

NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

SCHOOL OF SCIENCE
DEPARTMENT OF INFORMATICS AND TELECOMMUNICATION

POSTGRADUATE PROGRAM

"INFORMATION TECHNOLOGIES IN MEDICINE AND BIOLOGY"

MASTER THESIS

DeepFoldit - A Deep Reinforcement Learning Neural Network
Folding Proteins

Dimitra N. Panou

Supervisors: Dr. Martin Reczko, Staff research scientist professor level at the

Biomedical Sciences Research Center 'Alexander Fleming' and
Technical Coordinator at ‘ELIXIR’ Greece

 Elias Manolakos, Professor at Department of Informatics and
Telecommunications of National and Kapodistrian University of
Athens

ATHENS

DECEMBER 2019

ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ

"ΤΕΧΝΟΛΟΓΙΕΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΣΤΗΝ ΙΑΤΡΙΚΗ ΚΑΙ ΤΗ ΒΙΟΛΟΓΙΑ"

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

DeepFoldit - Νευρωνικό δίκτυο βαθιάς ενισχυτικής μάθησης
για την αναδίπλωση πρωτεϊνών

Δήμητρα Ν. Πάνου

Επιβλέποντες: Δρ. Martin Reczko, Ειδικός Λειτουργικός Επιστήμονας Α'

Ερευνητικού Κέντρου Βιοϊατρικών Επιστημών 'Αλέξανδρος
Φλέμινγκ'

 Ηλίας Μανωλάκος, Καθηγητής Τμήματος Πληροφορικής και
Τηλεπικοινωνιών, Εθνικό και Καποδιστριακό Πανεπιστήμιο
Αθηνών

ΑΘΗΝΑ

ΔΕΚΕΜΒΡΙΟΣ 2019

MASTER THESIS

DeepFoldit - A Deep Reinforcement Learning Neural Network Folding Proteins

Dimitra N. Panou

SRN: ΠΙΒ0175

Supervisors: Dr. Martin Reczko, Staff research scientist professor level at the
Biomedical Sciences Research Center 'Alexander Fleming' and
Technical Coordinator at ‘ELIXIR’ Greece

 Elias Manolakos, Professor at Department of Informatics and
Telecommunications of National and Kapodistrian University of
Athens

ΕΞΕΤΑΣΤΙΚΗ ΕΠΙΤΡΟΠΗ Dr. Martin Reczko, Staff research scientist professor level

at the Biomedical Sciences Research Center 'Alexander
Fleming' and Technical Coordinator at ‘ELIXIR’ Greece

 Elias Manolakos, Professor at Department of Informatics
and Telecommunications of National and Kapodistrian
University of Athens
Stavros Perantonis, Research Director at Institute of
Informatics and Telecommunications of National Center for
Scientific Research “Demokritos”

December 2019

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

DeepFoldit - Νευρωνικό δίκτυο βαθιάς ενισχυτικής μάθησης για την αναδίπλωση
πρωτεϊνών

Δήμητρα Ν. Πάνου

Α.Μ.: ΠΙΒ0175

Επιβλέποντες: Δρ. Martin Reczko, Ειδικός Λειτουργικός Επιστήμονας Α'
Ερευνητικού Κέντρου Βιοϊατρικών Επιστημών 'Αλέξανδρος
Φλέμινγκ'

 Ηλίας Μανωλάκος, Καθηγητής Τμήματος Πληροφορικής και
Τηλεπικοινωνιών, Εθνικό και Καποδιστριακό Πανεπιστήμιο
Αθηνών

ΕΞΕΤΑΣΤΙΚΗ ΕΠΙΤΡΟΠΗ Δρ. Martin Reczko, Ειδικός Λειτουργικός Επιστήμονας Α'

Ερευνητικού Κέντρου Βιοϊατρικών Επιστημών 'Αλέξανδρος
Φλέμινγκ'

 Ηλίας Μανωλάκος, Καθηγητής Τμήματος Πληροφορικής
και Τηλεπικοινωνιών, Εθνικό και Καποδιστριακό
Πανεπιστήμιο Αθηνών

 Σταύρος Περαντώνης, Διευθυντής Ερευνών του τμήματος
Πληροφορικής και Τηλεπικοινωνιών, ΕΚΕΦΕ "Δημόκριτος"

Δεκέμβριος 2019

ABSTRACT

Despite considerable progress, ab initio protein structure prediction remains unoptimised.

A crowdsourcing approach is the online puzzle video game Foldit [1], that provided several

useful results that matched or even outperformed algorithmically computed solutions [2].

Using Foldit, the WeFold [3] crowd had several successful participations in the Critical

Assessment of Techniques for Protein Structure Prediction. Based on the recent Foldit

standalone version [4], we trained a deep reinforcement neural network called DeepFoldit

to improve the score assigned to an unfolded protein, using the Q-learning method [5] with

experience replay. The thesis is focused on model improvement through hyperparameter

tuning. We examined various implementations by examining different model architectures

and changing hyperparameter values to improve the accuracy of the model. The new

model’s hyper-parameters also improved its ability to generalize. Initial results, from the

latest implementation, show that given a set of small unfolded training proteins, DeepFoldit

learns action sequences that improve the score both on the training set and on novel test

proteins. This is important as improving the game score means obtaining a better folding,

taking us one step closer to the solution. Our approach combines the intuitive user

interface of Foldit with the efficiency of deep reinforcement learning.

