) that occur during the 
execution and then executed each benchmark N “buggy” times. Each individual “buggy” 
execution affects only one invalidation in one of the ATCAs. The same procedure was 
repeated for each different ATCA, one at a time. 

To trigger as many potential scenarios as possible in ATCAs, executions for all entry 
fields contain as much diversity as possible, i.e., we chose the pairs of benchmarks to 
have similar execution times. This helped ensure that the requested invalidations 

Table 5:  Published ATCA-related bugs from official errata sheets. 

Bug Description Vendor / Year Phenomenon 

Stale data in processor translation 
cache may result in hang [116]. 

Intel 

2008 
Ignored Invalidation 

Possible use of stale translations even 
after software has performed a TLB 
flush [125] [126] [127]. 

AMD 

2008 - 2011 
Ignored Invalidation 

The processor may use stale linear 
addresses translations [128] [129] 
[130] [131]. 

Intel 

2015, 2016 
Ignored Invalidation 

The processor may store an incorrect 
value into bits of 11:0 of linear address 
field [130] [131]. 

Intel 

2015, 2016 
False Hit or False Miss 

Some instructions or task switches 
may not completely invalidate the 
processor translation cache [116]. 

Intel 

2008 
Ignored Invalidation 

Stale data may be loaded into the 
processor's TLB and used for memory 
operations [116]. 

Intel 

2008 
False Mapping 
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occurred from context switches between user processes. For each experiment, we 
recorded if the bug affects the correct program’s outcome (affected) or not (masked).  

We concluded with the following categorization of bug scenarios shown in Table 6. Each 
bug scenario describes a divergence from the expected behavior. The diverging behavior 
is attributed to a functional or an electrical bug and can appear in any ATCA structure. 
The last column of Table 6 describes an example of an activation criterion for each bug 
scenario. 

 Findings and Observations 

Although bugs in ATCAs may exist in silicon and can be unveiled during the execution of 
validation tests, overall it is difficult to detect specific kinds of bugs. This occurs because 
they may not affect the correct functionality of the executed programs, and in most cases, 
they do not provide divergences in the states of the silicon. If a bug takes place in an 
ATCA during the execution of the validation test and gets masked by a valid entry before 
its access (masked), the silicon output does not differ from the “bug-free” reference 
model. As a result, the comparison will succeed, and the bug will remain in the silicon 
prototype. 

Figure 21 and Figure 22 present the results of our experiments trying to quantify the 
“difficulty” of detecting these bugs per category. The percentage shown above each 
stacked bar refers to the probability that a bug can affect the output of the program. The 
results are categorized into the distinct bug scenarios shown in Table 6. These led us to 
the following observations: false mappings have a high probability of influencing the 
correct program output, thus, they are likely to be detected by traditional validation tests. 
On the other hand, the most difficult bugs in ATCAs are the ignored invalidations and 
false hits. This is due to their low probability of affecting the correct program outcome, as 

Table 6: Bug Scenarios that cause divergence from the correct behavior and sample activation 
criterion that can unveil the bug. 

Bug Scenario Phenomenon Activation Criterion 

A requested translation by the 
processor matches a wrong cached 
entry of an ATCA 

False Hit 
The VA field gets corrupted 
before its access 

A requested translation by the 
processor matches a correct cached 
entry of an ATCA but its data field is 
incorrect 

False Mapping 
The data field gets corrupted 
before its access 

A requested translation by the 
processor matches a stale cached 
entry of an ATCA 

Ignored Invalidation 
A requested invalidation fails 
to invalidate that entry 

A requested translation by the 
processor does not match a correct 
cached entry of an ATCA 

False Miss 
The VA field gets corrupted 
before its access 

A requested translation by the 
processor does not match a correct 
cached entry of an ATCA 

Unintended 
Invalidation 

An invalidation occurs to that 
entry without being requested 
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Figure 21: Masked vs. Affected entries in ATCAs for instruction pages show the probability of a 
bug to affect program outcome. 
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Figure 22: Masked vs. Affected entries in ATCAs for data pages show the probability of a bug to 
affect program outcome. 
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well as the unintended invalidations and false misses, which can only result in 
performance degradation and not incorrect output. The latter phenomena have zero 
probability of affecting the program outcome. For example, when an unintended 
invalidation occurs, the CPU will just miss the translation cache (the correct entry exists, 
but its valid bit is 0), and will walk the page table in memory to fetch the correct translation. 

When a bug affects the tag (the Virtual Address field of an ATCA – false hit and false 
miss) or the valid bit (ignored and unintended invalidation) of an entry, it is unlikely to be 
detected by a traditional validation test. In most cases, the “buggy” entry gets replaced 
by other valid entries before their next access (masked). The results shown in Figure 21 
and Figure 22 demonstrate the most difficult bugs in ATCAs and why major 
microprocessor vendors publish errata reports with these kinds of bugs.  

2.8 Generating Validation Tests to Unveil Difficult Bugs in ATCAs 

 The Main Concept 

Modern architectures allow multiple processes to execute as if they own the entire virtual 
address space. More specifically, several processes could write to a memory location at 
the same virtual address without influencing each other’s results. This is done by 
virtualizing the address space. Assume, for example, processes P1 and P2 both generate 
a store to memory location at each one’s virtual address 0x0123XXX. The processor, 
assisted by the operating system, performs additional adjustments to the address, and 
maps it to a physical address 0xAABBXXX for P1, and to 0x1122XXX for P2.  

The most significant bits of the virtual address (VA) represent the page (called virtual 
page number - VPN). Those of the physical address (PA) represent the corresponding 
frame in memory (called physical frame number – PFN). The last 12 bits of both the VA 
and the PA (in a 4KB page in this example; there is no limitation for other page sizes) 
represent the Offset into the page or the frame respectively, which does not participate in 
the address translation process. Therefore, different processes can have the same VAs, 
but, their corresponding physical addresses (PA) may be different. The exception is global 
pages, which are shared among several processes. 

Consider, for example, two running processes on a system, processes P1 and P2, which 
have the mappings shown in Table 7. We assume for simplicity of the example that the 
addresses are 16-bits long instead of 64-bits in modern microarchitectures. Both 
processes have the same virtual address space, but different mappings to the physical 
memory.  

Each validation test consists of two types of processes executed in a row:  

▪ the Exerciser process, and  

▪ the Checker process.   

Exercisers and Checkers are executed on the same core; Exercisers that are executed 
in different cores can have shared pages (we take advantage of shared pages; the 
description shown in subsection 2.8.2). However, for the validation of a multicore system, 
we execute the pair of these processes on all the available cores. Exerciser accesses N 
different virtual pages, which are cached in ATCAs, and stops execution. The Checker is 
then invoked to the same core, so a context switch occurs. Upon the context switch, all 
entries of ATCAs must get invalidated (except for shared entries), according to the 
instruction set architecture specification.  

The Checker accesses the same N virtual pages (the accessing order of VPNs does not 
matter). Given that the Checker accesses the same VAs as the Exerciser, after the 
context switch, the Checker misses all ATCAs (in a bug-free execution) and must access 
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completely different physical addresses. For example, if an invalidation fails to a DTLB 
entry (ignored invalidation), the Checker will inevitably hit the DTLB, and so it accesses 
the data of the Exerciser process. If, on the other hand, an invalidation fails to the ITLB, 
the Checker will execute part of the Exerciser process code. 

The same example applies to all other translation caching arrays and entry fields, but with 
different granularity. The N parameter is the value of maximum entries of the translation 
cache with the largest size being validated. For example, if we validate the TLB, then 
N = 64 (in our setup), and if we validate the PD cache, then N = 32, and so on (subsection 
2.8.2). This procedure continues as is but with a different set of virtual-to-physical address 
pairs for each core to achieve the desired validation coverage for all ATCAs in the 
microprocessor. 

 Exercisers 

The key idea behind a comprehensive post-silicon validation is to create a complex 
combination of validation tests with multiple interleaved execution flows and address 
patterns that exercise the ATCAs, to expose potential corner-case bugs. This is the 
fundamental role of the Exerciser process. Each of the ATCAs caches both instructions 
and data in different ways. For effective validation and exercise of all available structures 
and logic of ATCAs, we present the following exercising methodology. 

To exercise instruction entries of an ATCA (e.g., Instruction TLB), the validation test uses 
conditional or unconditional branches, jumps, and calls to N different instruction pages. 
The allocation of instruction entries for ATCAs is achieved by hopping across code page 
boundaries. Given a wide range of different address patterns and repetitions that are 
produced, ATCAs can be successfully stressed [100]. The allocated entries for instruction 
pages are then used by subsequent loads and stores to N different data pages. These 
pages are randomly inserted after a jump to a new instruction page, to exercise the data 
entries of an ATCA (e.g., DTLB). 

The Exerciser performs at least one Store operation for each data page; the value stored 
in physical memory is its own virtual page number. Further, the process ID (PID) (or any 

Table 7: Example Page Table Entries (Instruction and Data Pages and Frames) for Processes P1 
and P2. 

 
P1 P2 

Page Type VPN PFN VPN PFN 

Instruction 
Pages/Frames 

0x0123 0xAABB 0x0123 0x1122 

0x1234 0xBBCC 0x1234 0x2233 

0x2345 0xCCDD 0x2345 0x3344 

0x3456 0xDDEE 0x3456 0x4455 

Data 

Pages/Frames 

0x4567 0xEEFF 0x4567 0x5566 

0x5678 0xFFAA 0x5678 0x6677 

0x6789 0xFFBB 0x6789 0x7788 

0x7890 0xFFCC 0x7890 0x8899 
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other number that uniquely characterizes the process) is also stored along with the VPN 
to the same word, if it is a global page. PID information is used to distinguish which 
process accesses the shared memory location. For example, if the VA = 0x1234XXX is 
mapped to the PA = 0xAABBXXX, and the current process ID is PID = 001, the value 
stored (datum) in the physical memory is 0x012345001. As we described above, each 
VA contains the offset of the page to the least significant bits (e.g., 12 bits for 4KB pages); 
this offset does not take place in the ATCAs, so there is no need to validate it. As a result, 
the last 12 bits of the datum word that is stored in memory can be used to store the PID. 

The Exerciser also records the number of translation cache hits and misses that occur 
during its execution by reading the Performance Monitoring Counters (PMC) of the 
microarchitecture (see for example ANNEX Ι which presents all the available PMC for 
ARMv8 architecture). When the Exerciser process begins, it declares two global variables 
to be shared between the two processes. These variables store the translation cache hits 
and misses before the Exerciser’s execution. At the end of the exercising code, it again 
reads the PMCs to record; these are the total translation cache hits and misses of the 
Exerciser (N misses, 0 hits). The Exerciser is executed as is once more, so the number 
of misses in the second execution must be 0, and hits must be N in a bug-free execution. 

The role of the Exerciser is twofold:  

1. to exercise and stress the ATCAs at all levels (instructions and data) in order to 
expose as many potential corner cases as possible by accessing a wide range of 
addresses and address patterns, and  

2. to stamp its own physical frames in memory (data and instructions). This is 
achieved by: 

a. Using the same virtual page numbers for instruction and data pages as its 
“partner” Checker process. 

b. Storing its virtual page number to the corresponding data frame in memory. 

c. Storing a special number in memory that uniquely identifies itself in the last 
12 bits of the datum. 

d. Recording the total translation cache hits and misses that occur during its 
execution. 

These conditions guarantee that if a bug in ATCAs of any level occurs, the Checker 
process either executes part of the Exerciser’s code, or recognizes that it reads data from 
the Exerciser. Further, PMCs are used to recognize if a bug affects only performance, for 
example, unintended invalidations or false misses (during the second execution). 

 Checkers 

The Checker process is used to test whether there is a divergence from the correct (bug-
free) behavior, while the Exerciser exercises and stresses the ATCAs. It is essential for 
the Checker to be realized as a different process (so that a context switch occurs) in order 
to validate the valid bit, and as a simple procedure (in the same process with the 
Exerciser) at the end of the exercising code (without a context switch) to validate the tag 
and data fields. There are also alternative techniques that can cause a change to the 
state of the valid bit, although they are more complicated. The Checker performs load 
operations to the last N virtual pages (data and instruction pages), which have been 
accessed by the Exerciser, and then it checks if the ATCAs operate correctly. Specifically, 
the Exerciser previously performed N stores to the memory to N different data pages, and 
the Checker performs N loads from the same VAs. Because the virtual-to-physical 
address mappings are different between any two processes, the fetched datum must not 
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be equal to the Checker’s current VA. If the fetched datum has the same VA and it is a 
global page, the Checker also performs a comparison with its PID to the last 12 bits. 
When the Checker validates the data pages, a mismatch in a comparison indicates the 
existence of a bug. 

In the validation of instruction pages, consider, for example, that the Exerciser’s code 
(instruction pages) is located in the physical frames (PFN) shown in Table 7. Although 
the Exerciser and Checker processes have the same VAs, their mappings to the PA are 
different. When the Checker is invoked after the Exerciser’s execution and a bug occurs 
in ATCAs, it is likely that the Checker will execute part of the code of the Exerciser, if, for 
example, there was a stale entry in the ITLB. To get knowledge of this, the Checker also 
has a counter increased by one for each jump to the next instruction page. At the end of 
the Checker’s execution, this counter must have a value equal to N. If, for example, the 
counter equals to N-1, the Checker can recognize that one of its instruction pages has 
not been executed. Further, the Checker records the total number of translation cache 
hits and misses from PMCs, as the Exerciser. 

Apart from a context switch, which automatically invalidates the ATCAs (by writing the 
CR3 register in x86 – see details in subsection 2.1.3), there are also implicit instructions 
that invalidate the ATCAs. This is usually when a page table entry modification is done 
by the kernel. To avoid a context switch that will again invalidate the ATCAs, the Checker 
is not a process; it is a procedure at the end of the Exerciser and thereby validates the 
functionality of such instructions. Similarly, the Checker is used as a procedure to validate 
false hits and false mappings. When the Checker is a procedure, there is also a need to 
use different conditions for the comparisons: the jne instructions in the code are changed 
to je instructions. Assume, for example, that the Exerciser stops its execution, and the 
code of the Checker (realized as a procedure now) is executed (without invalidation). 
Practically, the Checker will load the data from the same VAs to which the Exerciser 
previously stored its VPNs. If a fetched datum is not equal with its VA, a false hit or a false 
mapping occurred. The limitation here is that the debug engineers cannot distinguish 
whether the bug is due to a false hit or due to a false mapping. 

 Example of the Proposed Validation Flow 

In this section, we present some examples of the proposed validation flow (a bug-free 
flow, an ignored invalidation in ITLB, and an ignored invalidation in DTLB), which consist 
of the two processes, the Exerciser and the Checker. Assume, for example, that we 
validate the data and instruction TLBs, and there is no bug in both of them, so the 
validation test should pass. Moreover, we assume for simplicity that the addresses are 
16-bits long (plus a 12-bits offset), the size N of the TLBs is 4 entries, and the main 
memory has been initialized with zero values before the validation process begins. We 
also use the address mappings of Table 7 as a reference. 

As shown in Figure 23, the Exerciser process is first invoked for execution. Each block 
represents an instruction page in memory, with its virtual-to-physical address mappings 
shown on the right. Each instruction page contains two main instructions: a store 
operation, and a jump to stride across instruction pages. Data and instruction caching 
arrays are exercised concurrently. Each store operation stores its own VPN. For example, 
the value 0x4567 is stored to VA = 0x4567XXX. Then, there is a jump to the next 
instruction page, in which the same procedure takes place. The last instruction page 
records the total number of hits and misses of the Exerciser code, and the Checker is 
invoked. Upon a context switch, the ATCAs must get invalidated.  
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After the context switch, as we can see in the TLB entries, all entries are invalidated 
correctly (all valid bits are zero). Although the Checker accesses the same virtual 
addresses as the Exerciser, it will miss the TLBs, so the Checker passes the test. The 
first Checker instruction page initializes a counter, performs a load from the 
VA = 0x4567XXX and compares the fetched datum. Given that the DTLB is correctly 
invalidated, this virtual address will miss the TLB, so the fetched datum that returns will 
be different from the previous store of the Exerciser (practically it will be zero due to the 
initialization of physical memory with zero values performed before the validation process 
begins). The process continues with hops across the same virtual addresses of instruction 
pages as the Exerciser. On the last page, there are also two more comparisons: with the 
counter (to detect if a bug occurs in an instruction page) and with the total number of 
cache hits and misses (to detect if there is a bug that affects only performance, such as 
false miss and unintended invalidation). Given that there is no error in the procedure, the 
validation test passes.  

Figure 23: Validation test flow example – Pass; no bug detected. 
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In an execution with a bug, consider, for example, that an ignored invalidation occurs in 
ITLB, after the execution of the Exerciser process, as shown in Figure 24. When the 
Checker attempts to jump to the instruction page with VA = 0x2345XXX, due to the 
ignored invalidation of that entry in ITLB, it will hit the ITLB; hence, it will execute the 
corresponding code of the Exerciser process and the counter (that exists in the hashed 
block) will not be increased. The hashed block in the Checker process is not executed, 
so the comparison of a counter at the end of the Checker does not match. Therefore, the 
validation test fails due to the ignored invalidation of the ITLB. 

Assume now that an ignored invalidation occurs in DTLB, as shown in Figure 25. As a 
result, when the Checker process attempts to load a datum from VA = 0x5678XXX, it will 
go through the cached translation that exists in the DTLB (stale entry), so the datum from 
PA = 0xFFAAXXX will be fetched. As we can see in the physical memory state, the 
Exerciser process has stored its virtual addresses as data values into the memory. In a 
bug-free execution, when the Checker attempts to read data from VA = 0x5678XXX, it 
must read a zero value (which is the initial value). Instead, due to the ignored invalidation 

Figure 24: Validation test flow - Ignored Invalidation in ITLB. 
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in DTLB, it incorrectly reads the value 0x5678. When the Checker process loads the 
datum stored in VA = 0x5678XXX, it will hit the DTLB due to the ignored invalidation, and 
the fetched datum will be equal to its virtual address. This means the Checker process 
reads data from the Exerciser’s address space, and the validation test fails. The grayscale 
hashed blocks in Figure 25 are not executed at all.  

Figure 25: Validation test flow - Ignored Invalidation in DTLB. 
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VPN: 0x1234

VPN: 0x2345

PFN: 0x2233

PFN: 0x3344

PFN: 0x1122

VPN: 0x3456

PFN: 0x4455

PFN Datum

0xEEFF 0x4567

0xFFAA 0x5678

0xFFBB 0x6789

0xFFCC 0x7890

0x5566 0x0

0x6677 0x0

0x7788 0x0

0x8899 0x0

Physical Memory State 

After Invalidation
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2.9 Experimental Evaluation 

 Experiment Setup 

To evaluate the effectiveness of the proposed post-silicon validation method, we employ 
random-generated validation programs, each targeting a different bug scenario shown in 
Table 6. We implemented the test generation using a mix of assembly-level and C 
programs. To compare the proposed method with a traditional post-silicon validation flow, 
we developed assembly-level validation programs; these have a number of executed 
instructions that is comparable to the validation tests of our method.  

We configured the Gem5 simulator with 64 ITLB entries, 64 DTLB entries, 2 PML4 cache 
entries, 8 PDP cache entries, and 32 PD cache entries (for data and instructions); 
however different sizes do not provide limitations for the proposed method. We modified 
the Gem5 simulator to support the injection of random, non-deterministic bugs in the 
address translation caching arrays of the x86-64 model, by covering as many erroneous 
conditions that may occur in prototype chips as possible. We also modeled the ATCA-
related errata described in Table 5. With these two approaches, our simulator resembled 
a realistic “buggy” microprocessor prototype chip. We also developed a custom minimal 
kernel to create a realistic bare-metal post-silicon validation “environment” and execute 
our validation programs. 

Bare-metal modeling on Gem5 was a major part of our development work, enabling it to 
resemble the real hardware infrastructure. Our kernel initiates all the procedures required 
to set up the paging interface needed to operate in Long Mode (x86-64). It also offers a 
fundamental infrastructure for the virtual memory mappings of two different processes.  

Figure 26 summarizes the proposed post-silicon validation flow as it is modeled in the 
Gem5 simulator. This procedure can also be integrated in a real prototype chip without 
modifications in the kernel or validation tests. The kernel is responsible for initiating and 
managing the processes and their address spaces needed for the validation tests. The 
host (simulator) generates bugs (by alternate random bits in each field) according to each 
phenomenon described in Table 6, and applies the bug into a random entry of ATCAs. 
Furthermore, it records the total amount of translation cache hits and misses. In a real 
microprocessor chip this is done by reading the performance monitoring counters. At the 
end of execution, the validation test reports whether the test succeeded or failed.  

 Results 

To evaluate the effectiveness of the proposed method, we performed massive injections 
of random bugs. Each validation test consisted of 200K committed instructions. Table 8 
presents the total number of bugs injected in ATCAs applied to each different entry, as 
well as the ATCA-related bugs presented in official errata sheets. These bugs were 
applied to all available entries of ATCAs for four different patterns of virtual address 
spaces.  

Figure 27 summarizes the results of our bug injection experiments. Our proposed 
methodology detected all 2559 bugs injected into the Gem5 simulator (bug coverage 
100%). On the other hand, we compared the proposed method to the end-of-test checking 
techniques, which detected only 255 injected bugs (bug coverage 9.97%). This difference 
is due to the limitations of these techniques in the validation flow, given that they check if 
the output of the DUV is equivalent to a golden reference output. In most of the cases 
(2304 out of 2559 bugs), although a bug is excited, it does not affect the output. For 
example, as we presented in subsections 2.7.2 and 2.7.3, false mappings are easier for 
a traditional validation test to detect, in contrast to other bug scenarios. Consequently, 
false mappings have significantly higher detection rates.  
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Figure 26: Proposed post-silicon validation flow and the experiment setup. 
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2.10 Related Work 

Recent studies have proposed a comprehensive analysis and classification of bug 
models for different microprocessor hardware structures [118] [123] [124], but not for the 
address translation mechanisms. Recent approaches have employed the inherent ISA 
diversity and reversibility to generate self-checking silicon validation programs for 
microprocessor cores [212] [219] and other solutions that also target bugs inside the 
processor cores [117]. These methods alone are not sufficient for detecting the majority 
of bugs in ATM because the self-checking property is achieved by validation program 
modifications at the instruction level. 

Other works contribute in difficult post-silicon validation issues, such as reducing error 
detection latencies in in-core bugs and cache consistency, but all of them require 
hardware modifications and neither method proposes solutions for the critical mechanism 
of address translation [117] [220]. The work presented in [213] combines self-checking 
validation programs (which can be generated by any of the previous approaches) with 
deconfigurable hardware structures to enhance root cause analysis of bugs inside the 
core, but it is also insufficient for detecting bugs in ATM. 

Table 8: Number of different type of bugs for each phenomenon. 

Phenomenon Number of Bugs 

 Random Errata 

False Hit / False Miss 1360 2 

False Mapping 680 1 

Ignored Invalidation 256 4 

Unintended Invalidation 256 – 

Total 2552 7 

 

9.97%

100%

2559

255

Proposed Traditional

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

Data Instr Data Instr Data Instr Data Instr Data Instr

False Hit False 

Mapping

Ignored 

Ivalidation

False Miss Unintended 

Invalidation

Traditional End-of-Test Checking

Figure 27: Bug coverage for the proposed method vs. traditional end-of-test checking techniques. 
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 Measuring Voltage Guardbands of Server-Grade ARMv8 CPU Cores 

During chip fabrication, process variations can affect transistor dimensions (length, width, 
oxide thickness etc. [81]) which have a direct impact on the threshold voltage of a MOS 
device5 [82]. As technology scales, the percentage of these variations compared to the 
overall transistor size increases and raises major concerns for designers, who aim to 
improve energy efficiency. Devices variation during fabrication known as static variation 
and remains constant during the chip lifetime. On top of that, transistor aging and dynamic 
variation in supply voltage and temperature, caused by different workload interactions, is 
also of primary importance. Both static and dynamic variations lead microprocessor 
architects to apply conservative guardbands (operating voltage and frequency settings) 
to avoid timing failures and guarantee correct operation, even in the worst-case conditions 
excited by unknown workloads or the operating environment [5] [83]. However, these 
guardbands impede the power consumption. To bridge the gap between energy efficiency 
and performance improvements, several hardware and software techniques have been 
proposed, such as Dynamic Voltage and Frequency Scaling (DVFS) [77]. The premise of 
DVFS is that the microprocessor’s workloads as well as the cores’ activity vary. Voltage 
and frequency-scaling during epochs where peak performance is not required enables a 
DVFS-capable system to achieve average energy-efficiency gains without affecting peak-
performance adversely. However, energy-efficiency gains are limited by the pessimistic 
guardbands. 

Revealing and harnessing the pessimistic design-time voltage margins offers a significant 
opportunity for energy-efficient computing in multicore CPUs. The full energy savings 
potential can be exposed only when accurate core-to-core, chip-to-chip, and workload-
to-workload voltage scaling variation is measured. When all these levels of variation are 
identified, system software can effectively allocate hardware resources to software tasks 
matching the capabilities of the former (undervolting potential of the CPU cores) and the 
requirements of the latter (for energy or performance). Although characterization studies 
for CPUs and GPUs have been presented recently [5] [6] [7] [8] [9], they primarily focus 
on coarse-grained identification of the Vmin values, i.e., the voltage level at which no type 
of anomaly is observed in program execution of a particular core. Furthermore, these 
studies focus primarily on x86 and POWER-series enterprise-class server systems, 
whose summary is shown in Table 9; studies on GPU chips have been reported as well. 

                                            

5 The threshold voltage, commonly abbreviated as Vth, of a field-effect transistor (FET) is the minimum gate-
to-source voltage VGS (th) that is needed to create a conducting path between the source and drain 
terminals. It is an important scaling factor to maintain power efficiency. 

Table 9: Summary of studies on commercial chips. 

ISA Processor Technology Reference 

POWER 7 / 7+ IBM Power 750, 780 45 / 32 nm [6] and [84] 

IA-64 Intel Itanium 9560 32 nm [7] and [8] 

x86-64 
Intel i7-3970X,  

i5-4200U 
32 / 22 nm [157] 

Nvidia Fermi / Kepler 
GTX 480, 580, 680, 

780 
40 / 28 nm [9] 
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In this chapter, we present the third contribution of this thesis, which is a detailed system-
level voltage scaling single-core characterization study for ARMv8-based CPUs 
manufactured in 28nm. The study’s backbone is a fully automated system-level 
framework built around Applied Micro’s (APM) X-Gene 2 micro-server. The automated 
infrastructure aims to increase the throughput of massive undervolting campaigns that 
require multiple benchmarks execution at several voltage supply levels of all individual 
cores. The automated characterization process requires minimal human intervention and 
records all possible abnormalities due to undervolting: silent data corruptions (SDC, e.g., 
program output mismatches without any hardware error notification), corrected errors, 
uncorrected (but detected) errors (provided by Linux EDAC driver [136]), as well as 
application and system crashes [10]. 

Towards the formalization of the behavior in undervolting conditions we also present the 
definition of a simple consolidated function; the Severity function. Severity function 
aggregates the effects of reduced voltage operation in the cores of a multicore CPU by 
assigning values to the different abnormal observations. The lower the voltage level, the 
higher the value of the severity function. The severity function assists an undervolting 
classification of the cores of a CPU chip for a given benchmark: different core, benchmark 
and voltage values lead to different severity patterns, some with an abrupt increase to the 
severity (e.g., the benchmark keeps executing correctly until a voltage level at which the 
system crashes), while others have a “smooth” severity increase while voltage is reduced 
(the system remains responsive throughout a range of voltage values but it generates 
ECC errors or produces SDCs). The fine-grained analysis of the behavior of the machine 
using the severity function can assist energy efficiency decisions for task-to-core 
allocation by the system software.  

Our comprehensive characterization for ARMv8-based multicore CPUs confirms that a 
different microarchitecture, circuit design or manufacturing technology exhibits different 
abnormal behavior when operating beyond nominal voltage conditions. Understanding 
the behavior in non-nominal conditions is very important for making software and 
hardware design decisions for improved energy efficiency that preserves correctness of 
operation. The characterization modeling of our study can be effectively used to support 
design and system software decisions to harness voltage margins and thus improve 
energy efficiency while preserving operation correctness. 

3.1 System Architecture 

For the study described in this chapter we use Applied Micro’s (APM – now Ampere 
Computing) X-Gene 2 microprocessor for all of our experiments and results. The X-Gene 
2 microprocessor chip consists of eight 64-bit ARMv8 cores. It also includes the Power 
Management processor (PMpro) and Scalable Lightweight Intelligent Management 
processor (SLIMpro) to enable breakthrough flexibility in power management, resiliency, 
and end-to-end security for a wide range of applications. The PMpro, a 32-bit dedicated 
processor provides advanced power management capabilities such as multiple power 
planes and clock gating, thermal protection circuits, Advanced Configuration Power 
Interface (ACPI) power management states and external power throttling support. The 
SLIMpro, 32-bit dedicated processor monitors system sensors, configure system 
attributes (e.g., regulate supply voltage, change DRAM refresh rate etc.) and access all 
error reporting infrastructure, using an integrated I2C controller as the instrumentation 
interface between the X-Gene 2 cores and this dedicated processor. SLIMpro can be 
accessed by the system’s running Linux Kernel.  
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X-Gene 2 has three independently regulated power domains (as shown in Figure 28): 

1. PMD (Processor Module) – red hashed line: Each PMD contains two ARMv8 
cores. Each of the two cores has separate instruction and data caches, while they 
share a unified L2 cache. The operating voltage of all four PMDs together can 
change with a granularity of 5mV beginning from 980mV. While PMDs operate at 
the same voltage, each PMD can operate in a different frequency. The frequency 
can range from 300MHz up to 2.4GHz at 300MHz steps. 

2. PCP (Processor Complex)/SoC – green hashed line: It contains the L3 cache, 
the DRAM controllers, the central switch and the I/O bridge. The PMDs do not 
belong to the PCP/SoC power domain. The voltage of the PCP/SoC domain can 
be independently scaled downwards with a granularity of 5mV beginning from 
950mV. 

3. Standby Power Domain – golden hashed line: This includes the SLIMpro and 
PMpro microcontrollers and interfaces for I2C buses. 

4. Table 10 summarizes the most important architectural and microarchitectural 
parameters of the APM X-Gene 2 micro-server that is used in our study. 

Figure 28: X-Gene 2 micro-server power domains block diagram. The outlines with dashed lines 
present the independent power domains of the chip. 
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3.2 Automated Characterization Framework Overview 

The primary goals of the proposed framework are: (1) to identify the target system’s limits 
when it operates at scaled voltage and frequency conditions, and (2) to record/log the 
effects of a program’s execution under these conditions. The framework provides the 
following features: 

▪ It compares the outcome of the program with the correct output of the program 
when the system operates in nominal conditions to record Silent Data Corruptions 
(SDCs), 

▪ It monitors the exposed corrected and uncorrected errors from the hardware 
platform’s error reporting mechanisms  

▪ It recognizes when the system is unresponsive to restore it automatically, 
▪ It monitors system failures (crash reports, kernel hangs, etc.), 
▪ It determines the safe, unsafe and non-operating voltage regions for each 

application for all frequencies, and 
▪ It performs massive repeated executions of the same configuration. 

The automated framework (outlined in Figure 29) is easily configurable by the user, can 
be embedded to any Linux-based system, with similar voltage and frequency regulation 
capabilities, and can be used for any voltage and frequency scaling characterization 
study.  

To completely automate the characterization process, and due to the frequent and 
unavoidable system crashes that occur when the system operates in reduced voltage 
levels, we set up a Raspberry Pi board connected externally to the X-Gene 2 board which 
behaves as a watchdog. The Raspberry is physically connected to both the Serial Port 
and the Power and Reset buttons of the system board to enable physical access to the 
system. 

We discuss the several challenges that were taken into consideration for a solid 
development of such a framework.  

Safe Data Collection. Given that a system operating beyond nominal conditions often 
has unexpected behaviors (e.g., file system driver failures), there is the need to correctly 
identify and store all the essential information in log files (to be subsequently parsed and 
analyzed). The automated framework was developed in such a way to collect and store 
safely all the necessary information about the experiments. 

Table 10: Basic Characteristics of X-Gene 2. 

Parameter Configuration 

ISA ARMv8 (AArch64, AArch32, Thumb) 

Pipeline 64-bit OoO (4-issue) 

CPU 8 Cores, 2.4GHz 

L1 Instruction Cache 32KB per core (Parity Protected) 

L1 Data Cache 32KB per core (Parity Protected) 

L2 Cache 256KB per PMD (SECDED Protected) 

L3 Cache 8MB (SECDED Protected) 
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Failure Recognition. Another challenge is to recognize and distinguish the system and 
program crashes or hangs. This is a very important feature to easily identify and classify 
the final results, with the most possible distinct information concerning the 
characterization. 

Reliable Cores Setup. Another major challenge we also face is that the characterization 
of a system is performed primarily by using properly chosen programs in order to provide 
diverse behaviors and expose all the potential deviations from nominal conditions. It is 
thus important to run the selected benchmarks in reliable cores setup. This means that 
the cores, where the benchmark runs, must be isolated and unaffected from the other 
active processes of the kernel in order to capture only the effects of the desired 
benchmark.  

Iterative Execution. The non-deterministic behavior of the characterization results due 
to several microarchitectural features makes necessary to repeat the experiments 
multiple times with the same configuration to eliminate the probability of misleading 
results.  

As shown in Figure 29, the proposed framework consists of three phases (Initialization, 
Execution, Parsing). In the following subsections, we analyze each of these functionalities 
grouped in the 3 distinct phases of the framework’s execution (Initialization, Execution, 

Figure 29: Margins Characterization Framework Layout. 

Results

Voltage / 

Frequency 

Regulation

Serial

Network

Results 

Parsing

Execution Loop

Reset Switch

Power Switch

Watchdog

Monitor

Raw Data

Final csv/json Results

Initialization

Nominal 

Voltage

Benchmarks Configuration

Initialization Phase

Execution Phase

Parsing Phase



Methods for Robust and Energy-Efficient Microprocessor Architectures 

G. Papadimitriou 100 

Parsing), and describe their detailed implementation and how these challenges were 
overcome. 

 Initialization Phase 

During the initialization phase, a user can declare a benchmark list with any input dataset 
to run in any desirable characterization setup. The characterization setup includes the 
voltage and frequency (V/F) values under which the experiment will take place and the 
cores where the benchmark will be run; this can be an individual core, a pair of cores in 
the same PMD (Processor MoDule – pair of cores), or all of the available eight cores in 
the microprocessor. The characterization setup depends on the power domains 
supported by the chip, but our framework is easily extensible to support the power domain 
features of different CPU chips. 

This phase is in charge of setting the voltage and frequency ranges, the initial voltage 
and frequency values, with which the characterization begins, and to prepare the 
benchmarks: their required files, inputs, outputs, as well as the directory tree where the 
necessary logs will be stored. This phase is performed at the beginning of the 
characterization and each time the system is restored by the Raspberry (for example, 
after a system crash) in order to proceed to the next run until the entire Execution Phase 
finishes. Each time the system is restored, this phase restores the initial user’s desired 
setup and recognizes where and when the characterization has been previously stopped. 
This step is essential for the characterization to proceed sequentially according to user’s 
choice, and to complete the whole Execution Phase. 

This phase is also responsible to overcome the challenge of reliable cores setup that is 
responsible to ensure the correctness and integrity of our results. The benchmark must 
run in an “as bare as possible” system without the interference of any other running 
process. Therefore, reliable cores setup is twofold: first, it recognizes these cores or group 
of cores that are not currently under characterization, and migrates all currently running 
processes (except for the benchmark) to a completely different core. The migration of 
system processes is required to isolate the execution of the desired benchmark from all 
other active processes.  

Second, given that all the PMDs in the studied system are in the same power domain, 
they always have the same voltage value (in case this does not hold in a different 
microarchitecture the proposed framework can be adapted). This means that even though 
there are several processes run on different cores (not in the core(s) under 
characterization), they have the same probability to affect an unreliable operation while 
reducing the voltage. On the other hand, each individual PMD can have different 
frequency, so we leverage the combination of V/F states in order to set the core under 
characterization to the desired frequency, and all other cores to the minimum available 
frequency in order to ensure that an unreliable operation is due to the benchmark’s 
execution only. When for example the characterization takes place in the PMD0 (meaning 
that the benchmark runs in PMD0; cores 0 and 1), the PMD0 is set to the pre-defined by 
the user frequency (e.g., the maximum frequency 2.4GHz), and all the other PMDs are 
set to the minimum available frequency (300MHz in our case). Thus, all the running 
processes, except for the benchmark, are executed to the reliable-cores setup. 

In our setup, we also use a stripped/lightweight Linux Kernel to diminish the unnecessary 
kernel daemons that the majority of well-known Linux Distributions provide. Thus, the 
system’s running processes and the common power domain of all PMDs, neither affect 
the benchmarks execution nor can contribute to a system’s failure or error event. 
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 Execution Phase 

After the characterization setup is defined, the automated Execution Phase begins. The 
Execution Phase consists of multiple runs of the same benchmark, each one representing 
the execution of the benchmark with a pre-defined characterization setup. The set of all 
the characterization runs running the same benchmark with different characterization 
setups represents a campaign. After the initialization phase, the framework enters the 
Execution Phase, in which all runs take place. The runs are executed according to user’s 
configuration, while the framework reduces the voltage with a step defined by the user in 
the initialization phase. For each run, the framework collects and stores the necessary 
logs at a safe place externally to the system under characterization, which will be then 
used by the parsing phase. 

The logged information includes: the output of the benchmark at each execution, the 
corrected and uncorrected errors (if any) collected by the Linux EDAC Driver [136], as 
well as the errors’ localization (L1 or L2 cache, DRAM, etc.), and several failures, such 
as benchmark crash, kernel hangs, and system unresponsiveness. The framework can 
distinguish these types of failures and keep logging about them to be parsed later by the 
parsing phase. Benchmark crashes can be distinguished by monitoring the benchmark’s 
exit status. On the other hand, to identify the kernel hangs and system unresponsiveness, 
during this phase the framework notifies the Raspberry when the execution is about to 
start and also when the execution finishes. 

In the meantime, the Raspberry starts pinging the system to check its responsiveness. If 
the Raspberry does not receive a completion notification (hang) in the given time (we 
defined as timeout condition 2 times the normal execution time of the benchmark) or the 
X-Gene 2 turns completely unresponsive (ping is not responding), the Raspberry sends 
a signal to the Power Off button on the board, and the system resets. After that, the 
Raspberry is also responsible to check when the system is up again, and sends a signal 
to restart the experiments. These decisions contribute to the Failure Recognition 
challenge. 

During the experiments, some Linux tasks or the kernel may hang. To identify these 
cases, we use an inherent feature of the Linux kernel to periodically detect these tasks 
by enabling the flag “hung_task_panic” [136]. Therefore, if the kernel itself recognizes a 
process hang, it will immediately reset the system, so there is no need for the Raspberry 
to wait until the timeout. In this way, we also contribute to the Failure Recognition 
challenge and accelerate the reset procedure and the entire characterization. 

Note that, in order to isolate the framework’s execution from the core(s) under 
characterization, the operations of the framework are also performed in Reliable Cores 
Setup. However, when there are operations of the framework, such as the organization 
of log files during the benchmark’s execution that are an integral part of the framework, 
and thus, they must run in the core(s) under characterization, these operations are 
performed after the benchmark’s execution in the nominal conditions. This is the way to 
ensure that any logging information will be stored correctly and no information will be lost 
or changed due to the unstable system conditions, and thus, to overcome the Safe Data 
Collection challenge. 

 Parsing Phase 

In the last step of our framework, all the log files that are stored during the Execution 
Phase are parsed in order to provide a fine-grained classification of the effects observed 
for each characterization run. Note that, each run is correlated to a specific benchmark 
and characterization setup. The categories that are used for our classification are 
summarized in Table 11, but the parser can be easily extended according to the user’s 
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needs. For instance, the parser can also report the exact location that the correctable 
errors occurred (e.g., the cache level, the memory, etc.) using the logging information 
provided by the Execution Phase. 

Note that each characterization run can manifest multiple effects. For instance, in a run 
both SDC and CE can be observed; thus, both of them should be reported by the parser 
for this run. Furthermore, the parser can report all the information collected during multiple 
campaigns of the same benchmark. The characterization runs with the same 
configuration setup of different campaigns may also have different effects with different 
severity. For instance, let us assume two runs with the same characterization setup of 
two different campaigns. After the parsing, the first run finally revealed some CEs, and 
the second run was classified as SDC. At the end of the parsing step, all the collected 
results concerning the characterization (according to Table 11) are reported in .csv and 
.json files. 

In Table 12 we can see an example output of the characterization framework. Table 12 
presents a characterization campaign for 1 run and the whole voltage range from the 
nominal voltage (980mV) downwards to the minimum voltage in which the microprocessor 
cannot operate at all. In Table 12 we can see the characterization results for each 
individual core (it shows the results for cores 0, 2, 4, and 6) and for the maximum 
frequency (2.4 GHz). With this detailed table we can observe many different aspects, 
such as the core-to-core variation, the safe Vmin for each different core, the produced 
abnormal behaviors for each core, etc. For example, it is clearly showed that the Core 4 
is the most robust Core, while the Cores 0 and 2 are the most sensitive ones, because 

Table 11: Experimental effect categorization. 

Effect Description 

ΝΟ 

(Normal Operation) 

The benchmark was successfully completed without any 
indications of failure. 

SDC  

(Silent Data Corruption) 

The benchmark was successfully completed, but a 
mismatch between the program output and the correct 

output was observed. 

CE  

(Corrected Error) 
Errors were detected and corrected by the hardware. 

UE  

(Uncorrected Error) 
Errors were detected, but not corrected by the hardware. 

AC 

(Application Crash) 

The application process was not terminated normally (the 
exit value of the process was different than zero). 

TO 

(Application Timeout) 

The application process cannot finish and exceeds its 
normal execution time (e.g., infinite loop). 

SC 

(System Crash) 

The system was unresponsive; meaning that the X-Gene 
2 is not responding to pings or the timeout limit was 

reached. 

 



Methods for Robust and Energy-Efficient Microprocessor Architectures 

G. Papadimitriou 103 

they produce higher safe Vmin than the Core 4. Moreover, for all cores the first detected 
abnormal behavior is the SDC. 