SUBJECT AREA: Protein Folding

KEYWORDS: ab initio protein structure prediction, Reinforcement Learning, Deep

Learning, Convolution Neural Networks, Q-learning with experience

replay, Foldit

ΠΕΡΙΛΗΨΗ

Παρά τη σημαντική πρόοδο, η πρόβλεψη δομής πρωτεϊνών από την "εξ αρχής"

πρωτεϊνική ακολουθία (ab initio) παραμένει ένα άλυτο πρόβλημα. Μια καλή προσέγγιση

αποτελεί το ηλεκτρονικό παιχνίδι παζλ Foldit [1], το οποίο παρείχε στην επιστημονική

κοινότητα αρκετά χρήσιμα αποτελέσματα, αντίστοιχα ή ακόμα και καλύτερα από τις μέχρι

τώρα υπολογιστικές λύσεις [2]. Χρησιμοποιώντας το Foldit, το κοινό του WeFold [3] είχε

αρκετές επιτυχημένες συμμετοχές στην κριτική αξιολόγηση τεχνικών πρόβλεψης δομής

των πρωτεϊνών. Βασιζόμενοι στην πρόσφατη έκδοση του Foldit, Folditstandalone [4],

εκπαιδεύσαμε ένα νευρωνικό δίκτυο βαθιάς ενισχυτικής μάθησης, το DeepFoldit, για να

βελτιώσει τη βαθμολογία που δίνεται σε μια ξεδιπλωμένη πρωτεΐνη, χρησιμοποιώντας τη

μέθοδο Q-learning [5] με επανάληψη εμπειρίας (experience replay). Η παρούσα

διπλωματική εργασία επικεντρώνεται στη βελτίωση του μοντέλου πρόβλεψης μέσω της

ρύθμισης υπερπαραμέτρων. Εξετάσαμε διάφορες υλοποιήσεις, χρησιμοποιώντας

διαφορετικές αρχιτεκτονικές μοντέλων και μεταβάλλοντας τις τιμές των υπερπαραμέτρων.

Καταλήξαμε σε ένα μοντέλο που επιτυγχάνει καλύτερη ακρίβεια από την αρχική

υλοποίηση. Ενισχύθηκε έτσι η απόδοση με το νέο μοντέλο και βελτιώθηκε η ικανότητά του

για γενίκευση. Τα αρχικά αποτελέσματα δείχνουν ότι, δεδομένης μιας σειράς μικρών

ξετυλιγμένων ευθύγραμμων πρωτεϊνικών μορίων για εκπαίδευση, το DeepFoldit μαθαίνει

γρήγορα τις ακολουθίες δράσης που βελτιώνουν τη βαθμολογία τόσο στα δεδομένα που

χρησιμοποιήθηκαν στη διαδικασία εκπαίδευσης (training set), όσο και στις νέες

δοκιμαστικές πρωτεΐνες (test set). Αυτό είναι σημαντικό καθώς η βελτίωση της

βαθμολογίας του παιχνιδιού σημαίνει την επίτευξη μιας καλύτερης αναδίπλωσης, το οποίο

μας φέρνει ένα βήμα πιο κοντά στην λύση. Η προσέγγισή μας συνδυάζει την έξυπνη

διεπαφή του Foldit με τη δύναμη της βαθιάς ενισχυτικής μάθησης.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Αναδίπλωση πρωτεϊνών

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: Πρόβλεψη τρισδιάστατης δομής πρωτεϊνών, Ενισχυτική Μάθηση,

Βαθειά Μάθηση, Συνελικτικά Νευρωνικά Δίκτυα, Αλγόριθμος Q-

learning με βαθιά ενίσχυση μάθησης, Foldit

AKNOWLEDGMENTS

This work was supported by computational time granted from the National Infrastructures

for Research and Technology S.A. (GRNET S.A.) in the National HPC facility - ARIS -

under project ID pa181001.

I would like to express my sincere gratitude to my supervisor Dr. Martin Reczko, who gave

me the opportunity to work on this project. With his incredible guidance and continuous

support, I was able to complete this work and learn about many things that have expanded

my understanding of the area. I gained a lot from this project because of his profound

knowledge in the field of Deep Learning. He was patient with me through the initial phases

of the research, encouraged me to keep working, and helped me overcome every obstacle

that appeared along the way. Also, I want to thank him because he provided me the

chance to join his team as an intern, and gave me access to his laboratory and research

facilities.

I would also like to express my thanks to Prof. Manolakos, who agreed to be my co-

supervisor. He is the one who introduced me to the field of Machine Learning. Without his

guidance and support I would not have the chance to do this project. Also, I would like to

thank Dr S.Perantonis for the thoughtful comments and recommendations on this

dissertation. Lastly, I would like to thank my family and my friends for being there for me

every step of the way.