3.3 System Characterization 

We study the behavior of 3 different X-Gene 2 chips by using representative benchmarks 
from the SPEC CPU2006 suite to explore the voltage guardbands for each core of the 
chip, and thus to detect the safe Vmin in which the benchmarks can be executed correctly. 
We also study any abnormal behavior that can be exposed (SDC, ECC errors, crashes, 
etc.) below the safe Vmin levels, for a comprehensive characterization. We present our 
findings for three different chips: one typical chip (TTT), and two corner chips (TFF, and 
TSS).  

From the designer’s point of view, the collective effects of process and environmental 
variation can be lumped into their effect on transistors: typical (also called nominal), fast, 
or slow. In CMOS, there are two types of transistors with somewhat independent 

Table 12: Example output of the characterization framework. 

Benchmark_Name 

mV 0 2 4 6 

980 NO NO NO NO 

: NO NO NO NO 

915 NO NO NO NO 

910 SDC NO NO NO 

905 SDC SDC NO NO 

900 SDC 
1 x L1CE 

SDC 
NO NO 

895 
1 x L1CE 

SDC 
7 x L1CE 

SDC 
NO SDC 

890 
5 x L1CE 

SC 

14 x L1CE 
3 x L2CE 

SDC 
NO SDC 

885 - SC SDC 
3 x L1CE 

SDC 

880 - - SDC 
13 x L1CE 
4 x L2CE 

SDC 

875 - - 
9 x L1CE 

SDC 

5 x L1CE 
2 x L2CE 
1 x L2UE 

AC 

870 - - 

11 x L1CE 
2 x L2CE 
1 x L2UE 

AC 

1 x L1CE 
1 x L2UE 

AC 

865 - - 
1 x L1CE 
1 x L2UE 

AC 
SC 

860 - - SC - 
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characteristics, so the speed of each can be characterized. Moreover, interconnect speed 
may vary independently of devices. When these processing variations are combined with 
the environmental variations, we define design or process corners. The term corner refers 
to an imaginary box that surrounds the guaranteed performance of the circuits, as shown 
in Figure 30. The box is not square because some characteristics such as oxide thickness 
track between devices, making it impossible to find a slow nMOS transistor with thick 
oxide and a fast pMOS transistor with thin oxide simultaneously. 

Table 13 lists a number of interesting design corners. The corners are specified with five 
letters describing the nMOS, pMOS, interconnect, power supply, and temperature, 
respectively. The letters are F, T, and S, for fast, typical, and slow. Circuits are most likely 
to fail at the corners of the design space, so nonstandard circuits should be simulated at 
all corners to ensure they operate correctly in all cases. Often, integrated circuits are 
designed to meet a timing specification for typical processing. These parts may be binned; 
faster parts are rated for higher frequency and sold for more money, while slower parts 
are rated for lower frequency. In any event, the parts must still work in the slowest SSSSS 
environment. Other integrated circuits are designed to obtain high yield at a relatively low 
frequency; these parts are simulated for timing in the slow process corner. The fast corner 
FFFFF has maximum speed. Other corners are used to check for races and ratio 
problems where the relative strengths and speeds of different transistors or interconnect 
are important. The FFFFS corner is important for noise because the edge rates are fast, 
causing more coupling; the threshold voltages are low; and the leakage is high [137] 
[138]. 

Usually, the corners are abbreviated to fewer letters. For example, two letters generally 
refer to nMOS and pMOS. Three refer to nMOS, pMOS, and overall environment. In this 
work we use three letters; the TTT part is the “normal” part, the TFF is a fast corner part, 
which has high leakage but at the same time can operate at higher frequency, and the 
TSS part is a slow corner part which has low leakage and works at lower frequency. All 
microprocessor chips have maximum frequency equal to 2.4 GHz, however, the TSS chip 
may have a lower voltage guardband than the TTT and TFF chips due to its lower power 
leakage. 
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Figure 30: Design corners [138]. 
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 Regions of Operation 

Using the automated framework presented in subsection 3.2, we extensively characterize 
the three X-Gene 2 chips. The characterization process can reveal for each core of the 
CPU three different regions of operation, when the microprocessor operates beyond 
nominal voltage conditions. These are the safe and unsafe operating regions and the 
region in which the system cannot operate (crash region).  

To isolate the impact of temperature that can affect our results, apart from the isolation of 
system processes (see subsection 3.2), we also control the temperature by adjusting the 
CPU’s fan speed accordingly. We stabilize the temperature at 43°C, and thus, all 
benchmarks complete their execution at the same temperature. In Figure 31, Figure 32, 
and Figure 33 we present the results for 10 SPEC CPU2006 benchmarks [141]. All 
programs ran on a single core in each PMD at 2.4 GHz, while the remaining six cores 
(the other 3 PMDs) reliably operated at 300 MHz (see explanation in subsection 3.2). In 
order to consider the non-deterministic behavior of such experiments, we ran every 
undervolting campaign 10 different times (taking into account the long execution times). 
Figure 31, Figure 32, and Figure 33 present in detail for all benchmarks the highest Vmin 
values and the highest crash voltage values of the ten campaigns for the three different 
chips and all the cores of each chip. In all benchmarks, we can notice the three regions 
of operation according to the collected results. These regions are: 

• Safe region (blue): The characterization runs that correspond to this region had 
a normal operation (NO) without any SDCs, errors or crashes.  

• Unsafe region (grey): The characterization runs that correspond to this region 
generate an abnormal behavior (SDC, CE, UE, AC) but not a system crash. 

• Crash region (black): This region includes voltage values in which at least one 
characterization run led to a system crash. 

Table 13: Design corner checks [138]. 

Corner 
Purpose 

nMOS pMOS Wire Vdd Temp 

T T T S S Timing specifications (binned parts) 

S S S S S Timing specifications (conservative) 

F F F F F Race conditions, hold time constraints, noise 

S S ? F S Dynamic power 

F F F F S Subthreshold leakage noise and power 

S S F S S Races of gates against wires 

F F S F F Races of wires against gates 

S F T F F 
Pseudo-nMOS and ratioed circuits noise margins, 
memory read/write, race of pMOS against nMOS 

F S T F F 
Ratioed circuits, memory read/write, race of nMOS 
against pMOS 
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Figure 31: X-Gene 2 characterization results for 4 SPEC CPU2006 benchmarks (bwaves, dealII, 
leslie3d, milc) on three different chips (TTT, TFF, TSS). Blue represents the Safe region; grey 

represents the Unsafe region; and black represents the Crash region. 
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Figure 32: X-Gene 2 characterization results for 4 SPEC CPU2006 benchmarks (cactusADM, 
gromacs, mcf, namd) on three different chips (TTT, TFF, TSS). Blue represents the Safe region; 

grey represents the Unsafe region; and black represents the Crash region. 
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 Vmin Experimental Results 

We experimentally obtain the Vmin values of the 10 SPEC CPU2006 benchmarks on the 
three X-Gene 2 chips (TTT, TFF, TSS), running the entire time-consuming undervolting 
experiments 10 times for each benchmark. These experiments were performed during 6 
months on a single X-Gene 2 machine (for all the 3 microprocessor chips). This part of 
our study focuses on a quantitative analysis of the safe Vmin for different chips of the same 
architecture in order to expose the potential guardbands of each chip, as well as to 
quantify how the program behavior affects the guardband and to measure the core-to-
core and chip-to-chip variation. 

The voltage guardband for each program is the smallest (safe) margin between the 
nominal voltage of the microprocessor and its Vmin. Our single-core experiments were 
performed in the highest available frequency of the X-Gene 2, which is 2.4 GHz. In that 
frequency we observed divergences of the Vmin values as shown in Figure 34. For a 
significant number of benchmarks, we can see variations between different programs and 
different chips. Figure 34 represents all 10 benchmarks for the most robust core for each 
chip (Core 4 in all three microprocessors chips), and for these programs the Vmin varies 
from 885mV to 865mV for TTT (blue line), from 885mV to 860mV for TFF (orange line) 
and from 900mV to 870mV for TSS (green line). Considering that the nominal voltage for 
the X-Gene 2 microprocessors is 980mV, there is a significant reduction of voltage without 
affecting the correct execution of programs, which is equal to at least 9.7% for the TTT 
and TFF chip, and 8.2% for the TSS chip. We also notice in Figure 34 that the workload-

Figure 33: X-Gene 2 characterization results for 2 SPEC CPU2006 benchmarks (soplex, and 
zeusmp) on three different chips (TTT, TFF, TSS). Blue represents the Safe region; grey 

represents the Unsafe region; and black represents the Crash region. 
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to-workload variation remains the same across the 3 chips of the same architecture; 
however, there is a relatively large variation among the chips. This means that there is a 
program dependency of Vmin behavior in all chips.  

 Process Variation 

Figure 31, Figure 32, and Figure 33 present the detailed information about the safe Vmin 
for all benchmarks and cores of the three chips, as well as the range of the unsafe region. 
More specifically, in this section, we discuss the chip-to-chip and core-to-core variation. 

Devices and interconnects have variations in film thickness, lateral dimensions, and 
doping concentrations [139]. These variations can be classified as inter-die (e.g., all the 
transistors on one die might be shorter than normal because they were etched 
excessively) and intra-die (e.g., one transistor might have a different threshold voltage 
than its neighbor because of the random number of dopant atoms implanted). 

For devices, the most important variations are channel length L and threshold voltage Vt. 
Channel length variations are caused by photo-lithography proximity effects, deviations 
in the optics, and plasma etch dependencies. Threshold voltages vary because of 
different doping concentrations and annealing effects, mobile charge in the gate oxide, 
and discrete dopant variations caused by the small number of dopant atoms in tiny 
transistors. Threshold voltages gradually change as transistors wear out. 

For interconnect, the most important variations are line width and spacing, metal and 
dielectric thickness, and contact resistance. Line width and spacing, like channel length, 
depend on photolithography and etching proximity effects. Thickness may be influenced 
by polishing. Contact resistance depends on contact dimensions and the etch and clean 
steps [138]. 

Process variations can be classified as follows: 

▪ Lot-to-lot (L2L) 

Figure 34: Vmin results at 2.4 GHz for 10 SPEC CPU2006 programs on 3 different X-Gene 2 chips 
(TTT, TFF, TSS). 

850

860

870

880

890

900

910

920

930

V
d

d
 (

m
V

)

Guardband

TTT TFF TSS



Methods for Robust and Energy-Efficient Microprocessor Architectures 

G. Papadimitriou 110 

▪ Wafer-to-wafer (W2W) 

▪ Chip-to-Chip, Die-to-die (D2D), inter-die, or within-wafer (WIW) 

▪ Core-to-Core, Within-die (WID) or intra-die 

Chip-to-Chip Variation: Wafers are processed in batches called lots. A lot processed 
after a furnace has been shut down and cleaned may behave slightly differently than the 
lot processed earlier. One wafer may be exposed to an ion implanter for a slightly different 
amount of time than another, causing W2W threshold voltage variation. A die near the 
edge of the wafer may etch slightly differently than a die in the center, causing chip-to-
chip channel length variations. Unless calibrations are made on a per-lot or per-wafer 
basis, L2L and W2W variations are often lumped into the inter-die variations. Inter-die 
variations ultimately make one chip faster or slower than another (this phenomenon finally 
results in Chip-to-Chip variation). They can be handled by providing enough margin to 
cover 2 or 3σ of variation and by rejecting the small number of chips that fall outside this 
bound, as discussed in section 3.3. 

As Figure 31, Figure 32, and Figure 33 show, PMD 2 (cores 4 and 5) is the most robust 
PMD for all three chips (up to 3.6% more voltage reduction compared to the most 
sensitive cores). Green line in Figure 31, Figure 32, and Figure 33 presents the average 
Vmin, and the Red line represents the average Crash voltage point for each chip. Thus, 
we can notice that the TFF chip has lower Vmin points than the TTT chip, in contrast to 
TSS (the chip with lower leakage), which has significantly higher Vmin points than the other 
two chips, and thus, lower power savings. For the unsafe region, on the other hand, we 
notice only small divergences among the chips. 

Core-to-Core Variation: Intra-die variations were once small compared to inter-die 
variations and were largely ignored by digital designers but have become quite important 
in nanometer processes. Some intra-die variations are spatially correlated; these are 
called process tilt. For example, an ion implanter might deliver a larger dose near the 
center of a wafer than near the periphery, causing threshold voltages to tilt radially across 
the wafer. In summary, transistors on the same chip match better than transistors on 
different chips and adjacent transistors match better than widely separated ones. Intra-
die variations are more challenging to manage because some of the millions or billions of 
transistors on a chip are likely to stray far from typical parameters. This phenomenon 
finally leads to the Core-to-Core variation.  

As shown in Figure 31, Figure 32, and Figure 33, there are significant divergences among 
cores for the same benchmark due to process variation. Process variations can affect 
transistor dimensions (length, width, oxide thickness, etc.) which have direct impact on 
the threshold voltage of a MOS device. More specifically, variation has a minor impact on 
dynamic energy, but a major impact on static leakage energy [140]. Variation shifts the 
minimum energy and energy-delay product (EDP) operating points toward a higher supply 
and threshold voltage, and reduces the potential benefits in operating at these points, and 
thus, the guardband of each core. This variation among cores of the same chip can result 
in high energy savings by using the appropriate task scheduling. We present and discuss 
this method in the following subsection. 

 Abnormal Behaviors below Vmin 

Variation can also cause circuits to malfunction, especially at low voltage. Previous 
studies on Intel Itanium CPUs [7] [8] have shown a large region of voltage values that 
contains only ECC corrected errors during undervolting. By reducing the voltage on those 
chips, the number of corrected errors increases gradually for quite many voltage steps 
until it exposes other types of abnormal behavior (SDCs, uncorrected errors, crashes). In 
such systems, ECC corrected errors can serve as proxies for the effects of undervolting. 
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In contrast to these studies, a major finding of our characterization for ARMv8-compliant 
multicore CPUs is that silent data corruptions appear at higher voltage levels than 
corrected errors alone for any benchmark. In [7] and [8], the reported range of voltage 
levels with corrected errors alone offers a significant opportunity for energy savings 
without jeopardizing correctness of operation. High correctable error rate is helpful to an 
ECC guided voltage speculation but this is not the case in the APM X-Gene 2 in our case.  

To justify the differences between X-Gene 2 and previous studies on Itanium [7] [8], we 
developed and ran self-tests that separately stress each cache level independently as 
well as the ALU and FPU (we provide details about the development of these tests later 
in this thesis in subsection 3.6). Cache tests completely fill the cache arrays and flip all 
the bits of each cache block to check for cell bit errors during undervolting. ALU and FPU 
tests perform multiple different concurrent operations in each unit with random values to 
stress different paths and conditions. Through this component-focused stress process we 
observed the following: (1) SDCs occur when the pipeline gets stressed (ALU and FPU 
tests), and (2) the cache bit-cells safely operate at higher voltages (the cache tests crash 
in much lower voltages than the ALU and FPU tests). This observation leads us to 
conclude that the X-Gene 2 is more susceptible to timing-path failures than to SRAM   
array failures.  

In contrast, ECC corrections appear at a higher voltage on the Itanium compared to SDCs 
and system crashes. We attribute the increased robustness to timing-failures on the 
Itanium to circuit-level dynamic-margin mitigation techniques such as the capability to 
perform continuous clock-path de-skewing during dynamic operation [142]. The X-Gene 
2 does not deploy such circuit-level techniques, and thereby, generates SDCs due to 
timing-path failures.  Having the occurrence of SDCs first, it is not possible to easily guide 
the voltage speculation for prediction based on the manifested errors. For that reason, 
we present the severity function both for quantifying the severity and for illustrating the 
scaling of abnormal behaviors due to voltage reduction. The new metric’s contribution is 
twofold: (1) to aggregate the results produced by multiple runs, and (2) to quantify a 
microprocessor’s ability to operate beyond nominal conditions and especially beyond the 
safe Vmin. 

 Severity Function 

Note that each characterization run can manifest multiple effects. For instance, in a run 
both SDC and CE can be observed; thus, both of them are reported for this run. Due to 
the non-determinism of the characterization in real hardware, all the information collected 
during multiple campaigns of the same benchmark (iterative execution) is also reported 
by our severity function. To quantify the criticality of the effects of different experimental 
runs of different campaigns with the same setup, we define the “severity function” Sv, 
where v is the voltage, as follows: 

 

Sv = WSDC  ∙ 
SDC

N
 + WCE  ∙ 

CE

N
 + WUE ∙ 

UE

N
 + WAC ∙ 

AC

N
 + WTO ∙ 

TO

N
 + WSC ∙ 

SC

N
 

 

In this function, the parameters SDC, CE, UE, AC, TO and SC can take values from 0 to 
N (N is the number of runs at voltage level v), and represent the times that the effect 
appears to these runs (for example, if k of the N runs lead to UE, then parameter UE is 
set to k; the actual number of uncorrected errors during each run is not taken into 
consideration). Parameters WSDC, WCE, WUE, WAC, WAC and WSC represent “weights” that 
can be arbitrarily set to characterize the severity of each effect of Table 11. The higher 
the weight, the more critical the effect is considered by our function, and the main role of 
these weights is to “translate” the behaviors (SDCs, etc.) to numbers in order to fit to the 
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equation. We use the values presented in Table 14 as the values for our severity function 
(but different weight values can be also used according to the importance of each 
observed abnormal behavior in a particular system study). 

Figure 35 to Figure 44 show the severity of all executed benchmarks on TTT chip. As an 
example, Figure 35 has a significantly large unsafe region, and it also provides a smooth 
gradual increase of severity while the voltage is reduced. These results are derived from 
10 executions of the same campaign. According to the severity value for each voltage 
level, one can decide if and when it is possible to reduce the voltage further (lower than 
the safe Vmin where severity is 0) for more aggressive energy efficiency.  

 

Table 14: Weights used in our experiments. 

Weight Value 

WSC 16 

WAC 8 

WTO 8 

WSDC 4 

WUE 2 

WCE 1 

WNO 0 

 

Figure 35: bwaves benchmark severity on TTT chip cores. 
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Figure 36: cactusADM benchmark severity on TTT chip cores. 
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Figure 37: dealII benchmark severity on TTT chip cores. 
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Figure 38: gromacs benchmark severity on TTT chip cores. 
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Figure 39: leslie3d benchmark severity on TTT chip cores. 



Methods for Robust and Energy-Efficient Microprocessor Architectures 

G. Papadimitriou 115 

 

 

 

16.0 16.0 16.0 16.0
13.3 10.7 13.3 13.3
13.3 8.0 13.3 13.3

16.0 16.0 5.3 5.3 8.0
13.3 13.3 16.0 16.0 5.3 10.7
13.3 8.0 13.3 13.3 2.7
5.3 13.3 8.0

5.3 2.7
5.3
5.3
5.3

Core 0 Core 1 Core 2 Core 3 Core 4 Core 5 Core 6 Core 7

850

860

870

880

890

900

910

920

930

940

950

960

970

980

m
V

mcf Core severity

Figure 40: mcf benchmark severity on TTT chip cores. 
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Figure 41: milc benchmark severity on TTT chip cores. 
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Figure 42: namd benchmark severity on TTT chip cores. 
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Figure 43: zeusmp benchmark severity on TTT chip cores. 
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The severity function is essential primarily for speculation, because (1) it collects all 
needed information in one metric, (2) it incorporates the small divergences across multiple 
executions (10 executions in our case), (3) it measures the mean severity for each voltage 
step in each core, and (4) it assigns numbers to behaviors (SDC, CE, etc.), and thus, it is 
easy to use by any software daemon.  

 Suggestions for Undervolting Effects Mitigation in X-Gene 2-like CPUs 

A static Vmin point does not contain any information about the severity of operating at 
voltages below the safe Vmin, but severity does so. Therefore, having knowledge about 
the severity below the safe Vmin for each workload, one can decide if it is possible to be 
more aggressive to set the voltage below the safe Vmin, and thus, to save more power.  

Depending on the actual characterization findings (Vmin and severity) for a CPU core 
during undervolting, certain hardware-based or software-based mitigation approaches 
can be employed to maximize the energy savings while preserving the correctness of 
program execution6. The primary aspect that determines the most suitable approach is 
the first observed effect as undervolting goes down the voltage levels. We select the 
following behaviors using the severity function described in subsection 3.3.5. For each 

                                            

6 Our severity metric can be used above existing circuit-based techniques such as adaptive clocking. For 

instance, in the mechanism proposed in [142] adaptive-clocking can reduce the voltage at which SDCs 
occur. The frequency with which adaptation is deployed can be an input to our framework, thereby limiting 
the potential for performance degradation due to excessive deployment of adaptive-clocking induced 
frequency slowdown.   
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Figure 44: soplex benchmark severity on TTT chip cores. 
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case we describe the behavior, discuss the severity function values and corresponding 
mitigation approaches. 

▪ Nothing abnormal (severity=0). The voltage range is absolutely safe (above 
the Vmin of a core); no mitigation action is required. System operation in this range 
is the most conservative option and no mitigation provision is needed. Energy-
savings are the minimum. 

▪ Corrected errors first (severity=1). This is a voltage range with the behavior 
as the one observed in [7] [8] for Intel’s Itanium (not in our X-Gene 2 machine). 
In such a case, ECC hardware serves as a proxy for abnormal behavior due to 
undervolting but program operation is still correct. Significant energy savings can 
be obtained without any mitigation other than the ECC correction but going 
further down the voltage is risky. 