CONTENTS

1. ALGORITHMIC BACKGROUND ... 16

1.1 ARTIFICIAL NEURAL NETWORKS (NN) ..17

1.1.1 Computational models for neurons ...18

1.1.2 Single Neuron as Classifier ...19

1.1.3 Multilayer Perceptron as Classifier ..20

1.1.4 Activation Function ..20

1.1.5 Training ...23

1.1.5.1 Learning Rate ...24

1.1.5.2 Cost Function ...24

1.1.5.3 Gradient Descent ..25

1.1.5.4 Backpropagation ...25

1.1.6 Hyperparameters...26

1.1.7 Model Evaluation ...27

1.2 CONVOLUTIONAL NEURAL NETWORKS (CNN) ..28

1.2.1 CNN Layer Architecture ..28

1.2.1.1 Convolution Layer ...29

1.2.1.2 Activation Function Layersa ...33

1.2.1.3 Pooling Layer ..33

1.2.1.4 Fully Connected ..34

1.2.2 Classification ...35

1.3 REINFORCEMENT LEARNING ..36

1.3.1 Introduction ..36

1.3.2 Markov Decision Process (MDP) ..37

1.3.3 Definitions of RL ..38

1.3.4 MDP Policies ...40

1.3.5 Discounted Future Reward ...41

1.3.6 Q-learning ..42

1.4 DEEP LEARNING ...45

1.4.1 Deep Reinforcement learning ...46

1.4.2 Deep Q-Learning with experience replay ..46

1.4.2.1 Deep Q-Networks (DQN) ..46

1.4.2.2 Epsilon-greedy Policy ...46

1.4.2.3 Exploration vs. exploitation ...47

1.4.2.4 Experience Replay ...47

1.4.3 DRL Applications ...48

2. BIOLOGICAL BACKGROUND .. 53

2.1 PROTEIN FOLDING ..53

2.2 FOLDIT ..56

2.2.1 Cookbook and Foldit recipes ...59

2.2.2 Foldit Standalone ..59

3. IMPLEMENTATION ... 61

3.1 Data ...62

3.2 Applying Deep Reinforcement Learning to Foldit ..63

3.2.1 Preprocessing ...63

3.2.2 Actions ...65

3.2.3 Algorithm ...68

3.3 Architecture ..69

3.4 Tools and Libraries ..71

4. RESULTS ... 74

4.1 Parameter Optimization ...74

4.2 Optimized Model ..102

4.2.1 Model Parameters ...102

4.2.2 Model Architecture ..103

4.2.3 Model Convolved features ..104

4.2.4 Other implementations' results ..106

5. CONCLUSIONS & FUTURE WORK .. 108

TABLE OF TERMINOLOGY ... 110

ABBREVIATIONS - ACRONYMS ... 111

ANNEX Ι .. 113

ANNEX ΙI ... 115

REFERENCES .. 119

LIST OF FIGURES

Figure 1: Types of Machine learning techniques ... 16

Figure 2: Artificial Neural Network with 2 hidden layers [28] .. 18

Figure 3: Biological Neuron (left), artificial neuron model (right). [30] 19

Figure 4: A possible structure of a CNN which is used to classify objects on different

images, source [42] ... 29

Figure 5: 5x5 Input image with 3x3 filter, source: [43, 44] .. 30

Figure 6: 3x3 output feature, source: [44] .. 30

Figure 7: Convolution of an RGB image with 2 filters and the computation of the activation

maps. ... 32

Figure 8: Average pooling and max pooling with stride 2... 34

Figure 9: Dropout active Figure 10: Dropout inactive 34

Figure 11: The agent–environment interaction in a Markov decision process. 38

Figure 12: Taxonomy of model-free RL algorithms, (source [17]) 40

Figure 13: Q-matrix .. 43

Figure 14: Applications of DRL, source [98] ... 49

Figure 15: Stages of a folding protein .. 53

Figure 16: Figure from [1]. Foldit guide .. 58

Figure 17: Foldit Standalone interface ... 60

Figure 18: Colors used in Foldit for amino acids .. 63

Figure 19: Log-polar transform, source [147] ... 64

Figure 20: a. Linear input, b. log-polar transformation of a, c. Evolver input, d. log-polar

transformation of c ... 65

Figure 21: Original image, b) Action up with energy penalty, c) Action down, d) Action left

with reward, e) Action right with energy penalty, f) Action shift to the left (Rotation), g)

Action zoom out, h) Action Home (place protein to the center), i) Restore best score 67

Figure 22: Model Architecture (designed using NN-SVG tool [148]) 70

Figure 23: Parallel system architecture for parameter optimization 71

Figure 24: Parallel system architecture for model training ... 72

Figure 25: Convolutional layer's depth comparison for 30, 40 and 60. 76

Figure 26: Presents the value of the first layer's receptive field as a function of Average

rewards. The optimal value for receptive field is 15. .. 77

Figure 27: This boxplot outlines the first convolutional layer's stride size as a function of

Average Rewards. The tested values were 1,2 no differences in their performance. 78

Figure 28: Depth of the second convolutional layer as a function of Average Rewards.

Group 2 (yellow), group 3 (purple), group 5 (light blue), group 6 (yello) and group 7 (light

green) boxplots show that depth = 15 had better performance. In the Figure the

significance level is annotated. .. 79

Figure 29: Second Convolutional layer receptive field (filter size) comparison for values 5,

10, 15, 20, 25 and 40. The significance level is annotated. ... 80

Figure 30: This boxplot outlines the second convolutional layer's stride size as a function of

Average Rewards. The tested values were 1,2 with slightly difference in their performance.

 ... 81

Figure 31: Fully connected layer's dimensions comparison. Boxplots with the same color

can be compared with each other. For dense = 100 (yellow) and for dense = 200 (purple)

we had the best results .. 82

Figure 32: Input size comparison for 150, 160 and 200 in function of the average rewards.

There are 3 groups with different properties in each case. In first group (green) size 150

stands out. Also, both second (R4) and third (R38) group had better results for size 150. 83

Figure 33: Required running steps as a function of Average Rewards. 84

Figure 34: Comparison of different architectures based on the number of hidden layers.