▪ SDCs alone (severity=4) or with corrected and uncorrected errors 
(severity=5-7). Voltage ranges with these behaviors generate incorrect program 
outputs and require extra mitigation approaches. The characterization of our X-
Gene 2 system shows that the first abnormal behavior generated by undervolting 
belongs here for the majority of benchmarks and corrected errors as observed 
in [7] [8] do not appear first alone in our system. In particular, the cases where 
SDCs appear alone (severity=4) are the worst ones since there is no indication 
about the malfunction of the system; these areas should be avoided. When an 
eventual SDC (output mismatch) is accompanied by corrected or uncorrected 
error notifications, recovery actions can be employed such as rollback to a 
previously stored check-point or program re-execution in safe voltage and 
frequency combinations. There are also many applications that can tolerate 
SDCs and benefit from the severity function. These applications are (1) 
approximate computing algorithms, (2) video streaming and other image and 
video processing, (3) security-oriented applications such as jammer attacks 
detectors, etc. These applications are tolerant to faults, as they have minor 
impact on the returned output. For such applications, severity <=4 can be used 
for improving energy efficiency.   

▪ Application and system crashes (or application timeouts) with or without 
corrected and uncorrected errors (severity 8-19). Voltage levels with this 
behavior (the result of massive hardware malfunction) are well beyond the limits 
of cores operation in undervolted conditions. Application or system 
unresponsiveness is systematic in these ranges and unless serious hardware 
re-design is employed these ranges are unusable. 

3.4 Design Enhancements 

Undervolting characterization studies such as the one we report in this thesis can be used 
to provide hardware design recommendations for enhancements if the system (or its 
future revisions) is to be used in scaled voltage conditions for energy efficiency. There 
are some key hardware design guidelines that our analysis delivers for a system with 
similar behavior as the X-Gene 2 machine: 

▪ Stronger error protection. SECDEC ECC protection at the lower levels of the 
memory hierarchy does not provide enough protection at lower voltages. If (a) 
stronger ECC codes are employed [146] [147] and (b) more blocks are protected, 
SDC behavior with or without errors will have significant probability to be 
transformed to corrected errors behavior similarly to [7] and [8]. Employing 
stronger ECC protection has been also reported in [148] for scaled voltage 
operation. 
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▪ Hardware detectors. If stronger ECC protection is too costly other types of 
hardware support can be employed for voltage emergencies detection such as 
the skitter circuit [149] [150] [151] also cited in [143] or the monitoring circuits 
used in Power7+ designs [84].  

▪ Finer-grained voltage domains. Our characterization study shows that the 
coarse-grained voltage domains design of X-Gene 2 (a single voltage domain 
for all 8 cores) reduces the potential of energy savings since the voltage value 
of the domain is determined by its weakest core (the one with the higher Vmin). If 
each PMD was designed to operate on a separate voltage domain (similarly to 
the independent frequency domains per PMD) more aggressive voltage scaling 
(and energy savings) would be have been possible. 

Of course, all the above hardware design modifications have their own design complexity, 
area and performance implications which must be jointly considered with the potential of 
energy savings through undervolting. 

3.5 Fast System-Level Voltage Margins Characterization 

The characterization procedure to identify these margins becomes more and more difficult 
and time consuming in modern multicore CPU chips, as the systems become more 
complex and non-deterministic and the number of cores is rapidly increasing [152]. In a 
multicore CPU design, there are significant opportunities for energy savings, because the 
variability of the safe margins is large among the cores of a chip, among the different 
workloads that can be executed on different cores of the same chip and among the chips 
of the same type. 

The accurate identification of these limits in a real multicore system requires massive 
execution of a large number of real workloads (as we have seen in the previous sections) 
in all the cores of the chip (and all different chips of a system), for different voltage and 
frequency values. For instance, to identify the Vmin of each of the eight cores of the Applied 
Micro’s (APM) X-Gene 2 micro-server that is the experimental vehicle of this study, we 
used the SPEC CPU2006 benchmarks and repeated each experiment 10 times starting 
from the nominal voltage value (980mV) until their crash voltage value (~880mV). These 
experiments required about 2 months for a complete characterization for all the cores of 
one microprocessor chip.  

Figure 45(a) shows the estimated time for the characterization of one chip when the 12 
SPEC CPU2006 benchmarks are used and when the micro-viruses (presented in the next 
subsections) are used. Note that the difference would have been much larger if all 29 
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SPEC CPU2006 benchmarks were used. The excessively long time that SPEC-based or 
similar characterization takes, forces manufacturers to introduce the same pessimistic 
guardband for all the cores of the same multicore chips. Clearly, if shorter benchmarks 
are able to reveal the Vmin of each core of a multicore chip (or the Vmin of different chips) 
faster than exhaustive campaigns, finer-grained exploitation of the operational limits of 
the chips and their cores can be effectively employed for energy-efficient execution of the 
workloads.  

In this section, we introduce the development of dedicated programs (diagnostic micro-
viruses), which is the fourth contribution of this thesis and presented in [12]. Micro-viruses 
aim to stress the fundamental hardware components of three different chips (one 
“nominal” and two corner parts) of APM’s X-Gene 2 micro-server family, that are ARMv8-
based multicore CPUs manufactured in 28nm. 

With our diagnostic micro-viruses, we effectively stress (individually or simultaneously) all 
the main components of the chip:  

c. the caches (the L1 data and instruction caches, the unified L2 caches and the last 
level L3 cache of the chips) and  

d. the two main functional components of the pipeline (the ALU and the FPU). 

These diagnostic micro-viruses are executed in very short time (~3 days for the entire 
massive characterization campaign for each individual core for each one microprocessor 
chip) compared to normal benchmarks such as those of the SPEC CPU2006 suite which 
need 2 months as Figure 45(a) shows. The micro-viruses’ purpose is to reveal the 
variation of the safe voltage margins across cores of the multicore chip and also to 
contribute to diagnosis by exposing and classifying the abnormal behaviour of each CPU 
unit (silent data corruptions, bit-cell errors, and timing failures).  

There have been many efforts towards writing power viruses and stress benchmarks. For 
example, SYMPO [159], an automatic system level max power virus generation 
framework, which maximizes the power consumption of the CPU and the memory system, 
MAMPO [160], as well as the MPrime [161] and stress-ng [162] are the most popular 
benchmarks, which aim to increase the power consumption of the microprocessor by 
torturing it; they have been used for testing the stability of the microprocessor during 
overclocking. However, power viruses are not capable to reveal pessimistic voltage 
margins.  

Figure 45(b) shows that the power consumption of a workload is not correlated to the safe 
Vmin (and thus to voltage guardbands) of a core. According to our experiments (presented 
in sections 3.7 and 3.8), libquantum is the most power-hungry benchmark (in the majority 
of X-Gene 2 cores) among the 12 SPEC CPU2006 benchmarks we used. However, 
libquantum’s safe Vmin is significantly lower (20 mV) than the namd benchmark, which 
has lower power consumption.  

The purpose of the proposed micro-viruses is to stress individually the fundamental 
microprocessor units (caches, ALU, FPU) that define the voltage margins variability of 
the microprocessor (previous studies [7] [8] [11] [46] [84] [157] [158] have shown the 
importance of these units for the Vmin). We do not aim to reveal the absolute Vmin (which 
can be identified by worst-case voltage noise stress programs). However, we provide 
strong evidence (IPC and power measurements) that the micro-viruses stress the chips 
more intensively than the SPEC CPU2006 benchmarks. 

3.6 Micro-Viruses Description 

For the construction of the diagnostic micro-viruses we followed two different principles 
for the tests that target the caches and the pipeline, respectively. All micro-viruses are 
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small self-checking pieces of code. This means that the micro-viruses check if a read 
value is the expected one or not. There are previous studies (e.g., [163] and [164]) for the 
construction of such tests, but they focus only on error detection (mainly for permanent 
errors), and to our knowledge this is the first study that is performed on actual 
microprocessor chips; not in simulators or RTL level, which have no interference with the 
operating system and the corresponding challenges.  

In this section, we first present the details of the caches of the X-Gene 2 in Table 15 (the 
rest important X-Gene 2’s specifications were discussed previously in subsection 3.1) 
and then a brief overview of the challenges for the development of such system-level 
micro-viruses in a real hardware and the decisions we made in order to develop accurate 
self-checking tests for the caches and the pipeline. 

Caches: For all levels of caches the first goal of the developed micro-viruses is to flip all 
the bits of each cache block from zero to one and vice versa. When the cache array is 
completely filled with the desired data, the micro-virus reads iteratively all the cache 
blocks while the chip operates in reduced voltage conditions and identifies any 
corruptions of the written values, which cannot be detected by dedicated hardware 
mechanisms of the cache, such as the parity protection that can detect only odd number 
of flips.  

All caches in X-Gene 2 have pseudo-LRU replacement policy. All our micro-viruses 
focusing on any cache level need to “warm-up” the cache before the test begins, by 
iteratively accessing the desired data in order to ensure that all the ways of the cache are 
completely filled and accessed with the micro-viruses’ desired patterns. We 
experimentally observed through the performance monitoring counters that the safe 

Table 15: The X-Gene 2 cache specifications. 

 L1I L1D L2 L3 

Size 32 KB 32 KB 256 KB 8 MB 

# of Ways 8 8 32 32 

Block Size 64 B 64 B 64 B 64 B 

# of Blocks 512 512 4096 131,072 

# of Sets 64 64 128 4096 

Write Policy - Write-through Write-Back - 

Write Miss Policy 
No-write 
allocate 

No-write 
allocate 

Write allocate - 

Organization 

Physically 
Indexed 

Physically 
Tagged (PIPT) 

Physically 
Indexed 

Physically 
Tagged (PIPT) 

Physically 
Indexed 

Physically 
Tagged (PIPT) 

Physically 
Indexed 

Physically 
Tagged (PIPT) 

Prefetcher YES YES YES NO 

Scope Per Core Per Core Per PMD Shared 

Protection 
Parity 

Protected 
Parity 

Protected 
ECC Protected ECC Protected 
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number of iterations that “warm-up” the cache with the desired data, before the checking 
phase begins, is  

log2(number of ways) 

to guarantee that the cache is filled only with the data of the diagnostic micro-virus. 

In order to validate the operation of the entire cache array, it is important to perform 
write/read operations in all bit cells. For every cache level, we allocate a memory chunk 
equal to the targeted cache size. As the storing of data is performed in cache block 
granularity, we need to make sure that our data storage is block-aligned, otherwise we 
will encounter undesirable block replacements that will break the requirement for 
complete utilization of the cache array.  

Assume for example that the first word of the physical frame will be placed at the middle 
of the cache block. This means that when the micro-virus fills the cache, practically, there 
will be half-block size words that will replace a desired previously fetched block in the 
cache. Thus, if the cache blocks are N, the number of blocks that will be written in the 
cache will be N + 1 (which means that one cache block will get replaced), and thus, the 
self-checking property may be jeopardized. To this end, for all cache-related micro-
viruses we perform a check at the beginning of the test to guarantee that the allocated 
array is cache aligned (to be block aligned afterwards).  

Another factor that has to be considered in order to achieve full coverage of the cache 
array, is the cache coloring [165]. Unless the memory is a fully associative one (which is 
not the case of the ARMv8 microprocessors), every store operation is indexed at one 
cache block depending on its address. For physically indexed memories, the physical 
address of the datum or instruction is used. However, because the physical addresses 
are not known or accessible from the software layer, special precautions need to be taken 
in order to avoid unnecessary replacements. To address this issue, we exploit a technique 
that is used to improve cache performance, known as cache coloring [165]. If the indexing 
range of the memory is larger than the virtual page, two addresses with the same offset 
on different virtual pages are likely to conflict on the same cache block (due to the 32KB 
size of the L1 caches the bits that index the cache occur in page offset, and thus, there 
is no conflict; this is the case for L2 and L3 caches in our system). To avoid this situation, 
the indexing range is separated in regions equal to the page size, known as colors. It is 
then enough to use equal number of pages in each color to avoid conflicts. The easiest 
way to achieve this, is to allocate contiguous physical address range, which is possible 
at the kernel level using the kmalloc() call. The contiguous physical range will guarantee 
that all the data will be placed and fully occupy the cache, without replacements or 
unoccupied blocks (see subsections 3.6.1 to 3.6.4). 

Another challenge that the micro-viruses need to take into consideration is the 
interference of the branch predictors and the cache prefetchers. In our micro-viruses, the 
branch prediction mechanism (in particular the branch mispredictions that can flush the 
entire pipeline) may ruin the self-checking property of the micro-virus, by replacing or 
invalidating the necessary data or instruction patterns. Moreover, prefetching requests 
can modify the pre-defined access patterns of the micro-virus execution.  

To eliminate these effects, the memory access patterns of the micro-viruses are modelled 
using the stride-based model for each of the static loads and stores of the micro-virus. 
Each of the static loads and stores in the workload walk a bounded array of memory 
references with a constant stride, larger than the X-Gene 2’s prefetcher stride. In that 
way, the cache-related micro-viruses are executed without the interference of the branch 
predictor or the prefetcher. We validate this by leveraging the performance counters that 
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measure the prefetch requests for the L1 and L2 caches and the mispredictions, and no 
micro-virus counts any event in the related counters.  

Pipeline: For the pipeline, we developed dedicated benchmarks that stress: (i) the 
Floating-Point Unit (FPU), (ii) the integer Arithmetic Logical Units (ALUs) and (iii) the 
entire pipeline using a combination of loads, stores, branches, arithmetic and floating-
point unit operations. The goal is to trigger the critical paths that could possibly lead to an 
error during off-nominal operation voltage conditions. 

Generally, for all micro-viruses, one primary aspect that we need to take into 
consideration is that due to the micro-viruses’ execution in the real hardware with 
operating system, we need to isolate all the system’s tasks to a single core. Assume for 
example that we run the L1 data or instruction micro-virus in Core 0. Each core has its 
own L1 cache, so we isolate all the system processes and interrupts in the Core 7, and 
we assign the micro-virus to Core 0. To realize this, we use the sched_setaffinity() call of 
the Linux kernel to set the process’ affinity (execution in particular cores). In such a way, 
we ensure that only the micro-virus is executed in the desired core each time. We follow 
the same concept for all micro-viruses, except for L3 cache, because L3 is shared among 
all cores, so a small noise from system processes is unavoidable. 

We developed all diagnostic micro-viruses in C language (except for L1 Instruction cache 
micro-virus, which is ISA-dependent and is developed with a mix of C and ARMv8 
assembly instructions). Moreover, the micro-viruses (except for L1 instruction cache’s) 
check the microprocessor’s parameters (cache size, #ways, existence of prefetcher, page 
size, etc.) and adjust the micro-viruses code to the specific CPU. This way, the micro-
viruses can be executed in any microarchitecture and can easily adapted to different 
ISAs. 

 L1 Data Cache Micro-Virus 

For the first level data cache of each core, we defined statically an array in memory with 
the same size as the L1 data cache. As the L1 data cache is no-write allocate, after the 
first write of the desired pattern in all the words of the structure we need to read them 
first, in order to bring all the blocks in the first level of data cache. Otherwise, the blocks 
would remain in the L2 cache and we would have only-write misses in the L2 cache. 

Moreover, due to the pseudo-LRU policy that is used in the L1 data cache, we read all 
the words of the cache:  

log2(number of ways of L1D cache) = log2(8) = 3 

(three consecutive times) before the test begins, in order to ensure that all the blocks with 
the desired patterns are allocated in the first level data cache. With these steps, we 
achieve 100% read hit in the L1 data cache during the execution of the L1D micro-virus 
in undervolted conditions. The L1 Data micro-virus fills the L1 Data cache with three 
different patterns, each of which corresponds to a different micro-virus test. These tests 
are the all-zeros, the all-ones, and the checkerboard pattern. To enable the self-checking 
property of the micro-virus (correctness of execution is determined by the micro-virus 
itself and not externally), at the end of the test we check if each fetched word is equal to 
the expected value (the one stored before the test begins). 
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 L1 Instruction Cache Micro-Virus 

The concept behind the L1 Instruction Cache micro-virus is to flip all the bits of the 
instruction encoding in the cache block from zero to one and vice versa. In the ARMv8 
ISA there is no single pair of instructions that can be employed to invert all 32 bits of an 
instruction word in the cache, so to achieve this we had to employ multiple instructions. 
The instructions listed in Table 16 are able to flip all the bits in the instruction cache from 
0 to 1 and vice versa according to the Instruction Encoding Section of the ARMv8 Manual 
[166] 

Each cache block of the L1 instruction cache holds 16 instructions because each 
instruction is 32-bit in ARMv8 and the L1 Instruction cache block size is 64 bytes. The 
size of each way of the L1 Instruction Cache is 32KB / 8 = 4KB, and thus, it is equal to 
the page size which is 4KB. As a result, there should be no conflict misses when 
accessing a code segment (see cache coloring previously discussed) with size equal to 
the L1 Instruction Cache (the same argument holds also for the L1 Data Cache). 

The method that guarantees the self-checking property in the L1 Instruction cache micro-
virus is the following: The L1 instruction cache array holds 8192 instructions (64 sets x 8 
ways x 16 instructions in each cache block = 8192). We use 8177 instructions to hold the 
instructions of our diagnostic micro-virus, and the remaining 15 instructions (8177 + 15 = 
8192) to compose the control logic of the self-checking property and the loop control.  

More specifically, we execute iteratively 8177 instructions and at the end of this block of 
code we expect the destination registers to hold a specific “signature” (the signature is 
the same for each iteration of the same group of instructions, but different among different 
executed instructions). If this “signature” is distorted, then the micro-virus detects that an 
error occurred (for instance a bit flip in an immediate instruction resulted in the addition 
of a different value) and records the location of the faulty instruction as well as the 
expected and the faulty signature for further diagnosis. We iterate this code multiple times 
and after that we continue with the next block of code. 

As in the L1 Data cache micro-virus, due to the pseudo-LRU policy that is used also in 
the L1 Instruction cache, we fetch all the instructions  

log2(number of ways of L1I cache) = log2(8) = 3 

Table 16: ARMv8 instructions used in the L1I micro-virus. The right column presents the encoding 
of each instruction to demonstrate that all cache block bits get flipped. 

Instruction Encoding 

add x28, x28, #0x1 1001 0001 0000 0000 0000 0111 1001 1100 

sub x3, x3, #0xffe 1101 0001 0011 1111 1111 1000 0110 0011 

madd x28, x28, x27, x27 1001 1011 0001 1011 0110 1111 1001 1100 

add x28, x28, x27, asr #2 1000 1011 1001 1011 0000 1011 1001 1100 

add w28, w28,w27,lsr #2 0000 1011 0101 1011 0000 1011 1001 1100 

nop 1101 0101 0000 0011 0010 0000 0001 1111 

bics x28, x28, x27 1110 1010 0011 1011 0000 0011 1001 1100 
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(three consecutive times) before the test begins, to ensure that all blocks with the desired 
instruction patterns are allocated in the L1 instruction cache. With these steps, we achieve 
100% cache read hit (and thus cache stressing) during undervolting campaigns. 

 L2 Cache Micro-Virus 

The L2 cache is a 32-way associative PIPT cache with 128 sets; thus, the bits of the 
physical address that determine the block placement in the L2 cache are bits [12:6] (as 
shown in Figure 46). Moreover, the page size we rely on is 4KB and consequently the 
page offset consists of the 12 least significant bits of the physical address. Accordingly, 
the most significant bit (bit 12) of the set index (the dotted square in Figure 46) is not a 
part of the page offset. If this bit is equal to 1, then the block is placed in any set of the 
upper half of the cache, and in the same manner, if this bit is equal to 0, the block is 
placed in a set of the lower half of the cache. Bits [11:6] which are part of page/frame 
offset determine all the available sets for each individual half. 

In order to guarantee the maximum block coverage (e.g., to completely fill the L2 cache 
array), and thus to fully stress the cache array, the L2 micro-virus should not depend on 
the MMU translations that may result in increased conflict misses. The way to achieve 
this is by allocating memory that is not only virtually contiguous (as with the standard C 
memory allocation functions used in user space), but also physically contiguous by using 
the kmalloc() function (see cache coloring discussed in section 3.6). The kmalloc() 
function operates similarly to that of user-space's familiar memory allocation functions, 
with the main difference that the region of physical memory allocated by kmalloc() is 
physically contiguous. This guarantees that in one half of the allocated physical pages, 
the most significant bits of their set index are equal to one and the other half are equal to 
zero.7 

Given that the replacement policy of the L2 cache is also pseudo-LRU, the L2 micro-virus 
needs to iteratively access  

log2(number of ways of L2 cache) = log2(32) = 5 

(five times) the allocated data array, to ensure that all the ways of each set contain the 
correct pattern. Furthermore, due to the fact that the L1 data cache has write-through 
policy and the L2 cache has write allocate policy, the stored data will reside in the L2 
cache right after the initial writes (no write backs).  

Another requirement for the L2 micro-virus is that it should access the data only from the 
L2 cache during the test and not from the L1 data cache, to completely stress the former 
one. We meet this requirement using a stride access scheme for the array with a one-
block (8 words) stride. Therefore, in the first iteration the L2 micro-virus accesses the first 
word of each block, in the second iteration it accesses the second word of each block, 
and so on. Thus, it always misses the L1 Data cache. By accessing the data using these 
strides, the L2 micro-virus also overcomes the prefetching requests. Note that the L1 
instruction cache can completely hold all the L2 diagnostic micro-virus instructions, so the 
L2 cache holds only the data of our test. 