Two-layer architecture versus a three hidden layer network. The two architectures have

same settings in the two layers. Better results with no significant difference had the 2-

hidden layer architecture. ... 85

Figure 35: 3-Layer architecture depth comparison for values 10, 20 and 30. 85

Figure 36: 3-Layer architecture rectified field comparison for values 20, 30 and 40. 85

Figure 37: Architecture of 2-hidden layers compared with 3-hidden layers. Both

architectures have same settings for the last two convolutional layers and the extra layer is

the first. Better results appear in the smaller network. ... 86

Figure 38: Optimal position for the extra layer. First layer (with 0) versus last layer (with 3).

As first the same extra layer appeared to have better performance with statistically

significant difference. ... 86

Figure 39: Learning rate hyperparameter performance in a 3-layer convolutional neural

network. The learning rate can take values 10-4 and 2*10-4. Better results appear for 10-4.

 ... 86

Figure 40: Protein iterations for each input as a function of Average Rewards. 87

Figure 41: Mini batch size comparison for values 50 and 70. The significance level is

annotated. .. 87

Figure 42: Number of actions per training in function of Average rewards. Compared

values 3, 5, 6, 10, 15 and 20. The level of significance is annotated. 88

Figure 43: Dropout rate performance ... 89

Figure 44:Score scaling comparison. With the same color are the implementations with

similar settings in the other hyperparameters. ... 90

Figure 45: Learning rate performance. Tested runs: 46, 56-58. ... 91

Figure 46: Momentum as a function of Average Rewards. Runs for testing: 47, 48. 92

Figure 47: Gamma value as a function of Average Rewards. Runs for testing: 49-52. 93

Figure 48: Average rewards by initial ε. Five values were tested with better results for ε is

0.25. Runs for testing: 54, 55. .. 93

Figure 49: In this boxplot, it appears how the average rewards are affected by the value of

final ε.. 94

Figure 50: Average rewards by exploration rate. Five values were tested with better results

for ε is 0.25. Runs for testing: 54, 55. .. 95

Figure 51: Replay memory as a function of average rewards .. 96

Figure 52: Architecture 1 vs Architecture 2 .. 99

Figure 53: Architecture 4 vs basic architecture .. 99

Figure 54: Architecture 3 vs basic architecture .. 100

Figure 55: Architecture 3 vs Architecture 4 .. 100

Figure 56: Batch normalization vs Basic model ... 101

Figure 57: MaxPooling vs Basic model .. 101

Figure 58: Model architecture and layers’ structure ... 103

Figure 59: Input Image ... 104

Figure 60: CLD1 convolved features of optimized model .. 104

Figure 61: CLD2 convolved features of optimized model .. 104

Figure 62: CLD1 Activation maps .. 105

Figure 63: CLD2 Activation maps .. 105

Figure 64: Relative score improvements.. 106

Figure 65: Amino acid feature layer of Evolver dataset ... 107

Figure 66: Amino acid feature layer of Soloist dataset ... 107

LIST OF TABLES

Table 1: Most known activation functions plots obtained from [35] 22

Table 2: DRL Frameworks & SDKs .. 52

Table 3: List of proteins in each dataset ... 62

Table 4: List of Foldit automatic moves... 66

Table 5: DeepFoldit action set .. 66

Table 6: Acronyms of the components of the DQNN .. 70

Table 7: Basic Model .. 75

Table 8: Hyperparameters .. 113

PREFACE

Thesis Structure

This thesis is structured into five chapters. The first section of Chapter 1 provides a

theoretical explanation of machine learning theory and delves deeper into Convolutional

Neural Networks (CNN) and Deep Learning. The second section of Chapter 1 focuses on

the problem of protein structure prediction, presents some state-of-the-art techniques and

works as a link to Chapter 2 which documents the implementation of this project. In

Chapter 2 we describe the implemented method, the Q learning algorithm, the model

construction, architecture and training and the nature of the data used as input. In Chapter

3 we present the optimization process, the steps we took to decide the model’s

hyperparameters values, as well as the best model architecture and its results. We

conclude summarizing the achievements so far and list possible future goals for this

project.

The current project was implemented at Bioinformatics Lab of BSRC ‘Alexander Fleming’

and was computed on the GPU nodes of ARIS national high-performance computing

system (HPC). This work was supported by computational time granted from the Greek

Research & Technology Network (GRNET) in the National HPC facility - ARIS, under

project ID pa181001.

DeepFoldit - A Deep Reinforcement Neural Net Folding Proteins

D. Panou
 16

1. ALGORITHMIC BACKGROUND

Machine learning (ML) is the study of algorithms and statistical models used by

computer systems to accomplish a given task without using explicit guidelines, relying

on inferences derived from patterns. ML is a field of artificial intelligence. The goal of

machine learning algorithms is to understand the structure of data and build

representative models of them, by constructing knowledge representations and

inference mechanisms that captured the underlying distribution . The models should

have the capability to extrapolate novel data.

Figure 1: Types of Machine learning techniques

Machine learning can be categorized based on the system of the learning process, or

based on the output data types. Depending on the nature of the learning "signal" or

"reaction" accessible to a learning scheme, machine learning implementations are

categorized into three major categories, which are supervised, unsupervised and

reinforcement learning. Supervised learning includes feedback indicating the exact

outcome of a forecast, whereas unsupervised learning does not require any labeling of

the data: the algorithm attempts to categorize information based on its hidden structure.