                                            

7 Our Linux kernel was built with the commonly used page size of 4KB; if the page size is 64KB in another 
CPU, the micro-virus uses standard C memory allocation functions in user space instead of kmalloc(), 
because the most significant bit of the set index would be part of the page offset like the rest of the set 
index bits. 
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To validate the above, we isolated all the system processes by forcing them to run on 
different cores from the one that executes the L2 diagnostic micro-virus, by setting the 
system processes’ CPU affinity and interrupts to a different core, and we measured the 
L1 and L2 accesses and misses after we have already “trained” the pseudo-LRU with the 
initial accesses. We measure these micro-architectural events by leveraging the built-in 
performance counters of the CPU8.  

The performance counters show that the L2 diagnostic micro-virus always misses the L1 
Data cache and always hits the L1 Instruction cache, while it hits the L2 cache in the 
majority of the accesses. Specifically, the L2 cache has 4096 blocks and the maximum 
number of block-misses we observed was 32 at most for each execution of the test 
(meaning 99.2% coverage). In that way, we verify that the L2 micro-virus completely fills 
the L2 cache.  

The L2 micro-virus fills the L2 cache with three different patterns, each of which 
corresponds to a different micro-virus test. These tests are the all-zeros, the all-ones, and 
the checkerboard pattern. To enable the self-checking property into this micro-virus, at 
the end of the test we check if each fetched word is equal to the expected value (the one 
stored before the test begins). 

 L3 Cache Micro-Virus 

The L3 cache is a 32-way associative PIPT cache with 4096 sets and is organized in 32 
banks; so, each bank has 128 sets and 32 ways. Moreover, the bits of the physical 
address that determine the block placement in the L3 cache are the bits [12:6] (for 
choosing the set in a particular bank) and the bits [19:15] for choosing the correct bank. 

                                            

8 We developed a kernel module able to provide access to the performance counters (see ANNEX Ι) from 
user space. We did not use tools like Perf [144] or PAPI [167] because these tools provide an extra 
overhead in measurements (+/- 3%), while we need accurate values to validate the proposed micro-viruses 
in system-level. 
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Figure 46: A 256KB 32-way set associative L2 cache. 



Methods for Robust and Energy-Efficient Microprocessor Architectures 

G. Papadimitriou 127 

Based on the above, in order to fill the L3 cache we allocate physically contiguous 
memory with kmalloc() (as we described previously in subsection 3.6.3).  

However, kmalloc() has an upper limit of 128 KB in older Linux kernels and 4MB in newer 
kernels (like the one we are using; we use CentOS 7.3 with Linux kernel 4.3). This upper 
limit is a function of the page size and the number of buddy system free lists 
(MAX_ORDER). The workaround to this constraint is to allocate two arrays with two calls 
to kmalloc() and each array’s size should be half the size of the 8M L3 cache. The reason 
that this approach will result in full block coverage in the L3 cache is that 4MB chunks of 
physically contiguous memory gives us contiguously the 22 least significant bits, while we 
need contiguously only the 20 least significant (for the set index and the bank index). 
Moreover, we should highlight that the L3 cache is as a non-inclusive victim cache.  

In response to an L2 cache miss from one of the PMDs, agents forward data directly to 
the L2 cache of the requestor, bypassing the L3 cache. Afterwards, if the corresponding 
fill replaces a block in the L2 cache, a write-back request is issued, and the evicted block 
is allocated into the L3 cache. On a request that hits the L3 cache, the L3 cache forwards 
the data and invalidates its copy, freeing up space for future evictions. Since data may 
be forwarded directly from any L2 cache, without passing through the L3 cache, the 
behavior of the L3 cache increases the effective caching capacity in the system. 

Due to the pseudo-LRU policy, similar to the L2, the L3 micro-virus is designed 
accordingly to perform  

log2(number of ways of L2 cache) = log2(32) = 5 

(five) sequential writes to cover all the ways before the test begins, and the read 
operations afterwards are performed by stride of one block (to bypass the L2 cache and 
the prefetcher, so the micro-virus only hits the L3 cache and always misses the L1 and 
L2 caches).  

The L3 diagnostic micro-virus fills the L3 cache with three different patterns, each of which 
corresponds to a different micro-virus test. These tests are again the all-zeros, the all-
ones, and the checkerboard pattern. To enable the self-checking property, at the end of 
the test we check if each fetched word is equal to the expected value (the one stored 
before the test begins). 

However, in contrast to the L2 diagnostic micro-virus, in the L3 micro-virus there is no 
way to prove the complete coverage of the L3 cache in system-level because that there 
are no built-in performance counters in X-Gene 2 that report the L3 accesses and misses. 
However, by using the events that correspond to the L1 and L2 accesses, misses and 
write backs we check that all the requests from the L3 micro-virus miss the L1 and L2 
caches, and thus only hit the L3 cache. Finally, we should highlight that the shared nature 
of the L3 cache forced us to try to minimize the number of the running daemons in the 
system in order to reduce the noise in the L3 cache from their access to it. 

 Arithmetic and Logic Unit (ALU) Micro-Virus 

X-Gene 2 features a 4-wide out-of-order superscalar microarchitecture. It has one integer 
scheduler and two different integer pipelines:  

▪ a Simple Integer pipeline, and  

▪ a Simple+Complex Integer pipeline.  

The integer scheduler can issue two integer operations per cycle; each of the other 
schedulers can issue one operation per cycle (the integer scheduler can issue 2 simple 
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integer operations per cycles; for instance, 2 additions, or 1 simple and 1 complex integer 
operation; for instance, 1 multiplication and 1 addition).  

The execution units are fully pipelined for all operations, including multiplications and 
multiply-add instructions. ALU operations are single-cycle. The fetch stage can bring up 
to 16 instructions (same size as a cache block) per cycle from the same cache block or 
by two adjacent cache blocks. If the fetch begins in the middle of a cache block 
(unaligned), the next cache block will also be fetched in order to have 16 instructions 
available for further processing, and thus there will be a block replacement on the 
Instruction Buffer.  

To this end, we use NOP instructions to ensure that the first instruction of the execution 
block is block aligned, so that the whole cache block is located to the instruction buffer 
each time. For the above microarchitecture, we developed the ALU self-testing micro-
virus, which avoids data and control hazards and iterates 1000 times over a block of 16 
instructions (that resides in the Instruction buffer, and thus the L1 instruction and data 
cache are not involved in the stress testing process). After completing 1000 iterations, it 
checks the value of the registers involved in the calculations by comparing them with the 
expected values.  

After re-initializing the values of the registers, we repeat the same test 70M times, which 
is approximately 60 seconds of total execution (of course, the number of executions and 
the overall time can be adjusted). Therefore, we execute code that resides in the 
instruction buffer for 1000 iterations of our loop and then we execute code that resides in 
1 block of the cache after the end of these 1000 iterations. As the instructions are issued 
and categorized in groups of 4 (X-Gene 2 issues 4 instructions) and the integer scheduler 
can issue 2 of them per cycle, we can’t achieve the theoretical optimal IPC of 4 
Instructions per Cycle only with Integer Operations. Furthermore, we try to have in each 
group of 4 instructions, instructions that stress all the units of all the issue queues like the 
adder, the shifter and multiplier. Specifically, the ALU micro-virus consists of 94% integer 
operations and 6% branches. 

 Floating-Point Unit (FPU) Micro-Virus 

Aiming to heavily stress and diagnose the FPU, we perform a mix of diverse floating-point 
operations by avoiding data hazards (thus stalls) among the instructions and using 
different inputs to test as many bits and combinations as possible. To implement the self-
checking property of the micro-virus, we execute the floating-point operations twice, with 
the same input registers and different result registers. If the destination registers of these 
two same operations have different result, our self-test notifies that an error occurred 
during the computations.  

For every iteration, the values of the registers (for all of the FPU operations) are increased 
by a non-fixed stride that is based on the calculations that take place. The values in the 
registers of each loop are distinct between them and between every loop. Moreover, we 
ensure that the first instruction of the execution block is cache aligned (as in the ALU 
micro-virus), so the whole cache block is located to the instruction buffer each time. 

 Pipeline Micro-Virus 

Apart from the dedicated benchmarks that stress independently the ALU and the FPU, 
we have also constructed a micro-virus to stresses simultaneously all the issue queues 
of the pipeline. Between two consecutive “heavy” (high activity) floating-point instructions 
of the FPU test (like the consecutive multply add, or the fsqrt which follows the fdiv) we 
add a small iteration over 24 array elements of an integer array and a floating-point array.  
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To this end, during these iterations, the “costly” instructions such as multiply add have 
more than enough cycles to calculate their result, while at the same time we perform load, 
store, integer multiplication, exclusive or, subtractions and branches. All instructions and 
data of this micro-virus are located in L1 cache in order to fetch them at the same cycle 
to avoid high cache access latency. As a result, the “pipeline” micro-virus has a large 
variety of instructions which stress in parallel all integer and FP units. This micro-virus 
consists of 65% integer operations and 23.1% floating point operations, while the rest 
11.9% are branches. 

3.7 Micro-Viruses Validation 

In the previous section we described the challenges and our solutions to the complex 
development process of the micro-viruses and how we verified their coverage using the 
machine performance monitoring counters. However, it is essential to validate the stress 
and utilization of the micro-viruses on the microprocessor. To this end, we measure the 
IPC and power consumption for both micro-viruses and SPEC CPU2006 benchmarks. 
Note that the micro-viruses were neither developed to provide power measurements nor 
performance measurements.  

We present the IPC and power consumption measurements of the micro-viruses only to 
verify that they sufficiently stress the targeted units. IPC and power consumption along 
with the data footprints of the micro-viruses (complete coverage of the caches bit arrays; 
see previous section) are highly accurate indicators of the activity and utilization of a 
workload on a microprocessor. Figure 47 presents the IPC, and Figure 48 and Figure 49 
present the power consumption measurements for both the micro-viruses and the SPEC 
CPU2006 benchmarks.  

As shown in Figure 47, the proposed micro-viruses for fast voltage margins variability 
identification provide very high IPC compared to most SPEC benchmarks on the target 
X-Gene 2 CPU. In addition, we assessed the power consumption using the dedicated 
power sensors of the X-Gene 2 microprocessor (located in the standby power domain; 
see section 3.1), to take accurate results for each workload. We performed 
measurements for two different voltage values; at the nominal voltage (980mV) and at 
920mV, which is a voltage step that all of the micro-viruses and benchmarks can be 
reliably executed (without Silent Data Corruptions (SDCs), detected/corrected errors or 
crashes). Figure 48 and Figure 49 show that the maximum and average power 
consumptions of the micro-viruses are comparable to the SPEC CPU2006. In the same 
figure, we can also see the differences concerning the energy efficiency when operating 
below nominal voltage conditions, which emphasizes the need to identify the pessimistic 

Figure 47: IPC measurements for both micro-viruses (top) and SPEC CPU2006 benchmarks 
(bottom). 
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voltage margins of a microprocessor. As we can see, in the multi-core execution we can 
achieve 12.6% energy savings (considering that the maximum TDP of X-Gene 2 is 35W), 
by reducing the voltage 6.2% below nominal, where all of the three chips operate reliably. 

3.8 Experimental Evaluation 

For the evaluation of the micro-viruses’ ability to reveal the Vmin of X-Gene 2 CPU chips 
and their cores, we used three different chips: TTT, TFF, and TSS from Applied Micro’s 
X-Gene 2 micro-server family. The TTT part is the nominal (typical) part. The TFF is the 
fast-corner part, which has high leakage but at the same time can operate at higher 
frequency (fast chip). The TSS part is also corner part which has low leakage and works 
at lower frequency. The faster parts (TFF) are rated for higher frequency and usually sold 
for more money, while slower parts (TSS) are rated for lower frequency. In any event, the 

Figure 48: Power consumption measurements for both the micro-viruses and the SPEC CPU2006 
benchmarks. The upper graph shows the power consumption at nominal voltage (980 mV). The 
lower graph shows the power measurements when the microprocessor operates at 920mV, in 
order to present the energy efficiency when operating below nominal voltage conditions. Both 

graphs present single-core executions. 
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parts must still work in the slowest environment, and thus, all chips (TTT, TSS, TFF) 
operate reliably with nominal frequency at 2.4GHz. 

Using the I2C controller we decrease the voltage of the domains of the PMDs and the 
SoC at 5mV steps, until the lowest voltage point (safe Vmin) before the occurrence of any 
error (corrected and uncorrected – reported by the hardware ECC), SDC (Silent Data 
Corruption – output mismatch) or Crash. To account for the non-deterministic behavior of 
a real machine (all of our experiments were performed on the actual X-Gene 2 chip), we 
repeat each experiment 10 times and we select the execution with the highest safe Vmin 
(the worst-case scenario) to compare with the micro-viruses. 

We experimentally obtained also the safe Vmin values of the 12 SPEC CPU2006 
benchmarks on the three X-Gene 2 chips (TTT, TFF, TSS), running the entire time-

Figure 49: Power consumption measurements for both the micro-viruses and the SPEC CPU2006 
benchmarks. The upper graph shows the power consumption at nominal voltage (980 mV). The 
lower graph shows the power measurements when the microprocessor operates at 920mV, in 
order to present the energy efficiency when operating below nominal voltage conditions. Both 

graphs present results when programs are executed in 8 cores concurrently. 
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consuming undervolting experiment 10 times for each benchmark. These experiments 
were performed during a period of 2 months on a single X-Gene 2 machine, that is 6 
months for all 3 chips (see Figure 45 for the time needed for one chip). We also ran our 
diagnostic micro-viruses, with the same setup for the 3 different chips, as for the SPEC 
CPU2006 benchmarks. This part of our study focuses on: 

1. the quantitative analysis of the safe Vmin for three significantly different chips of the 
same architecture to expose the potential guard-bands of each chip, 

2. the demonstration of the value of our diagnostic micro-viruses which can stress the 
individual components, and reveal virtually the same voltage guard-bands 
compared to benchmarks. 

The voltage guardband for each program (benchmark or micro-virus) is defined as the 
safest voltage margin between the nominal voltage of the microprocessor and its safe 
Vmin (where no ECC errors or any other abnormal behavior occur). 

 SPEC Benchmarks vs. Micro-Viruses 

As we discussed earlier, to expose these voltage margins variability among cores in the 
same chip and among the three different chips by using the 12 SPEC CPU2006 
benchmarks, we needed ~2 months for each chip. On the contrary, the same 
experimentation by using the micro-viruses needs ~3 days (as Figure 45 presents), which 
can expose the corresponding safe Vmin for each core. In Figure 50,  Figure 51, and Figure 
52 we notice that the micro-viruses provide the same or higher Vmin than the benchmarks 
for 19 of the 24 cores (3 chips x 8 cores). There are a few cases that benchmarks have 
higher Vmin in 5 cores (the difference between them is at most 5mV – 0.5%) but in orders 
of magnitude shorter time.  

Figure 50: Detailed comparison of Vmin between the 12 SPEC CPU2006 benchmarks and micro-
viruses for the TSS chip. 
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Such differences (5mV or even higher) can occur even among consecutive runs of the 
same program, in the same voltage due to the non-deterministic behavior of the actual 
hardware chip. This is why we run the benchmarks 10 times and present only the 
maximum safest Vmin. For a significant number of programs (benchmarks and micro-
viruses), we can see variations among different cores and different chips.  Figure 50 
presents the detailed comparison of the safe Vmin between the 12 SPEC CPU2006 
benchmarks and the micro-viruses for the TSS chip, while Figure 51 and Figure 52 
represent the maximum safe Vmin for each core and chip among all the benchmarks (blue 
line) and all micro-viruses (orange line). Considering that the nominal voltage in PMD 
voltage domain (where these experiments are executed) is 980mV, we can observe that 

Figure 51: Maximum Vmin among 12 SPEC CPU2006 benchmarks and the proposed micro-
viruses for TTT and TFF in PMD domain. 
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the Vmin values of the micro-viruses are very close to the corresponding safe Vmin provided 
by benchmarks, but in most cases higher.  

The core-to-core and chip-to-chip relative variation among the three chips are also 
revealed with the micro-viruses. Both the SPEC CPU2006 benchmarks and the micro-
viruses provide similar observations for core-to-core and chip-to-chip variation. For 
instance, in TTT and TFF chip, cores 4 and 5 are the most robust cores. This property 
holds in the majority of programs but can be revealed by the micro-viruses in several 
orders of magnitude shorter characterization time.  

Figure 52: Maximum Vmin among 12 SPEC CPU2006 benchmarks and the proposed micro-viruses 
for TSS in PMD domain (top graph). The bottom graph shows the maximum Vmin of 12 SPEC 

CPU2006 benchmarks and the proposed L3 micro-virus in SoC domain. 
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At the bottom-right diagram of Figure 51 we show the undervolting campaign in the SoC 
voltage domain (which is the focus of the L3 cache micro-virus). As shown in section 3.1, 
in X-Gene 2 there are 2 different voltage domains: the PMD and the SoC. The SoC 
voltage domain includes the L3 cache. Therefore, this graph presents the comparison of 
the L3 diagnostic micro-virus with the 12 SPEC CPU 2006 benchmarks that were 
executed simultaneously in all 8 cores (8 copies of the same benchmark) by reducing the 
voltage only in the SoC voltage domain. In this figure, we also notice that in TTT/TFF the 
difference of Vmin between the benchmark with the maximum Vmin and the self-test is only 
5mV, while in TSS the micro-viruses reveal the Vmin at 20mV higher than the benchmarks. 
Note that the nominal voltage for the SoC domain is 950mV (while in the PMD domain it 
is 980mV).  

 Observations 

By using the proposed micro-viruses, we can detect very accurately (divergences have 
short range, at most 5mV; see Figure 51 and Figure 52) the safe voltage margins for each 
chip and core, instead of running time-consuming benchmarks. According to our 
experimental study, the micro-viruses reveal higher Vmin (meaning lower voltage margin) 
in the majority of cores in the three chips we used. Specifically, in 19 out of 24 cores in 
total, the micro-viruses expose higher or the same safe Vmin compared to the SPEC 
CPU2006 benchmarks. For the specific ARMv8 design, we point and discuss the core- 
to-core and chip-to-chip variation, which are important to reduce the power consumption 
of the microprocessor.  

Core-to-Core Variation: There are significant divergences among the cores due to 
process variation. Process variation can affect transistor dimensions (length, width, oxide 
thickness etc.) which have direct impact on the threshold voltage of a MOS device, and 
thus, on the guardband of each core. We demonstrate that although micro-viruses can 
reveal similar divergences as the benchmarks among the different cores and chips, 
however, in most of the cases, micro-viruses expose lower divergences among cores in 
contrast to time consuming SPEC CPU2006 benchmarks. As shown in Figure 51 and 
Figure 52, our micro-viruses reveal higher safe Vmin for all the cores than the benchmarks, 
and also, we notice that the workload-to-workload differences are up to 30mV. Therefore, 
due to the diversity of code execution of benchmarks, it is difficult to choose one 
benchmark that provides the highest Vmin. Different benchmarks provide significantly 
different Vmin at different cores in different chips. Therefore, a large number of different 
benchmarks are required to reach a safe result concerning the voltage margins variability 
identification. Using our micro-viruses, which fully stress the fundamental units of the 
microprocessor, the cores guardbands can be safely determined (regarding the safe Vmin) 
at a very short time, and guide energy efficiency when running typical applications.  

Chip-to-Chip Variation: As Figure 51 and Figure 52  present for the TTT and TFF chips, 
PMD 2 (cores 4 and 5) is the most robust PMD for all three chips (it can tolerate up to 
3.6% more undervolting compared to the most sensitive cores). We can notice that (on 
average among all cores of the same chip) the TFF chip has lower Vmin points than the 
TTT chip, in contrast to the TSS chip, which has higher Vmin points than the other two 
chips, and thus, can deliver smaller power savings. 

Diagnosis: By using the diagnostic micro-viruses we can also determine if and where an 
error or a silent data corruption (SDC) occurred. Through this component-focused stress 
process we have observed the following: 

a. SDCs occur when the pipeline gets stressed (ALU, FPU and Pipeline tests), and 

b. the cache bit-cells operate safely at higher voltages (the caches tests crash lower 
than the ALU and FPU tests). 
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Both observations show that the X-Gene 2 is more susceptible to timing-path failures than 
to SRAM array failures. A major finding of our analysis using the micro-viruses for ARMv8-
compliant multicore CPUs is that SDCs (derived from pipeline stressing using the ALU, 
FPU and Pipeline micro-viruses) appear at higher voltage levels than corrected errors 
when cache arrays get stressed by cache-related micro-viruses. We believe that the 
reason is that unlike other server-based CPUs (like Itanium), X-Gene 2 does not deploy 
circuit-level techniques (Itanium performs continuous clock-path de-skewing during 
dynamic operation [142]), and thereby, when the pipeline gets stressed, X-Gene 2 
produces SDCs due to timing-path failures. 

3.9 Related Work 

During the last years, the goal for improving microprocessors’ energy efficiency, while 
reducing their power supply voltage is a major concern of many scientific studies that 
investigate the chips’ operation limits in nominal and off-nominal conditions. In this 
section, we briefly summarize the existing studies and findings concerning low-voltage 
operation and characterization studies.  

Whilkerson et al. [146] go through the physical effects of low-voltage supply on SRAM 
cells and the types of failures that may occur. After describing how each cell has a 
minimum operating voltage, they demonstrate how typical error protection solutions start 
failing far earlier than a low-voltage target (set to 500mV) and propose two architectural 
schemes for cache memories that allow operation below 500 mV. The word-disable and 
bit-fix schemes sacrifice cache capacity to tolerate the high failure rates of low voltage 
operation. While both schemes use the entire cache on high voltage, they sacrifice 50% 
and 25% accordingly in 500 mV. Compared to existing techniques, the two schemes allow 
a 40% voltage reduction with power savings of 85%. 

Chishti et al. [147] propose an adaptive technique to increase reliability of cache 
memories, allowing high tolerance on multi-bit failures that appear on low-voltage 
operation. The technique sacrifices memory capacity to increase the error-correction 
capabilities, but unlike previously proposed techniques, it also offers soft and non-
persistent error tolerance. Additionally, it does not require self-testing to identify erratic 
cells in order to isolate them. The MS-ECC design can achieve a 30% supply voltage 
reduction with 71% power savings and allows configurable ECC capacity by the operating 
system based on the desired reliability level. 

Bacha et al. [7] present a new mechanism for dynamic reduction of voltage margins 
without reducing the operating frequency. The proposed mechanism does not require 
additional hardware as it uses existing error correction mechanisms on the chip. By 
reading their error correction reports, it manages to reduce the operating voltage while 
keeping the system in safe operation conditions. It covers both core-to-core and dynamic 
variability cause by the running workload. The proposed solution was prototyped on an 
Intel Itanium 9560 processor and was tested using SPECjbb2005 and SPEC CPU2000-
based workloads. The results report promising power savings that range between 18% 
to 23%, with marginal performance overheads. 

Bacha et al. [8] again rely on error correction mechanisms to reduce operating voltage. 
Based on the observation that low-voltage errors are deterministic, the paper proposes a 
hardware mechanism that continuously probes weak cache lines to fine-tune the system's 
supply voltage. Following an initial calibration test that reveals the weak lines, the 
mechanism generates simple write-read requests to trigger error-correction and is 
capable to adapt to voltage noise as well. The proposed mechanism was implemented 
as proof-of-concept using dedicated firmware that resembles the hardware operation on 
an Itanium-based server. The solution reports an average of 18% supply voltage 
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reduction and an average of 33% power consumption savings, using a mix set of 
applications. 

Bacha et al. [158] exploit the observation of deterministic error distribution to provide 
physically unclonable functions (PUF) to support security applications. They use the error 
distribution of the lowest save voltage supply as an unclonable fingerprint, without the 
typical requirement of additional dedicated hardware for this purpose. The proposed PUF 
design offers a low-cost solution for existing processors. The design is reported to be 
highly tolerant to environmental noise (up to 142%) while maintaining very small 
misidentification rates (bellow 1ppm). The design was tested on a real system using 
Itanium processor as well as on simulations. While this study serves a different domain, 
it highlights the deterministic error behavior on SRAM cells. 

Duwe et al. [148] propose an error-pattern transformation scheme that re-arranges erratic 
bit cells that correspond to uncorrectable error patterns (e.g., beyond the correctable 
capacity) to correctable error patterns. The proposed method is low-latency and allows 
the supply voltage to be scaled further that it was previously possible. The adaptive 
rearranging is guided using the fault patterns detected by self-test. The proposed 
methodology can reduce the power consumption up to 25.7%, based on simulated 
modeling that relies on literature SRAM failure probabilities. 

There are several papers that explore methods to eliminate the effects of voltage noise, 
which however lean closer to the scope of T3.2 and thus, only a very brief reference is 
included. 

Gupta et al. [149] and Reddi et al. [143] focus on the prediction of critical parts of 
benchmarks, in which large voltage noise glitches are likely to occur, leading to 
malfunctions. In the same context, several studies either in the hardware or in the 
software level were presented to mitigate the effects of voltage [5] [149] [192] [193] [194] 
or to recover from them after their occurrence [198]. Ketkar et al. [187] and Kim et al. 
[188] [189] propose methods to maximize voltage droops in single core and multicore 
chips in order to investigate their worst-case behavior due to the generated voltage noise 
effects. To conclude with, the characterization studies of commercial chips in off-nominal 
voltage conditions are limited to [6] [7] [8] [9] [84] [158]. 
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 Balancing Energy and Performance on Multicore ARMv8 CPUs 

In the previous chapter, we discussed that in order to improve the microprocessor’s 
efficiency (in terms of either power or performance), several hardware and software 
techniques have been proposed, such as Dynamic Voltage and Frequency Scaling 
(DVFS) [77] as well as several power capping approaches [169]. The ability to cap peak 
power consumption has recently gained strong interest in several important computing 
domains (e.g., mobile devices to data centers [170]) since the state-of-the-art high-end 
microprocessors currently support such features within their power management 
subsystem. Power capping is realized through power-performance knobs such as DVFS, 
pipeline throttling or memory throttling [169]. 

We also presented a comprehensive characterization study, which exposes the 
pessimistic voltage margins for single-core executions at the maximum frequency of the 
X-Gene 2 microprocessor. In this chapter, we are based on two recent state-of-the-art 
ARMv8-compliant multicore CPUs, Applied Micro’s X-Gene 2 and X-Gene 3, to present 
a new software-based scheme for these server-grade machines, which provides large 
energy savings while maintaining high performance levels. The X-Gene 2 as well as the 
X-Gene 3 microprocessors are developed for HPC applications. X-Gene 3 specifically 
(which is the most recent microprocessor of the X-Gene family) has comparable 
performance to high-end Intel Xeon microprocessors [170]. However, neither X-Gene 2 
nor X-Gene 3 microprocessors have predefined power management states as in x86 and 
IBM POWER architectures. Although X-Gene microprocessors support dynamic 
frequency scaling, the voltage is always the same for every different frequency step 
(which is equal to Vnominal) and can be only explicitly modified.  

Particularly, the main contributions of the work presented in this chapter are: 

▪ We expose the pessimistic voltage guardbands of the two state-of-the-art ARMv8 
microprocessors of the same family of products (manufactured in 28nm and 16nm 
– the X-Gene 2 and X-Gene 3, respectively) to identify the safe Vmin points of the 
CPU chips in multicore executions. Note that in the previous chapter we presented 
an extensive characterization study for single-core executions (where we were 
aiming to identify the core-to-core variability among others). Having characterizing 
the multicore executions, in this chapter, we show that as the number of active 
threads increases, core-to-core and workload-to-workload variability have a 
minimal impact on Vmin. 

▪ We present measurements on the correlation of the safe Vmin to the voltage droop 
magnitude, and show that in multicore executions the emergency voltage droop 
events occur regardless of the workload. However, for executions in a single or 
very few cores, core-to-core and workload-to-workload variability exist (as we also 
presented in the previous chapter).  

▪ We perform an extensive study to identify and analyze the tradeoffs between 
energy and performance at different voltage and frequency combinations, as well 
as at different thread scaling and core allocation configurations. Our analysis 
reveals that depending on the course-grain characteristics of a program and the 
number of active threads, there is an optimal combination of voltage, frequency 
and core allocation for better energy efficiency. 

▪ We also developed a simple online monitoring daemon which monitors the running 
processes on the system and guides the Linux scheduler to take the appropriate 
decisions regarding: (a) the core(s) to which a new process should be assigned, 
and (b) when one or more running processes should be migrated to other cores. 
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At the same time, the daemon dynamically adjusts the V/F settings according to 
the optimal policies.  

▪ Finally, we evaluate the optimal energy efficient scheme by running the monitoring 
daemon in a realistic scenario of a server’s operation, which (a) randomly selects 
the issued programs, (b) dynamically migrates the running processes on the 
system, and (c) dynamically adjusts the voltage and frequency settings. We report 
several comparisons among different configurations to present a detailed 
evaluation of the optimal scheme, and show that it can achieve on average 25.2% 
energy savings on X-Gene 2, and 22.3% energy savings on X-Gene 3, with a 
minimal performance penalty of 3.2% on X-Gene 2 and 2.5% on X-Gene 3 
compared to the default voltage and frequency microprocessor’s conditions. 

4.1 Experimental Setup 

 Platforms 

This study is performed on two different state-of-the-art ARMv8 micro-processors: 
Applied Micro’s (now Ampere Computing) X-Gene 2 and X-Gene 3, which consist of 8 
and 32 64-bit ARMv8-compliant cores, respectively. Both microprocessors offer high-end 
processing performance and come along with a subsystem that features a Scalable 
Lightweight Intelligent Management processor (SLIMpro) to enable flexibility in power 
management, resiliency and end-to-end security for a wide range of applications. The 
dedicated SLIMpro processor monitors system sensors, configures system attributes 
(e.g., regulates supply voltage, etc.) and can be accessed by the system’s running Linux 
kernel. 

In section 3.1 we present the main characteristics of X-Gene 2 microprocessor. The X-
Gene 3 microprocessor is a more powerful, larger scale machine compare to X-Gene 2. 
Specifically, X-Gene 3 microprocessor has a main power domain that includes the CPU 
cores, the L1, L2 and L3 cache memories, and the memory controllers, which is called 
PCP (Processor ComPlex) power domain, as shown in Figure 53, and is the one that 
consumes the largest part of the overall power consumption. Figure 53 presents the 
architecture of X-Gene 3, however, the X-Gene 2 has similar structure; the difference is 
that it has 8 cores instead of 32, and the L3 cache, which is 8MB instead of 32MB, is 
located in a different domain (see Figure 28 in section 3.1).  

The operating voltage of the main power domain can change from 980 mV downwards in 
X-Gene 2 and from 870 mV downwards in X-Gene 3 by at least 5mV steps. While all the 
CPU cores operate at the same voltage, each pair of cores (PMD – Processor MoDule) 
can operate at different frequency in both chips. The frequency can range from 300MHz 
up to 2.4GHz in X-Gene 2, and from 375MHz to 3GHz in X-Gene 3 (at 1/8 steps of the 
maximum clock frequency in both microprocessors). Table 17 presents the main 
characteristics of the two microprocessors. Both platforms run CentOS 7.3 with Linux 
kernel version 4.11. 

 Experimental Configuration 

In this analysis, we use 25 benchmarks from 3 different benchmark suites as shown in 
Table 18: the NAS Parallel Benchmark Suite v3.3.1 (NPB) [171], the SPEC CPU2006 
suite [141], and the PARSEC v3.0 suite [172]. NPB are programs designed to evaluate 
the performance of parallel supercomputers and have been used in several studies 
regarding performance and energy efficiency [173] [174]. Given that this study is primarily 
based on the multicore execution, we use the NPB parallel benchmarks and the PARSEC 
parallel benchmarks for multi-thread executions, and the SPEC CPU2006 
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Table 17: Basic Parameters of X-Gene 2 and X-Gene 3. 

Parameter X-Gene 2 X-Gene 3 

ISA 64-bit OoO (4-issue) 

Pipeline ARMv8 (AArch64, AArch32, Thumb) 

CPU 8 cores 32 cores 

Core Clock 2.4 GHz 3.0 GHz 

L1 Instruction Cache 32 KB per core (Parity Protected) 

L1 Data Cache 32 KB per core (Parity Protected) 

L2 Cache 256 KB per PMD (SECDED Protected) 

L3 Cache 8 MB (SECDED Protected) 32 MB (SECDED Protected) 

Technology 28 nm (bulk CMOS) 16 nm (FinFET) 

Max TDP 35 W 125 W 

Nominal Voltage 980 mV 870 mV 

 

Figure 53: X-Gene 3 block diagram. 
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single-thread benchmarks (both FP and INT class), for evaluating multiple copies of 
single-threaded executions.  

Note that, in a parallel execution with N threads (assume an NPB or PARSEC program 
with N parallel threads), all active threads compute parts of the same work, which is 
executed once. On the other hand, when we execute N copies of the same single-
threaded benchmark, the microprocessor executes N times the same work. Therefore, 
we cannot directly compare the two cases as they refer to different amount of work and 
thus, the energy values of the single-threaded benchmarks are normalized to the number 
of running instances in order to deliver a fair comparison between the two groups of 
programs. For example, if the microprocessor executes N instances of a single-threaded 
benchmark for the SPEC CPU2006 suite (e.g., namd), the energy will be equal to 
energy_of_N_instances / N. 

For a comprehensive coverage of as many different execution behaviors as possible, we 
executed all 25 benchmarks (Table 18) in 3 different threading configurations in both X-
Gene 2 and X-Gene 3 systems: 

▪ Max threads: In all available cores of each microprocessor (8 cores for X-Gene 2 
and 32 cores for X-Gene 3) 

▪ Half threads: In half of the cores (4 cores for X-Gene 2 and 16 cores for X-Gene 
3), and 

▪ Quarter threads: In one quarter of the cores (2 cores for X-Gene 2 and 8 cores 
for X-Gene 3). 

For these 3 different thread-scaling options, we executed the programs at the maximum 
frequency of each microprocessor (2.4GHz for X-Gene 2 and 3GHz for X-Gene 3), and 

Table 18: Benchmarks description. 

Name Description Suite 

CG Conjugate Gradient 

NAS Parallel 
Benchmarks 

v3.3.1 
[171] 

EP Embarrassingly Parallel 
FT Discrete 3D FFT 
IS Integer Sort 
LU Lower-Upper Gauss-Seidel solver 
MG Multi-Grid on a sequence of meshes 

namd Scientific, Structural Biology 

SPEC CPU2006 
[141] 

cactusADM Physics / General Relativity 
leslie3d Computational Fluid Dynamics 
dealII Solution of Partial Differential Equations 

bwaves Computational Fluid Dynamics 
gromacs Chemistry / Molecular Dynamics 
zeusmp Physics / Magneto-hydrodynamics 

milc Physics / Quantum Chromodynamics 
mcf Combinational Optimization 

swaptions 
Uses the Heath-Jarrow-Morton (HJM) 

framework to price a portfolio of swaptions 

PARSEC v3.0  
[172] 

blackscholes Black-Scholes partial differential equation 

fluidanimate 
Simulates an incompressible fluid for interactive 

animation purposes 

canneal 
Simulated annealing (SA) to minimize the 

routing cost of a chip design 
bodytrack Tracks a human body with multiple cameras 

dedup 
Compresses a data stream with a combination 

of global and local compression 
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at the half frequency (1.2GHz and 1.5GHz, respectively). It is essential to highlight, 
however, that clock frequencies larger than the half clock of both microprocessors have 
similar safe Vmin as in the highest clock frequency, and frequencies smaller than the half 
clock have similar safe Vmin as in the half clock. The reason is that both microprocessors 
support clock skipping and clock division, which, in combination, set the effective 
frequency of the PMD relative to its clock source, as shown in Table 19. Clock ratios 
greater or less than 1/2 on the input clock are implemented via clock skipping on the input 
clock. Clock ratio equal to 1/2 is naturally implemented via clock division on the input 
clock. For this reason, we do not present any results for the intermediate frequencies 
because they provide exactly the same Vmin points. 

Exceptionally, for X-Gene 2 only, we also present results at 0.9GHz, in which we noticed 
a significant reduction of the Vmin, and thus, much larger energy savings compared to 
1.2GHz, with minimal impact on performance. The reason is that these micro-servers 
implement the most recent CPPC (Collaborative Processor Performance Control) power 
and performance management specification of ACPI 5.1 [175], as shown in Figure 54.  

CPPC is a new way to control the performance of cores using an abstract continuous 
scale in frequency, instead of a discretized P-state scale (as in legacy ACPI). Therefore, 
during runtime, when there is a request for 1.2GHz (desired frequency), in practice the 

Table 19: Frequency scaling in X-Gene microprocessors. 

Clock Ratio 
Clock 

Skipping 
Clock 

Division 
X-Gene 2 

Frequency 
X-Gene 3 

Frequency 

8/8 

Yes No 

2.4 GHz 3.0 GHz 

7/8 2.1 GHz 2.625 GHz 

6/8 1.8 GHz 2.250 GHz 

5/8 1.5 GHz 1.875 GHz 

4/8 No Yes 1.2 GHz 1.5 GHz 

3/8 

Yes Yes 

0.9 GHz 1.125 GHz 

2/8 0.6 GHz 0.750 GHz 

1/8 0.3 GHz 0.375 GHz 

 

Maximum
Frequency

Desired
Frequency

Frequency
Reduction Tolerance

Minimum
Frequency

Frequency Allowed Range

Figure 54: Power and performance management in X-Gene 
microprocessors - the Collaborative Processor Performance Control. 
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actual frequency of the microprocessor is scaled below and above of the 1.2GHz 
(frequency reduction tolerance), so that it effectively provides an average frequency of 
1.2GHz. As a result, the actual frequency properties are limited by the highest frequency 
setting being used, which in this case is above half (without clock division). This is a 
frequency interleaving strategy which is provided by the CPPC and cannot be changed 
by software. Although X-Gene 3 operates also with CPPC specification, we did not 
observe the same behavior below the 1.5GHz as in X-Gene 2. This is an interesting 
finding of the characterization part of this work, and thus, we report experiments in X-
Gene 2 for three different frequencies that represent all different behaviors: 2.4GHz, 
1.2GHz and 0.9GHz and in X-Gene 3 we report our experiments at 3GHz and 1.5GHz. 

Furthermore, for the needs of our core-allocation analysis, when we execute multicore 
experiments with the number of threads being less than the available cores of each chip, 
we characterize different combinations of core allocation, and we have two main 
categories: spreaded threads and clustered threads. As shown in Figure 55, spreaded 
thread configuration refers to the threads running in separate PMDs each, while the 
clustered thread configuration to the threads running in consecutive cores (both cores of 
the PMD are occupied). 

4.2 Voltage Margins Identification 

This part focuses on a quantitative analysis of the safe Vmin for two micro-servers of the 
same architecture in order to expose the potential guardbands of each chip, as well as to 
quantify the factors that determine the Vmin of multicore executions. 

 Exposing Safe Vmin Values 

We experimentally obtain the safe Vmin values on the two different technology micro-
servers: X-Gene 2 and X-Gene 3. For all of our experiments, we consider a voltage level 
as a safe Vmin if the program passes it 1000 times. Safe Vmin is the minimal working 
voltage. Note that we also study the error behavior for each program (subsection 4.2.2) 
operating below its safe Vmin point, but we run it 60 times for each configuration 
(frequency, core allocation, and thread scaling) through the entire voltage range from the 
safe Vmin until the system crash point. 

Figure 55: 4 running threads in 2 different core allocation configurations: spreaded & clustered. 
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Figure 56: The complete Vmin characterization results. This graph presents the X-Gene 2 safe Vmin 
points for all benchmarks with 8 threads, 4 spreaded and clustered threads, and 2 clustered 

threads in 2.4 GHz, 1.2 GHz, and 0.9 GHz clock frequencies. 
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Figure 57: The complete Vmin characterization results. This graph presents the X-Gene 3 safe Vmin 
points for all benchmarks with 32 threads, 16 spreaded and clustered threads, and 8 clustered 

threads in 3.0 GHz, and 1.5 GHz clock frequencies. 
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Figure 56 and Figure 57 show the Vmin characterization results for the 25 benchmarks on 
X-Gene 2 and X-Gene 3, respectively. The reported Vmin for each program is the lowest 
(safe) voltage setting where all 1000 executions of each program completed successfully, 
without hardware errors notification, program output mismatches (silent data corruptions 
– SDCs) or other abnormal behavior, such as a process timeout, system crash or thread 
hang. Figure 56 presents the 8-thread, 4-thread and 2-thread executions of the 
benchmarks in X-Gene 2 for the three different frequencies: 2.4GHz, 1.2GHz and 
0.9GHz. Figure 57 presents the Vmin results for the same benchmarks on X-Gene 3 with 
32, 16, and 8-thread executions for 3GHz and 1.5GHz. Figure 56 and Figure 57 clearly 
show, that for the same number of threads and at the same frequency, the safe Vmin for 
all 25 benchmarks is   virtually the same. There are some cases, where a benchmark has 
a little lower Vmin than the rest, however, the maximum difference is only 10mV or ~1% of 
the nominal voltage. 

A major finding is that in multicore executions the safe Vmin marginally depends on the 
workload (different program), but heavily depends on the number of active cores and the 
frequency, as shown in Figure 56 and Figure 57. We discuss the reasons for these 
differences in Section 4.3. 

 Unsafe Region Investigation 

As we described in the previous subsection, in multicore executions the safe Vmin for every 
program is virtually the same for the same frequency and number of threads. Interestingly, 
we can notice such a behavior, across different benchmarks, frequencies and number of 
active threads, also in the region below the safe Vmin (the unsafe region, where at least 
one run, faces an abnormal behavior). Figure 58 shows the cumulative probability of 
failure (pfail) at each voltage level below the Vmin (the Vmin is the last voltage step with 
pfail=0). Each line of the graph corresponds to the average pfail of the 25 benchmarks, 
in two different core allocation and thread scaling options. Similar to Figure 56 and Figure 
57, for the same configuration (number of threads and frequency) the workloads have 
very small differences on the safe Vmin, however, for different core allocation options we 
observe different behavior in Vmin. The same pattern appears also in the unsafe region. 