Reinforcement learning is similar to supervised learning because it receives feedback,

but not necessarily for each state or input and only in the form of penalties.

Reinforcement learning will be described further in the next section. Machine learning is

a continuously developing and very promising field.

DeepFoldit - A Deep Reinforcement Neural Net Folding Proteins

D. Panou
 17

1.1 ARTIFICIAL NEURAL NETWORKS (NN)

Artificial Neural Networks (ANN), are mathematical models inspired by biological neural

networks that are used mostly as machine learning algorithms and have lately gained a

lot of attention thanks to the availability of Big Data and fast computing. ANNs try to

mimic biological neural networks. Their theory has been developed ever since the 70s,

however, wrong assumptions about their capabilities and the computational cost to

implement them led people to design alternative algorithms for automated model

building. In recent years, there has been a rapid increase in interest for the ANNs,

thanks to many breakthroughs in computer vision, speech recognition and text

processing in the context of deep learning.

In supervised learning there are plenty algorithms such as, , linear classifiers [6],

Bayesian classifiers [7], K-nearest neighbors (KNNs) [8], Hidden Markov model (HMM)

[9], and decision trees [10]. On the other hand, unsupervised methods that are popular

include Autoencoders [11], expectation maximization [12], self-organizing maps [13], k-

means [14], fuzzy [15], and density-based clustering [16]. Finally, reinforcement learning

(RL) problems are modeled using the Markov decision process (MDP), which will

analyzed further in section 1.3.2 and dynamic programming [17]. RL algorithms have

been successfully combined with a number of deep Neural Network architectures,

including Convolutional Neural Networks (CNN) [18, 19], Recurrent Neural Networks

(RNN) [18] such as LSTM [20] and GRU [21], Autoencoders [22] and Deep Belief

Networks (DBN) [23].

Convolutional Neural Networks (CNN) are multi-layer neural networks that are primarily

used to analyze images for image classification, segmentation and object identification.

They are based on reducing input images to their key features and classify them using a

combination of them. Recurrent Neural Networks (RNN) are used for sequential input

such as text, audio data and videos for classification and analysis. RNNs work by

evaluating sections of the input stream, using weighted temporal memory and feedback

loops. There are algorithms that use hybrid models, a combination of CNN and RNN

referred to as CRNN, to increase their effectiveness. Both networks can classify

images, texts and video [24-27].

DeepFoldit - A Deep Reinforcement Neural Net Folding Proteins

D. Panou
 18

Figure 2: Artificial Neural Network with 2 hidden layers [28]

Generally, an ANN is an information processing system that is based on simple

processing elements, the neurons. The central idea is to create a machine that would

be able to simulate how biological brains processes information through transmitting

signals between its neurons. Different signals representing information traverse different

paths through the network. Similar to biological networks, artificial neurons are

organized in layers. Each layer consists of nodes (neurons), weighted connections

between these nodes (weights) that are updated during the training or learning process

and an activation function that defines the output value of each node depending on the

input. Every time the network is called to answer a question about the input, neurons

are activated or deactivated, producing outputs that are fed to the neurons of the next

layer.

1.1.1 Computational models for neurons

ANNs have long history that starts with the first efforts to comprehend how biological

brains operate and the structure of intelligence. The structural component of the brain is

the neuron, which is made of three basic components: Dendrites, the cell body and

axons. Each neuron is connected to other neurons through unique links called

synapses. It is estimated that the human brain comprises of 86 billion neurons and

approximately 1014 to 1015 synapses [29]. Each neuron receives input signals from its

dendrites and generates output signals along its axon, which connects with other

neurons through synapses with their dendrites (Figure 3).

DeepFoldit - A Deep Reinforcement Neural Net Folding Proteins

D. Panou
 19

Figure 3: Biological Neuron (left), artificial neuron model (right). [30]

Using the same logic, an artificial neuron or perceptron is the basic unit of an artificial

neural network. In the non-spiking computational model (Figure 3) of a neuron, the

signals moving along its axon () interact multiplicatively () with the dendrites of

another neuron based on the synaptic weight (). Synaptic weights can be adapted

during the training. The neuron integrates all inputs and passes it through an activation

function which determines if the neuron should be activated or not and generates an

output activation. This activation is the normalized output of each neuron. In supervised

training, the objective is to determine the weights that can generate some desired

output activations for a subset of the neurons.

1.1.2 Single Neuron as Classifier

The perceptron is the smallest and simplest modle for a neuron that exists for a neural

net, proposed by F. Rossenblatt [31]. A perceptron can solve a simple binary

classification problem by giving as output signals “yes” or “no”, 0 or 1. Modeled by the

idea of how biological brains work, a single layer perceptron may be a very simple

learning machine. Mathematically this is how one perceptron neuron works:

Considering the input values, we pass x values from an operation where

Where is a function, which takes a vector of inputs , performs an aggregation

(weighted sum) and passes the aggregated value through an activation function. If the

final sum is greater than a certain threshold called bias, the neuron is activated. The

bias is used to shift the activation function.

DeepFoldit - A Deep Reinforcement Neural Net Folding Proteins

D. Panou
 20

1.1.3 Multilayer Perceptron as Classifier

A multilayer perceptron (MLP) is a deep artificial neural network that consists of multiple

layers of perceptrons between the input layer and the output layer. The output of each

neuron in one layer is usually connected to every neuron in the next layer. The input

layer is a feature vector that needs to be classified and the activations of the output

layer are decoded into class assignments for the input features to make decisions about

the input. The weights are determined using a training set of feature vectors with known

class labels. The MLP is also called feed-forward neural network, because the

information is processed successively, layer by layer, from the input layer to the output

layer. An MLP must contain at least one hidden layer.. The motivation behind designing

multilayer networks is to support solving more complex tasks by adding a hierarchy of

internal representations in each layer.

1.1.4 Activation Function

One critical step in building a neural network is the selection of an activation function.

The activation function is a mathematical equation defined for each neuron in the

network, and determines its degree of activation. Activation functions typically have an

output range between 1 and 0 or between -1 and 1. This function is the feature that

gives the network the ability to compute and represent arbitrarily complex functions

(non-linear). Most activation functions are nonlinear functions, as the linear activations

in adjacent layers can be combined into a single layer.

Typical activation functions are: binary step, linear or nonlinear, and differentiable non-

linearities. In the binary step function, if the input value is above a certain threshold the

neuron is activated and sends its activation to the next layer. A linear function has the

form of , as it takes inputs multiplied by the weights for each neuron and

creates an output proportional to the input. With linear activation functions, all adjacent

layers of the net become one, because no matter how many layers exist in the network,

the last layer will always be a linear combination of the first. Non-linear activation

functions manage to create complex mappings between the network's input and

outputs, which is ideal for learning data such as images, audio and videos with multiple

dimensions.

Differentiable non-linear activation functions allows backpropagation [32] and multiple

hidden layers. In

DeepFoldit - A Deep Reinforcement Neural Net Folding Proteins

D. Panou
 21

Table 1, some of the most popular activation functions are shown.

a) Sigmoid

It is also referred as logistic activation function. This function has a Real number as

input and normalizes it in the range 0 to 1. Converts large negative numbers to 0, while

large positive numbers provide an approximate output of 1. This function only works

with 2-class classification A generalized version of sigmoid activation function that is

used in multiclass classification is the SoftMax. The most important problem with

sigmoid function is known as vanishing gradients (the gradient of weight vanishes or

goes down to zero) [33] and is occurred in backpropagation-trained networks. For very

high or very low values there is almost no change to the prediction causing a vanishing

gradient problem. The problem lies in the fact that the derivative of the sigmoid function

is close to zero both for very large positive and negative inputs, which results in no

alteration in the weights of some neurons. Another issue we face while using sigmoid

activation function is that the output is always positive (accumulated towards the

positive side), so it’s not a zero centered function. Sigmoid functions are mostly used in

output layers and in classification problems.

b) Hyperbolic Tangent Function (Tanh)

Tanh function is quite similar to the sigmoid with the difference that it is a zero centered

function. Zero-centered activation functions have a mean activation value around zero.

It receives a real number as input and outputs a number in the range of -1 to 1. It is

considered a better function than the sigmoid since a zero centered function is less

dependent on further normalization measures. However, it also suffers from the

vanishing of gradients problem.

c) Rectified Linear Unit (ReLU)

This function assigns the input value to a value in the range 0 to x, where x is a positive

number. For negative input values the output is 0 while for positive inputs the output is

x. This function is widely used today as it overcomes part of the vanishing gradient

problem, for positive input values, and it is easy to implement.

DeepFoldit - A Deep Reinforcement Neural Net Folding Proteins

D. Panou
 22

Table 1: Most known activation functions plots obtained from [34]

Name Plot Equation Derivative

Identity

Binary Step

Sigmoid/Logistic

Hyperbolic/

Tanh

ArcTan

ReLU

DeepFoldit - A Deep Reinforcement Neural Net Folding Proteins

D. Panou
 23

PReLU or

Leaky ReLU

1.1.5 Training

The learning process is the key concept of a neural network. During the learning

process, the network is searching for its optimal parameters which can solve the given

problem and before the learning process starts, we have to initialize our parameters.

Usually the initial values are chosen randomly, but there are some heuristic algorithms

[24-27], which speed up the identification of the optimal parameters. There are two data

sets, the training, and the test set. The training set is fed to the neural network during

the training process. The learning phase is an iterative process where the outputs that

were produced form every input of the training set are analyzed and the network is

repeatedly being adjusted to produce better results. In the simplest setting, the network

is considered to be trained after reaching a predefined target performance on the

training data. There exist different metrics for assessing the network performance, with

the most common being the mean squared error. If after learning the error rate is still

high, usually some hyperparameters are changed and the training is repeated.

Depending on the type of problem, different types of training are used. Specifically, in

supervised learning the training process is focused on the identification of the scoring

function which is inferred from the labeled training data. The data consists of training

examples with known classes. These form pairs of inputs and the desired outputs. In

order to avoid a common problem known as overfitting (when the network’s predictive

performance is improving on the training set but it is worsening on the unseen test

data), we split the dataset into two subsets. One is for the actual training (training set),

and the other is to control how the training is going (validation set). The main reason to

use the validation set is that it shows the error rates on data independent of the

training set. The objective of training in supervised methods is to identify the model

that best expresses the input. This process is evaluated using a loss function. Typically,

we seek to minimize the error. As such, the objective function is often referred to as a

cost function or a loss function. During the training procedure, the network will update

the weights of each layer by comparing the result with the desired output value.