Consider for example the configurations with “max threads” and with spreaded “half 
threads” at maximum frequency (8T @ 2.4GHz and 4T (spreaded) @ 2.4GHz in X-Gene 
2, and 32T @ 3GHz and 16T (spreaded) @ 3GHz in X-Gene 3). As shown in Figure 58, 
these two lines of the graph are virtually identical and have the most severe behavior 
(pfail=100% means that all identical executions failed to complete. On the other hand, a 
pfail=10% means that there are 90% chances for an application to execute correctly in 
that voltage). On the contrary, if we change the core allocation of “half threads”, we notice 
that the behavior changes significantly. Consider now, the “clustered” core allocation 
option (8T @ 2.4GHz and 4T (clustered) @ 2.4GHz in X-Gene 2, and 32T @ 3GHz and 
16T (clustered) @ 3GHz in X-Gene 3). Although the frequencies between “max threads” 
and “half threads” are the same, the pfail (and also the safe Vmin) are very different (“half 
threads” configuration has lower safe Vmin and pfail than “max threads”) because the core 
allocation was changed. We demonstrate in Section 4.3 how this observation is correlated 
to the voltage droop magnitude. 

Based on this experimentation, we conclude that the dominant factors which can affect 
the safe Vmin in multicore executions and also the failure probability, are (a) the frequency, 
and (b) the core allocation. The workload itself has only a marginal impact on the Vmin in 
multicore execution for the same number of threads in different frequencies (see Figure 
56 and Figure 57), however, we can see that lower frequencies have significantly lower 
safe Vmin (and pfail respectively) for all the benchmarks than at the maximum frequency. 
For the same number of threads, we also notice that reducing the frequency to the “half 
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speed” we can further decrease the operating voltage by approximately 3%, while the 
0.9GHz runs show a significant reduction (approximately 15%) at the Vmin due to the clock 
division that is activated at that frequency (see explanation in subsection 4.1.2). 
Moreover, using a different core allocation strategy (clustered or spreaded) for the same 
number of threads, we can achieve further voltage reduction by 4%. 

4.3 Analysis of Vmin Impact Factors 

In this section we study the correlation of the contributors in Vmin presented before, and 
identify the best combination of workload characteristics, frequency and core allocation 
towards the highest energy efficiency. We also discuss how these findings can be 
exploited in runtime. 

 Impact of Frequency and Core Allocation on Safe Vmin 

Apart from the reduced frequency, in which the operating voltage can be decreased, the 
second major factor that can reduce the safe Vmin is the core allocation. Several studies 
have exposed the safe Vmin for each individual core of the microprocessor, by exploiting 
the static variation and the workload-to-workload variation [7] [8] [11] [157] [158] [177]. 
These studies demonstrate that different workloads have different safe Vmin, and thus, 

Figure 58: Probability of Failure (pfail) in all voltage levels from nominal level down to the levels of 
complete failure for different frequency, core allocation, and thread scaling options. 
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there is an intense research to provide several methods which will be able to predict the 
safe Vmin for each program, dynamically, when the microprocessor operates normally. 
However, we show that the Vmin variation among different workloads (multi-threaded or 
multiple copies of a single-threaded application) fades away as the number of running 
threads increases, and the remaining key factors that determine the Vmin are the 
frequency and core allocation. It is known that the larger the number of threads running 
in the microprocessor, the more noise is generated from voltage droops and the 
interference of running processes in the system. The findings of our analysis quantify the 
magnitude of this dependence. 

To understand this phenomenon, we study the voltage droop magnitude of the 
microprocessors for all the different frequency and core allocation configurations, by 
leveraging the embedded oscilloscope in the X-Gene 3 microprocessor. The X-Gene 3 
microprocessor consists of a Voltage Droop Mitigation logic (VDM), which is responsible 
(if enabled) to detect and respond to occasional bad voltage droop events. The response 
upon detecting unusually large supply voltage droops is to temporarily reduce the clock 
frequency by using the same signals that are used for normal clock division and skipping. 
The goal in adding this feature is to be able to reduce the frequency/voltage guardband 
need to avoid failure. The VDM has two states: first, it detects the supply droop 
magnitude, and second, when the voltage droop exceeds a specified threshold, the VDM 
starts the mitigation sequence to avoid the failure. However, the mitigation sequence can 
be disabled. For this study, we have disabled the mitigation sequence, while the voltage 
droop detection remains enabled. With such a way, we are able to set different voltage 
thresholds in the VDM in order to count the voltage droop magnitude for each benchmark. 
PMU (Performance Monitoring Unit) counters, which can be accessed by the Perf tool 
[144], are located in the microprocessor and can be used to monitor the frequency and 
the magnitude of voltage droop events.  

Figure 59 presents two different ranges of voltage droop magnitude when the 
microprocessor operates at 3GHz: (a) the [55mV, 65mV) in which we present the 
configurations of all programs that produce voltage droops more than or equal to 55mV 
and less than 65mV (this voltage range actually corresponds to threshold=5 of the VDM), 
and (b) the [45mV, 55mV) in which we present the configurations of all programs that 
produce voltage droops more than or equal to 45mV and less than 55mV (this voltage 
range actually corresponds to threshold=4 of the VDM). Both graphs show the total 
number of droop detections per 1M cycles for each program. As we can see in the left 
graph of Figure 59, the configurations with 32 threads and 16 spreaded threads, which 
means that all 16 PMDs of the microprocessor running at 3GHz frequency (note that the 
frequency can be changed per pair of cores – PMD) produce voltage droop magnitude 
between 55mV and 65mV. However, the configuration of 16 clustered threads (meaning 
8 PMDs of the microprocessor running at 3GHz) has almost zero droops in the range of 
[55mV, 65mV) for all programs. On the other hand, in the right graph of Figure 59, the 
configurations with 16 clustered threads and 8 spreaded threads (8 PMDs operate at 
3GHz frequency in both configurations) produce voltage droop magnitude in the range of 
[45mV, 55mV). However, the configuration with 8 clustered threads (4 PMDs) has almost 
zero droops in that range for any program. 

 Impact of the Workload on Frequency and Core Allocation 

Apart from the magnitude of the correlation of the safe Vmin to frequency and core 
allocation, we also quantify the impact of the workload class (CPU-intensive vs. memory-
intensive) to: (a) the safe Vmin, (b) the workloads’ performance, and (c) the energy 
consumption. Figure 60 shows an illustrative example of the difference in energy of all 25 
programs when running at the maximum frequency, with the same number of threads (4 
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Figure 59: Voltage droop detections for each program in 2 different voltage droop magnitudes. 
The top graph presents the droop detections in range between 55mV and 65mV, and the bottom 

graph presents the droop detections in range between 45mV and 55mV. 
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threads in this case) but in different core allocations (4T clustered vs. 4T spreaded) on 
the X-Gene 2 (the observation is similar in X-Gene 3). The red line with numbers at the 
top of each pair of bars shows the energy consumption difference between the two core 
allocations. We can see that the energy difference between these two configurations 
varies from -9.6% to 14.2%, depending on the characteristics of each workload. Negative 
percentages indicate that the spreaded-thread configuration needs higher energy than 
the clustered-thread configuration, while positive percentages indicate the opposite. In 
particular, the benchmarks shown at the right side of the dashed line have better energy 
when their threads are spreaded across the cores, unlike the benchmarks shown at the 
left side of the vertical dashed line which are more energy efficient when executed in 
consecutive cores (clustered configuration; see Figure 55). The reason is that the 
rightmost benchmarks are the most memory-intensive benchmarks, while the leftmost 
benchmarks are the most CPU-intensive. 

As the previous sections present, frequency reduction and the optimal core allocation can 
enable significant opportunities of lowering supply voltage, however, reduced frequency 
also translates to degraded performance. Reduced frequency in CPU cores impacts their 
performance without affecting the lower memory levels (L3 cache and DRAM). This 
means that a program that is highly computational (CPU-intensive) will be proportionally 
affected by the reduced frequency. On the other hand, a program that experiences long 
stalls waiting for the memory to respond will be less affected from the core frequency 
reduction, as this will be hidden by the long memory delays (memory-intensive programs). 
The key difference between them is that in CPU-intensive programs the system part that 
acts as a performance limiter is the CPU core part (pipeline, L1 and L2 caches) while for 
the memory intensive programs, it is the memory part (L3 and DRAM). 

In practice, we can use this property to combine lower frequency and lower voltage with 
small performance difference for memory intensive workloads, to increase their energy 
efficiency while still complying with high performance constraints. Previous studies (e.g., 
[178] and [179]), have exposed the phases of a program which are memory-intensive, 
and have proposed this feature as a proxy in a single-core microprocessor to guide the 
DVFS to reduce the frequency in that specific program phases. In this work we further 
extend this practice to show how this property can be also used to guide core allocation 
decisions and how this feature impacts the microprocessor’s energy and program’s 
performance. In order to identify the class of each program, we follow the method 
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Figure 60: Energy of all benchmarks for 2 different core allocations. The benchmarks on the left of 
the dashed line are CPU-intensive while the ones on the right are memory-intensive. 
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proposed in [180], to track the access rates of the lower memory hierarchy, and more 
precisely L3 cache accesses. High L3 access rate means high memory activity in the 
lower memory hierarchy (memory-intensive program). To find the exact threshold level 
that separates the two classes, we initially identify what programs are memory intensive 
and then the L3 access rates of these benchmarks. 

Figure 61 presents the performance impact of each program when we introduce 
contention on the shared CPU resources. We do that by executing multiple copies of the 
same program on all cores. Programs that are affected the most have high activity on the 
shared resources (and thus the contention negatively impacts the performance). As an 
example, we can see the CG and FT, which are the most memory-intensive benchmarks 
because their execution time is significantly reduced in a multi-threaded execution 
compared to the single-threaded one (ratio is much smaller than 1) due to the high 
contention at the memory system. On the other hand, the namd and EP are the most 
CPU-intensive benchmarks because their execution time in multi-threaded execution is 
virtually the same as in the single-threaded execution (ratio is very close to 1). 

We then use the performance monitoring counters of the microprocessor as an indication 
of the workload class (CPU vs. memory intensive). In particular, we use the L3 Cache 
(L3C) memory access rate (by monitoring the L2 miss counters), which will allow us to 
identify the class of each program during runtime. Figure 62 shows the L3 Cache access 
rate for the 3 different threading configurations of 32, 16, and 8 threads (for this example 
we used the X-Gene 3 platform; the same behavior occurs in X-Gene 2 also), measured 
at 3GHz clock frequency. Based on the L3C access rate metric, and also on the 
experimental analysis of the safe Vmin, we found that the threshold which defines the high 
memory activity is 3K accesses per 106 cycles. Executions above this threshold are the 
most memory-intensive, while those below the threshold are the most CPU-intensive. 

 Summary of the Factors that Impact the Vmin 

Figure 63 quantifies the impact on the safe Vmin that each factor has on the 
microprocessors of our analysis. The values shown in this figure are derived from our 
study in the X-Gene 2 microprocessor, however, the corresponding values for X-Gene 3 
are similar. As we can see in Figure 63, the workload variability can affect at most 1% the 

Figure 61: Relative performance of all benchmarks. The y-axis presents the ratio of the execution 
time of one instance of the single-threaded execution divided by the execution time of multiple 

instances. 
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safe Vmin, while the core allocation and clock frequency are the major contributors to the 
safe Vmin. The reason is that, as we demonstrated in subsection 4.3.1, frequency and 
core allocation are the main factors that can affect the voltage droop magnitude. In 
particular, the largest amount of voltage reduction (12%) is a result of clock division in a 
specific clock frequency, while just one step further frequency reduction (due to clock 
skipping) delivers 3% further voltage reduction. The following sections identify the best 
combinations concerning the voltage, frequency and application characteristics, which 
can lead to the highest energy savings in CPUs with many cores. 

4.4 Performance and Energy Trade-Offs 

For a more comprehensive comparison of the different options and configurations we 
measure and present both the overall energy consumed for each particular workload 

Figure 63: L3 Cache access rate per 1M cycles for the 25 benchmarks and the 3 threading 
configurations (32, 16 and 8 threads). 

Figure 62: The magnitude of Vmin dependence on frequency, core allocation and workloads. 
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execution, as well as the energy delay squared product (ED2P) metric which combines 
the energy and the performance of each workload and configuration. 

 Energy Efficiency 

Figure 64 shows the energy consumption for 6 benchmarks (all other benchmarks follow 
the same pattern as the ones presented) and all configurations of X-Gene 2 and X-Gene 
3 systems. The benchmarks are sorted (from left to the right) from the most CPU-intensive 
to the most memory-intensive ones, as it is also shown in Figure 61 (namd, dealII, and 

Figure 64: Energy consumption in Joules for 8, 4, and 2 threading options for 3 different 
frequencies (2.4GHz, 1.2GHz, 0.9GHz) of X-Gene 2 (top) and 32, 16, and 8 threading options for 2 

different frequencies (3GHz, 1.5GHz) of X-Gene 3 (bottom). 
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EP are the most CPU-intensive benchmarks, while milc, CG, and FT are the most 
memory-intensive ones). 

X-Gene 2 reports significant energy savings for all cases when running at 0.9GHz, which 
is attributed to the significantly lower safe Vmin voltage (as shown in Figure 56 and Figure 
57, which is possible due to the clock division) and the lower frequency. For CPU-
intensive benchmarks (namd, dealII, and EP), the frequency reduction (from 2.4GHz to 
1.2GHz) does not have an observable impact on the total energy consumption. We can 
only notice energy improvements for 1.2GHz on the memory-intensive applications (milc, 

Figure 65: Energy Delay Squared Product (ED2P) for 8, 4, and 2 threading options for 3 different 
frequencies (2.4GHz, 1.2GHz, 0.9GHz) of X-Gene 2 (top) and 32, 16, and 8 threading options for 2 

different frequencies (3GHz, 1.5GHz) of X-Gene 3 (bottom). 



Methods for Robust and Energy-Efficient Microprocessor Architectures 

G. Papadimitriou 156 

CG, and FT). Lower CPU speed reduces the performance gap between CPU and memory 
and leads to a more balanced system. This is why we can gain significant power savings 
without sacrificing too much performance, and thus achieve better energy efficiency. 

Similar observations hold for X-Gene 3. The low-frequency behavior of X-Gene 3 
(1.5GHz) matches the one of the 1.2GHz of X-Gene 2. For the CPU-intensive 
benchmarks the highest frequency (3GHz) gives the best energy (due to the faster 
execution), but again we can see that memory-intensive applications are more energy 
efficient in lower frequency. Note that, in X-Gene 3 we do not present results for lower 
frequencies than 1.5GHz, because as we have described in subsection 4.1.2, frequency 
settings bellow 1.5GHz have the same safe Vmin as in 1.5GHz due to clock skipping, and 
thus, there is only performance impact. 

 Combined Energy and Performance Considerations 

Energy consumption itself is a valuable metric that directly translates to cost; however, it 
occasionally implies very slow system configurations (very low frequencies), which could 
violate latency and throughput requirements on a server environment. To avoid this bias 
in the comparisons of different configurations, other metrics such as the energy delay 
product (EDP = E x D) and the energy-delay squared product (ED2P = E x D2) have been 
proposed for high-end systems [181]. Given that our work focuses on server-grade CPUs, 
we have chosen to present the energy delay squared product (ED2P) for all of our 
experiments to show a fair comparison among benchmarks, between different 
microprocessors, and more importantly to provide a fair representation of the relation 
between energy and performance. In this subsection, we focus on this metric for the 
comparison of the different X-Gene 2 and X-Gene 3 configurations. 

Figure 65 shows the ED2P for 2.4GHz, 1.2GHz and 0.9GHz configurations for the X-
Gene 2, and 3GHz and 1.5GHz configurations for the X-Gene 3. In the first 3 benchmarks 
namd, dealII, and EP) in both X-Gene 2 and X-Gene 3, which are the most CPU-intensive 
benchmarks, we can see that the higher the frequency, the most efficient (in terms of 
ED2P) the configuration (i.e. the blue lines in X-Gene 2 and green lines in X-Gene 3 are 
always lower in all cases). However, we can see that the trend lines are totally different 
among the 3 memory-intensive benchmarks (milc, CG, and FT) and the CPU-intensive 
ones. We can see that the frequency is inversely proportional to ED2P efficiency for all 
the thread scaling options (grey lines vs. blue lines in X-Gene 2, and blue lines vs. green 
lines in X-Gene 3). Our analysis shows that the identification of the program class (CPU 
vs. memory-intensive) in runtime can guide the selection of the optimal system 
configuration (frequency and threading) to achieve high energy savings without 
compromising performance. 

4.5 Mitigating Energy: A Real System Implementation 

 Online Monitoring Daemon 

According to our study and observations, we developed a simple online monitoring 
daemon which encapsulates all these conditions and constraints as we described in 
previous sections and guides process placement, core frequency and supply voltage to 
achieve higher energy savings on both X-Gene 2 and X-Gene 3 platforms. The daemon 
has two main functionalities: monitoring and placement.  

The monitoring part of the daemon acts as a watchdog, which periodically monitors the 
utilized PMDs (which correspond to the droop magnitude shown in Table 20) and the L3C 
accesses of each running process (except for the system processes). For each process, 
it counts the L3C accesses during 1M cycles (this actually varies from 300ms to 500ms 
in our systems; it depends on the IPC rate of each process) and if the L3C accesses are 
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more than 3K (see Figure 62), then it classifies this process as memory-intensive, 
otherwise it classifies it as CPU-intensive. Moreover, it classifies the processes according 
to the utilized PMDs in order to estimate the current Vmin. 

The second part (Figure 66) of the daemon is the Placement. Figure 66 presents how the 
system reacts to a process list change and how the placement function of the daemon 
operates. Placement is the part that places the processes to the CPU cores (or migrate 
them) and adjusts the voltage and frequencies accordingly. As we presented earlier, each 
group of core allocation options corresponds to a specific droop magnitude class (Table 
20) with a distinct safe Vmin for each frequency. Moreover, as shown in Figure 59, for each 
core allocation option, all programs produce the same maximum droop magnitude. Given 
that, we do not use any sophisticated mechanism for predicting the safe Vmin because the 
prediction schemes for Vmin that have been proposed in the literature are error-prone (e.g., 
[9] [10] [11] [143] [177] [182] [183] [184] [185]) and can lead to system failures in real 
microprocessors.  

To this end, the daemon has been equipped with a fail-safe mechanism as shown in 
Figure 67: either before the process(es) are invoked or before the frequency should be 
increased in one or more PMDs (i.e.: a CPU-bound process), the daemon first increases 
the voltage to the next safe Vmin level (see Table 20) and then, if the voltage can be 
decreased according to utilized PMDs (this information is provided by the monitoring 
part), the daemon will set the voltage accordingly (as shown in Figure 66). By following 
this policy, there is a minimal increase of the total power consumption, however, this 
guarantees the reliable execution on a real system. The Placement part uses the 
classification performed by the Monitoring part to guide its decisions, and is invoked upon 
every process list or classification change. 

The online monitoring daemon is minimally intrusive and has no impact on the safe Vmin. 
Its performance overhead is also negligible, as it is only running periodically to read the 
performance counters and upon every process list change, to invoke the placement 
process, which has equal impact as a process migration of the Linux kernel. The daemon 
is invoked only after  

a. either a new process is issued to the system or when a process finishes its 
execution (to check if a process migration is required), or  

b. when a process changes its state (from CPU-intensive to the memory-intensive 
and vice versa).  

Table 20: Correlation of voltage droops magnitude with frequency and core allocation (Vmin 
columns concern X-Gene 3). 

Droop 
Magnitude 

Utilized 
PMDs 

Thread Scaling Vmin @ 3GHz Vmin @ 1.5GHz 

[ 25mV, 35mV ) 1, 2 PMDs 
1T, 2T, 

4T (clustered) 
780 mV 770 mV 

[ 35mV, 45mV ) 4 PMDs 
8T (clustered), 
4T (spreaded) 

800 mV 780 mV 

[ 45mV, 55mV ) 8 PMDs 
16T (clustered), 
8T (spreaded) 

810 mV 790 mV 

[ 55mV, 65mV ) 16 PMDs 
32T, 16T 

(spreaded) 
830 mV 820 mV 

 



Methods for Robust and Energy-Efficient Microprocessor Architectures 

G. Papadimitriou 158 

In case (a), it reads the process mapping table and estimates the result, and in case (b), 
it periodically counts the L3C accesses (as we described in subsection 4.3.1). Note that, 
in case (b) the utilized PMDs cannot be changed. Utilized PMDs can only be changed 
when a new process is invoked, or when a process finishes its execution.  

To count the L3C accesses, we leverage the built-in performance monitoring counters of 
the microprocessors. To do so, we developed a kernel module able to provide access to 
the performance counters from user-space in order to be part of our online monitoring 
daemon. It is lightweight (thus fast) because it acts in the kernel space and provides near 
zero overhead to the total microprocessor’s operation. We did not use tools like Perf [144] 
or PAPI [167] because these tools impose an extra overhead in measurements (± 3%), 
while we need very accurate values to take correct decisions. To count the L3C accesses, 
only one read of one PMU counter and one read of the same register after 1M cycles are 
required. Afterwards, the kernel module subtracts these two values to produce the final 
result. 

Figure 66: Placement flow chart. 
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 Evaluation Results 

For the purposes of our experimental evaluation, we also developed a “workload 
generator” which creates a typical server workload from a “pool” of programs (which 
includes all the 29 SPEC CPU2006 and the 6 NPB benchmarks; in total 35 different 
programs). The generator can generate workloads of configurable duration by randomly 
selecting benchmarks from this pool and randomly defining the timeslot in which each 
benchmark will be invoked. The workload includes heavy load periods, average load 
periods and light periods, including also a few idle periods, resembling a typical server 
workload on a given time window. The generator is configured to guarantee that the 
number of active processes is never more than the available cores of the microprocessor. 
The generated workload can be then invoked multiple times, allowing multiple 
experiments under the same load conditions, using different policies or configurations. 
Our exploration has revealed potential energy efficiency improvements by adjusting the 
CPU voltage, frequency and the core allocation. In this subsection we present the results 
for a simple realistic experimentation we performed in our two systems. To provide 
detailed results for a comprehensive analysis, we ran 4 different configurations for the 
same workload sequence: 

▪ Baseline: in this configuration we run the workload sequence with the default 
microprocessor’s frequency scaling and scheduler settings (ondemand governor 
is enabled). 