DeepFoldit - A Deep Reinforcement Neural Net Folding Proteins

D. Panou
 24

In unsupervised learning, the training set does not contain expected outputs for the

given inputs. The objective of these methods is to form clusters, groups of data that

show similarities, common behavior according to specific features. The features are

known, so these algorithms aim to find those clusters. There are also methods that

combine supervised and unsupervised learning methods [35].

1.1.5.1 Learning Rate

Hyperparameters are system-external configurations whose values cannot be

estimated from data. In other words, are the parameters that are not learned by the

model and must be chosen by the user before the training process. These pre-fixed

values help to estimate model parameters and setting up the right values can affect the

accuracy of the model.

Learning rate is a hyperparameter used in training that controls the stepsize used to

change adaptable parameters. The learning rate has range between 0.0 and 1.0 and

controls the stepsize for the gradient decent. If the learning rate is low, the model

requires more training epochs to update the weights but may better follow actual

gradient, while in high values it has rapid changes at the risk of introducing oscillations.

A higher learning rate has a higher risk of falling in a sub-optimal solution of the loss

function. This is the reason why the right value selection for the learning rate is

important in the process of creating a model..

1.1.5.2 Cost Function

Before training starts, all the model’s parameters are usually initialized randomly. During

the training, some parameters are updated and our main goal is to find the optimal

values for them. Defined by an evaluation method. A cost function is an evaluation of

the performance of a model, a measure of "how good" a network is. With respect to the

given training samples and the expected output a cost function produces a single

number that represents the performance of the network. A cost or loss function specifies

how to calculate the error between prediction and the label of a given training example.

This error is backpropagated during training in order to update the learnable parameters

(weights). Broadly, loss functions can be classified into two major categories, depending

on the type of learning task, to Regression losses and Classification losses. In

classification losses, the predicted output belongs to a set of finite categorical values,

for example the problem of categorizing hand-written digits into one of the classes

corresponding to the 0–9 digits. Cross Entropy loss function belongs to Classifications

losses. Cross entropy is a simple and effective method, which works with Gaussian

DeepFoldit - A Deep Reinforcement Neural Net Folding Proteins

D. Panou
 25

distributions, repeatedly updating the mean and variance of a distribution over

candidate parameters. In Regression losses, on the other hand, the predicted output is

a continuous value. Popular loss functions that belong to this category is Mean Square

Error (MSE), Mean Absolute Error (MAE), Mean Bias Error (MBE). Since the cost

function represents the loss-error, our main concern is to minimize it at the end of the

training. To achieve this, we use an optimization function called Gradient Descent. A

penalty term usually related to the size of the weights may be added to the loss function

or the gradient update equation to prevent overfitting and/or to make the network more

robust against noisy input data.

1.1.5.3 Gradient Descent

In practice, the most commonly used procedure is the stochastic gradient descent

(SGD). This consists of providing the input vector a few examples, computing the

outputs and the errors, computing the average gradient for those examples, and

adjusting the weights accordingly. This process is repeated for many small sets of

examples from the training set, called batches, until the average of the objective

function stops decreasing. It is called stochastic because each small set of examples

gives a noisy estimate of the average gradient of the entirety of the examples.

1.1.5.4 Backpropagation

Backpropagation is an algorithm frequently used to train neural networks.

Updating the weights during backpropagation

There are three ways to update the weights during the training. The first way is to

calculate the optimal weights and update them after the presentation of each sample

(instance) of the training set (online method). This method is really simple, although it

can be sensitive to outliers and time consuming for large datasets.

The second way for weight updating is by using batches. The training samples are

divided into batches and then training is performed iteratively on each batch.

Backpropagation is calculated on all the samples that belong to the same batch. This

method is more accurate and less sensitive to outliers.

Finally, the third approach is between the other two and is the random selection of small

batches from the training data, and then run forward pass and backpropagation on each

batch, iteratively. This [36, 37] prevents a biased selection of samples in each batch,

which can lead training into a local optimum.

DeepFoldit - A Deep Reinforcement Neural Net Folding Proteins

D. Panou
 26

1.1.6 Hyperparameters

There are several parameters we use to define and train an ANN. Some of them are

internal and adapted automatically from samples during the training process, and others

have fixed values and are chosen before the training starts.

The internal parameters of the network are learnable during the training process. They

are used to make predictions in a production model and are referred to as the model’s

parameters. Parameters such as weights and bias are those internal parameters that

are changing during the training and need to be initialized before the training starts.

The external parameters are set by the designer of the ANN and called

hyperparameters. Changes in hyperparameters can have an impact on the performance

of the network. Tuning of hyperparameters helps the network provide accurate

predictions. Common hyperparameters are related to the network’s structure are the

number of hidden layers, the dropout rate [38] (specifies the probability at which outputs

of the layer are dropped out or retained.), the activation function and the weight

initialization methods. Others that are involved in the training algorithm are the learning

rate, the number of epochs, the optimizer algorithm and the momentum. There is no

predefined way to choose values for a hyperparameter, only by trials and comparing the

results. For some parameters there exist suggested values that have been discovered

empirically. For example, most implementations suggest the minibatch size ,which is the

number of training samples that belong to a batch that is used for weight update during

backpropagation, to be a power of two that fits the memory requirements of a

CPU/GPU such as 32, 64, 128, 256. Hyperparameters optimization will be analyzed

further in the final chapter.