▪ Safe Vmin: in this configuration we change the nominal voltage of the 
microprocessor to the safe Vmin, according to Table 20, (again with ondemand 

Figure 67: Process handling (Fail-Safe Mechanism). 
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governor enabled). With this configuration we evaluate the impact of pessimistic 
voltage guardbands in energy. 

▪ Placement: in this configuration we run the simple online monitoring daemon to 
perform the proposed frequency and core allocation (the ondemand governor is 
now disabled), but keeping the voltage at its nominal value. With this configuration 
we evaluate the impact of the proposed frequency and core allocation options in 
energy and performance. 

▪ Optimal: in this configuration we run the simple online monitoring daemon and 
adapting the voltage and frequency settings (with ondemand governor disabled). 
This is the best scenario which integrates all the conditions targeting the best 
energy efficiency. 

Figure 68 and Figure 69 show the average power for a 1-hour execution of randomly 
generated workload for the default microprocessor’s settings (Baseline) and the Optimal 
scheme, for X-Gene 2 and X-Gene 3, respectively. We generated 2 workloads, one for 
X-Gene 2 using a maximum constraint of 8 cores, and one for X-Gene 3 with a constraint 
of 32 cores. Each workload was executed under both Baseline and Optimal settings. 

In Figure 68 and Figure 69 that compare the Baseline and the Optimal configuration, we 
can see that the average power consumption for the optimal configuration compared to 
the default one (for the same 1-hour workload) is significantly reduced for both 

Figure 68: Average power for the Baseline and the Optimal configurations in X-Gene 2 during 1-
hour execution. 

Figure 69: Average power for the Baseline and the Optimal configurations in X-Gene 3 during 1-
hour execution. 
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microprocessors. As presented in these figures, the system has a load with phases of 
high utilization and others with low utilization, resembling a typical server workload. We 
can see that some peaks reach the maximum capability of the system, indicating that the 
system was occasionally pushed towards its limits.  

In Table 21 and Table 22 we compare the 4 different configurations described above. We 
can see a significant reduction in the total energy: 25.2% in X-Gene 2 (Table 21) and 
22.3% in X-Gene 3 (Table 22). This was achieved without compromising the performance 
of CPU-intensive programs, while slightly reducing the performance of memory-intensive 
programs, as described in Section 4.2, targeting the highest ED2P efficiency. The use of 
ED2P metric guarantees that the selected policies do not violate high performance 
constraints and at the same time, significantly reduce the energy consumption.  

The Optimal scheme with the online monitoring daemon did also slightly shift the 
completion time of the workload as a result of the small performance impact on some 
memory-intensive programs (as described in Section 4.2). The total time was shifted by 
3.2% in X-Gene 2 and 2.5% in X-Gene 3. We can also notice in Table 21 and Table 22 

Table 21: X-Gene 2 results for the 4 configurations. 

 
Baseline Safe Vmin Placement Optimal 

Time (s) 3707 3707 3829 3829 

Avg. Power (W) 6.90 6.10 5.46 5.00 

Energy (J) 25578.30 22612.07 20906.34 19145.00 

Energy Savings -- 11.6% 18.3% 25.2% 

ED2P (workload) 351 x 109 311 x 109 307 x 109 281 x 109 

ED2P Savings -- 11.6% 12.8% 20.1% 

 

 

Table 22: X-Gene 3 results for the 4 configurations. 

 
Baseline Safe Vmin Placement Optimal 

Time (s) 3748 3748 3846 3846 

Avg. Power (W) 36.49 32.51 30.78 27.63 

Energy (J) 136773.26 121847.48 118379.88 106283.56 

Energy Savings -- 10.9% 13.4% 22.3% 

ED2P (workload) 19 x 1011 17 x 1011 17 x 1011 15 x 1011 

ED2P Savings -- 10.9% 8.9% 18.2% 
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that the frequency and core allocation options (Placement) are the major contributors on 
the total energy reduction (18.3% in X-Gene 2 and 13.4% in X-Gene 3), compared to the 
voltage reduction with the ondemand governor (Safe Vmin). In any case, the Optimal 
scheme can achieve more than 22% energy savings with a minimal performance penalty. 

4.6 Related Work 

Characterization: Bacha et al. [7] [8] focus on monitoring the hardware-reported errors 
manifested in the caches of a commercial Intel Itanium processor during the execution of 
benchmarks in off-nominal voltage conditions. Authors in [12] [157] [176] [177] [186] 
measure single-core voltage margins in several commercial microprocessor chips to 
study not only the pessimistic voltage guardbands of the chips, but also the core-to-core 
and chip-to-chip variations for single-core executions.  

Sasaki et al. [180], study the prevalence of power capping when multiple processes in a 
multicore microprocessor compete for power, while the power management system 
attempts to mitigate the contention (reduce the power consumption) by slowing down the 
processor. Several characterization studies have been presented for off-nominal voltage 
conditions operation of commercial microprocessor chips with up to 8 cores (e.g., [6] [7] 
[8] [9] [11] [12] [84] [145] [167] [176] [186]).  

In this work we present the characterization of multi-threaded workloads on high-end 
microprocessors with significantly larger core counts (up to 32-core). To our knowledge, 
the observations we make for the safe Vmin, voltage droop magnitude and the reduced 
workload variation in actual hardware (not simulated models) of 8-core and 32-core 
microprocessors, have not been presented in the literature before. 

Voltage Noise Characterization and Mitigation: Ketkar et al. [187] and Kim et al. [188], 
[189] propose methods to maximize voltage droops in single core and multicore chips in 
order to investigate their worst-case behavior due to the generated voltage noise effects. 
Bertran et al. [152] present a voltage noise characterization study in multi-core 
microprocessors, in which they use a systematic methodology to generate noise 
stressmarks.  

Studies of Gupta et al. [190] and Reddi et al. [143] focus on the prediction of critical 
execution points of benchmarks, in which large voltage noise glitches are likely to occur, 
leading to system malfunctions. In the same context, several studies either in the 
hardware or in the software level have been presented to mitigate the effects of voltage 
noise [5] [84] [149] [191] [192] [193] [194] [195] [196] or to recover from them after their 
occurrence [197]. Some works [198], [199], [200], and [201] focus on the development of 
electrical simulation framework for power-delivery analysis Reddi et al. [5] show that 
different workloads have different voltage margins and different voltage droop activity 
based on a 2-core microprocessor.  

Unlike these previous studies, in this work we are based on 8-core and 32-core 
microprocessors and show that as the number of active cores increases (4 or more active 
cores), the emergency voltage droops are massive and lead to workload-independent 
Vmin.  

Workload Scheduling and DVFS: Energy Aware Scheduling (EAS) project [202], is 
trying to solve power-management limitations on big.LITTLE designs by balancing the 
load across all CPUs, while saving power by scaling down the frequency of the CPUs or 
idling them. Li and Martinez [203] optimize a parallel workload running on a simulated 16-
core microprocessor by dynamically changing the number of processors and the V/F 
levels. Isci et al. [204] consider a simulated 4-core microprocessor with per-core DVFS 
and examine different DVFS policies for high performance and power efficiency.  
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Their solutions are not scalable to large systems, and to this end, Teodorescu and 
Torrellas [156] consider a simulated 20-core microprocessor, again assuming a per-core 
DVFS approach, to propose variation-aware algorithms for power management. 
However, in this work we show with actual measurements on multicore microprocessors 
that, as the number of active threads increases, there is a minimal variation across 
different workloads and cores. Vega et al. [205] propose a coordinated power 
management algorithm, which dynamically detects situations in which the program may 
be bound by single-thread-performance or throughput and actuates the power 
management accordingly. 

Miftakhutdinov et al. in [206] propose a low-cost mechanism that accurately predicts the 
performance impact of frequency scaling in the presence of a realistic memory system. 
Castillo et al. in [207] propose a hardware mechanism that dynamically adapts the 
computational power of a task depending on its criticality. Authors in [178] [179] have 
exposed the phases of a program which are memory intensive and proposed this feature 
as a proxy in a single-core microprocessor to guide the DVFS to reduce the frequency in 
that specific program phases.  

Unlike these previous studies, in this work, we are based on real implementations of 8-
core and 32-core microprocessors, whose frequency can be set per pair of cores and all 
cores have the same voltage, and present a different approach for V/F settings, according 
to workload characteristics (not program phases) and voltage droop magnitude, for the 
dynamic scheduling and migration of the programs on the available microprocessor 
cores. 
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 CONCLUSION AND FUTURE WORK 

In this thesis, we presented two complementary methods to accelerate the post-silicon 
validation phase of modern microprocessors and to guarantee their energy efficiency. 
More specifically, we presented our contributions on post-silicon validation of the address 
translation mechanisms of modern microprocessors. We presented a comprehensive set 
of bug models, which correspond to the address translation mechanisms and classify the 
effects of both functional and electrical bugs in the hardware structures employed in 
address translation. We then presented and described an ISA-independent software-
based post-silicon validation method, which contribute to accelerate the bug detection 
process in the address translation mechanisms of modern microprocessors and fully 
exploits the silicon’s performance. The method is easily applied to any ISA. We 
demonstrated that our method reduces the bug detection latency by 5 orders of 
magnitude compared to traditional end-of-test checking techniques by fully resembling a 
post-silicon validation bare-metal setup. Afterwards, we presented another novel post-
silicon self-checking validation method, which complements the first one. This post-silicon 
validation method aims to unveil and detect rare bug scenarios in address translation 
caching arrays (ATCA). ATCAs are among the most important structures for 
microprocessor functionality and performance and escaped bugs in these arrays can lead 
to unpredictable system behaviors. By using a comprehensive experimental study, we 
presented and analyzed rare bug scenarios and why they are difficult to detect. The 
primary contribution here was that even if the bugs manifest themselves by executing 
traditional validation tests, detecting them is unlikely due to the high possibility of masking 
during the execution of the validation test.  

We then presented a detailed system-level voltage scaling characterization study for 
single-core executions in ARMv8-based multicore CPUs manufactured in 28nm. The 
study’s backbone was a fully automated system-level framework aims to increase the 
throughput of massive undervolting campaigns that require multiple benchmarks 
execution at several voltage supply levels of all individual cores. Towards the 
formalization of the behavior in undervolting conditions we also presented a simple 
consolidated function; the Severity function, which aggregates the effects of reduced 
voltage operation in the cores of a multicore CPU by assigning values to the different 
abnormal observations. Aiming to accelerate the time-consuming characterization 
process, we also introduced the development of dedicated programs (diagnostic micro-
viruses) that aim to stress the fundamental hardware components of APM’s X-Gene 2 
micro-server family and provide quickly the safe Vmin values for each core. These 
diagnostic micro-viruses are executed in very short time (~3 days for the entire massive 
characterization campaign for each individual core of one microprocessor chip) compared 
to normal benchmarks, such as those of the SPEC CPU2006 suite, which need 2 months. 
The micro-viruses’ purpose is to reveal the variation of the safe voltage margins across 
cores of the multicore chip and also to contribute to diagnosis by exposing and classifying 
the abnormal behaviour of each CPU unit (silent data corruptions, bit-cell errors, and 
timing failures).  

The final contribution of this thesis in the area of energy-efficiency was a detailed system-
level voltage scaling characterization study for multicore executions in two recent ARMv8-
based multicore CPUs manufactured in 28nm and 16nm. Based on this study, we 
discussed several important observations and presented a new software-based scheme 
for these server-grade machines, which considers all the diverse aspects of the increased 
energy consumption and provides large energy savings while maintaining high 
performance levels. Particularly, we showed that the proposed software scheme can 
achieve on average 25.2% energy savings on X-Gene 2, and 22.3% energy savings on 
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X-Gene 3, with a minimal performance penalty of 3.2% on X-Gene 2 and 2.5% on X-
Gene 3 compared to the default voltage and frequency microprocessor’s conditions. 

The research outcomes of this thesis can be useful to several future directions. Future 
systems architectures must be designed to facilitate hardware validation. In the post-
silicon validation domain, future research should focus on the automation and 
standardization of the design bug detection and root-cause analysis process. More 
specifically, in this thesis we demonstrated the effectiveness of software-based self-
checking techniques in accelerating the post-silicon validation phase of the address 
translation mechanisms. This may be an indication that future microprocessors should 
devote valuable silicon estate in hardware hooks that enable the at-speed, low-cost 
testing. In the energy-efficiency domain, future research should focus on building 
microarchitectural solutions, which will be able to mitigate the emergency voltage 
conditions that lead the microprocessor designers to overestimate the voltage margins. 
Moreover, another interesting future direction will be a comprehensive comparison 
among different architectures and microarchitectures of heterogeneous platforms, 
regarding the voltage reduction tolerance for different types of applications. Such a study 
could be very useful especially on large datacentres that use heterogeneous distributed 
computing systems that consist of contemporary general-purpose processors (CPUs), 
general-purpose graphic processing units (GP-GPUs), and field-programmable gate 
arrays (FPGAs). The utilization of heterogeneous architectures poses several challenges, 
primarily due to increased power consumption, and thus, voltage reduction could be 
deliver significant energy savings. 
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ΠΙΝΑΚΑΣ ΟΡΟΛΟΓΙΑΣ 

Ξενόγλωσσος όρος Ελληνικός Όρος 

Architecture Αρχιτεκτονική 

Benchmarks Μετροπρογράμματα 

Bug Σφάλμα 

Cache Κρυφή Μνήμη 

Circuit Κύκλωμα 

Complexity Πολυπλοκότητα 

Consumption Κατανάλωση 

Core Πυρήνας 

Design Σχεδίαση 

Efficiency Αποδοτικότητα 

Energy Ενέργεια 

Frequency Συχνότητα 

Hardware Υλικό 

Kernel Πυρήνας 

Microarchitecture Μικροαρχιτεκτονική 

Microprocessor Μικροεπεξεργαστής 

Operating System Λειτουργικό Σύστημα 

Out-of-Order Εκτέλεση εκτός σειράς 

Performance Απόδοση 

Pipeline Διοχέτευση 

Power Ισχύς 

Process Διεργασία 

Register Καταχωρητής 

Scaling Κλιμάκωση 

Simulator Προσομοιωτής 

Software Λογισμικό 

Thread Νήμα 

Undervolting Μείωση της τάσης 

Validation Επικύρωση 

Voltage Τάση 

Voltage Guardband Περιθώριο τάσης 
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ACRONYMS 

ACPI Advanced Configuration and Power Interface 

ALU Arithmetic and Logic Unit 

ATCA  Address Translation Caching Arrays 

ATM  Address Translation Mechanisms 

BPU Branch Prediction Unit 

CE Corrected Error 

CPPC Collaborative Processor Performance Control 

CR0 Control Register 0 

CR3 Control Register 3 

DTLB Data Translation Lookaside Buffer 

DUV Design Under Verification 

DVFS Dynamic Voltage and Frequency Scaling 

EAS Energy Aware Scheduling 

ECC Error Correction Code 

ED2P Energy-Delay Squared Product 

EDP Energy-Delay Product 

FPU Floating-Point Unit 

IPC Inter-Process Communication 

IPC Instruction per Cycle 

ISA  Instruction Set Architecture 

ITLB Instruction Translation Lookaside Buffer 

MMU Memory Management Unit 

MOSFET Metal Oxide Semiconductor Field Effect Transistor 

MSR Machine State Register 

OoO Out of Order 

PA Physical Address 

PCU Power Control Unit 

PD  Page Directory 

PDP  Page Directory Pointer 

pFail Probability of Failure 

PFN Physical Frame Number 

PID Process Identification 

PMC Performance Monitoring Counter 
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PMD Processor MoDule 

PML4 Page Map Level 4 

PMpro Power Management processor 

PMU Performance Monitoring Unit 

PT Page Table 

PTE Page Table Entry 

RAM Random Access Memory 

SDC Silent Data Corruption 

SECDED Single-Error Detection / Double-Error Correction 

SLIMpro Scalable Lightweight Intelligent Management processor 

SoC System on Chip 

TLB Translation Lookaside Buffer 

UE Uncorrected Error 

VA Virtual Address 

VPN Virtual Page Number 



Methods for Robust and Energy-Efficient Microprocessor Architectures 

G. Papadimitriou 171 

ANNEX Ι 

--------------------------------------------------------------------------------------------------------------------  
Event-id Description  
--------------------------------------------------------------------------------------------------------------------  
0x000 Instruction architecturally executed, condition code check pass, 
 software increment  
0x001 L1 Instruction cache refill  
0x002 L1 instruction TLB refill  
0x003 L1 data cache refill  
0x004 L1 data cache access  
0x005 L1 data TLB refill  
0x008 Instruction architecturally executed  
0x009 Exception taken  
0x00A  Instruction architecturally executed (condition check pass) -Exception return  
0x00B   Instruction architecturally executed (condition check pass) - Write to 
 CONTEXTIDR  
0x010 Mispredicted or not predicted branch speculatively executed  
0x011 Cycle  
0x012 Predictable branch speculatively executed  
0x013   Data memory access  
0x014   L1 instruction cache access  
0x016   L2 data cache access  
0x017   L2 data cache refill  
0x018   L2 data cache write-back  
0x019   Bus access  
0x01A   Local Memory Error  
0x01B   Operation speculatively executed  
0x01C Instruction architecturally executed (condition check pass) - Write to 
 translation table base 
0x01E Counter chain  
0x040   L1 data cache access - Read  
0x041   L1 data cache access - Write  
0x042   L1 data cache refill - Read  
0x048  L1 data cache invalidate 0x04C L1 data TLB refill – Read 
0x04D  L1 data TLB refill - Write  
0x050   L2 data cache access - Read  
0x051   L2 data cache access - Write  
0x052   L2 data cache refill - Read  
0x053   L2 data cache refill - Write  
0x056   L2 data cache write-back - victim  
0x057   L2 data cache write-back - Cleaning and coherency  
0x058  L2 data cache invalidate  
0x060   Bus access - Read  
0x061   Bus access - Write  
0x062   Bus access - Normal, cacheable, sharable  
0x063   Bus access - Not normal, cacheable, sharable  
0x064   Bus access - Normal  
0x065   Bus access - Peripheral  
0x066   Data memory access – Read 
0x067   Data memory access - write  
0x068   Unaligned access - Read  
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0x069   Unaligned access - Write  
0x06A  Unaligned access  
0x06C  Exclusive operation speculatively executed - Load exclusive  
0x06D   Exclusive operation speculative executed - Store exclusive pass  
0x06E   Exclusive operation speculative executed - Store exclusive fail  
0x06F   Exclusive operation speculatively executed - Store exclusive  
0x070   Operation speculatively executed - Load  
0x071   Operation speculatively executed - Store  
0x072   Operation speculatively executed - Load or store  
0x073   Operation speculatively executed - Integer data processing  
0x074   Operation speculatively executed - Advanced SIMD  
0x075   Operation speculatively executed - FP  
0x076   Operation speculatively executed - Software change of PC  
0x078   Branch speculative executed - Immediate branch  
0x079   Branch speculative executed - Procedure return  
0x07A  Branch speculative executed - Indirect branch 
0x07C Barrier speculatively executed - ISB  
0x07D   Barrier speculatively executed - DSB  
0x07E   Barrier speculatively executed - DMB  
0x081   Exception taken, other synchronous  
0x082   Exception taken, Supervisor Call  
0x083   Exception taken, Instruction Abort  
0x084   Exception taken, Data Abort or SError  
0x086   Exception taken, IRQ  
0x087   Exception taken, FIQ  
0x08A   Exception taken, Hypervisor Call  
0x08B   Exception taken, Instruction Abort not taken locally  
0x08C   Exception taken, Data Abort or SError not taken locally  
0x08D   Exception taken, other traps not taken locally  
0x08E   Exception taken, IRQ not taken locally  
0x08F   Exception taken, FIQ not taken locally  
0x090   Release consistency instruction speculatively executed - Load Acquire  
0x091   Release consistency instruction speculatively executed - Store Release  
0x100   Operation speculatively executed - NOP  
0x101   FSU clocking gated off cycle  
0x102   BTB misprediction  
0x103   ITB miss  
0x104   DTB miss  
0x105   L1 data cache late miss  
0x106   L1 data cache prefetch request  
0x107   L2 data prefetch request  
0x108   Decode starved for instruction cycle  
0x109   Op dispatch stalled cycle  
0x10A   IXA Op non-issue  
0x10B   IXB Op non-issue  
0x10C   BX Op non-issue  
0x10D   LX Op non-issue  
0x10E   SX Op non-issue  
0x10F  FX Op non-issue  
0x110   Wait state cycle  
0x111   L1 stage-2 TLB refill  
0x112   Page Walk Cache level-0 stage-1 hit  
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0x113   Page Walk Cache level-1 stage-1 hit  
0x114   Page Walk Cache level-2 stage-1 hit  
0x115   Page Walk Cache level-1 stage-2 hit  
0x116   Page Walk Cache level-2 stage-2 hit  
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