DeepFoldit - A Deep Reinforcement Neural Net Folding Proteins

D. Panou
 27

1.1.7 Model Evaluation

The final part of the training process is the evaluation of the constructed model. This is

an important step, since it allows us to understand the effectiveness of the model we

deployed while solving the problem. At this point, error estimation is required and the

most popular method is splitting the data set into three parts, specifically the training,

validation and testing data sets. Training the model is accomplished by using the

training set, composed of labeled data that allow the model to learn the connections

from input to output. Using the validation set, we pinpoint when to terminate the model.

Finally, we test our model to the unbiased data of the test set to estimate how well it

behaves. This process aims to eliminate overfitting. Overfitting is a common problem in

ML and happens when a model overly adapts to a specific data set and cannot

generalize. Essentially the model is adapted to the noise from the training set and it

does not perform well with new unbiased data. There are many methods to avoid over-

fitting. One such method is cross-validating our results. The most common version is k-

fold cross-validation, in which we split the training set into k sets and proceed to use k-1

parts for training and one part for validation followed by iterating k times while

alternating validation parts for each iteration. For big data sets, a standard choice for the

k value is 10. This algorithm is effective but can be proved computationally complex

since we iterate the training process k times. The performance of a model for

classification can be accurately determined using a set of metrics like accuracy (ratio of

the number of accurate predictions to the number of total predictions), precision (ratio

between true positives to the number of positives), recall and the F-score (weighted

mean of the precision and recall).

DeepFoldit - A Deep Reinforcement Neural Net Folding Proteins

D. Panou
 28

1.2 CONVOLUTIONAL NEURAL NETWORKS (CNN)

Convolutional neural networks (CNN) are multi-layer feed-forward neural networks that

are specifically designed for image processing, classification, clustering and feature

recognition, and signal processing. Convolutional networks can also perform optical

character recognition (OCR) to digitize text and make natural-language processing

possible on hand-written documents, where the images are symbols to be transcribed.

The architecture of CNN is inspired by the findings of P.H Hubel and T. N. Wiesel in

1959 [39, 40], in trying to explain how mammals perceive the world around them in a

hierarchical way. Their paper was a study of signal processing in a cat’s visual cortex

[41]. Using a layered architecture of neurons of the cat’s brain, inspired engineers to

develop a similar mechanism for computer vision. CNNs are usually applied for data

types that can be presented as multi-dimensional matrices. An image can be stored as

a matrix with its height, width and color channels as its dimensions are height, width, 3

for RGB images. Deep learning has greatly enhanced the state of the art for many

problems faced by the machine learning and AI community especially in image

recognition and object identification and CNNs are responsible for this improvement and

one of the main reasons why deep learning is famous nowadays. The big success of

AlexNet opened the path for 2D image recognition in 2012 [19].

1.2.1 CNN Layer Architecture

A convolutional network is architecturally split into layers. Each layer is designed

indended to fulfill a different purpose and to learn different levels of abstraction. The

network’s layers close to the input layer perform feature extraction, and consist of

convolutional and subsampling layers. The second part performs classification based on

the extracted features. Neurons are grouped, creating layers, depending on the different

levels of abstraction they are learning. The first layer of the network is the input layer,

the middle one is known as hidden layers and the last one is the output layer. The

number of hidden layers denote the depth of the network. The more layers the network

has, the deeper the network will be. The layers of the network perform different tasks

DeepFoldit - A Deep Reinforcement Neural Net Folding Proteins

D. Panou
 29

based on the number of connections and their activation functions. Examples of these

types of layers are: the fully connected layers, which take into consideration all

neurons from the previous layer; the pooling layers, that perform a down sampling

operation (for example, max-pooling takes the maximum value from the inputs) or the

convolutional layers that compute the output of neurons that are connected to a local

region of the input. The layer-types of a CNN will be further analyzed in the next

sections. The networks that are based on this last kind of layers are known as

Convolutional Neural Networks (CNN) or ConvNets.

A CNN operates in three stages. The first is a convolution, in which the image is

“scanned” a few pixels at a time, and a feature map is created with probabilities, so that

each feature belongs to the required class (in a simple classification example). The

second stage is pooling (also called down sampling), which reduces the dimensionality

of each feature while maintaining its most important information. The pooling stage

creates a “summary” of the most important features in the image. The third phase is the

fully connected layer which ends up to the output.

Figure 4: A possible structure of a CNN which is used to classify objects on different images,

source [42]

1.2.1.1 Convolution Layer

A digital image is a 2D array of pixels, where each element in position in the array

is the position of the pixel, starting from left to right, and the value is the pixel’s value.

For colored images (RGB), pixels are characterized by three values, one for each color

channel. So, an RGB image with height M and width N is stored as a MxNx3 matrix.

The Convolutional layer makes use of a set of learnable filters.

DeepFoldit - A Deep Reinforcement Neural Net Folding Proteins

D. Panou
 30

Figure 5: 5x5 Input image with 3x3 filter, source: [43, 44]

Figure 6: 3x3 output feature, source: [44]

An example of a filter that is convolved with an image array is shown in Figure 5. With

pink color in Figure 6 is the result of the convolution with the yellow filer. The input is a

5x5 matrix and the filter of size 3x3 is applied with stride of 1. Therefore, the output

volume size has spatial size:

The filter slides one pixel at a time until it reaches the final and is applied on a sub-

matrix with dimensions 3x3 of the input array, having as first pixel the current pixel.

So, the last element of the output array (pink) marked with yellow is computed:

A filter is used to detect specific features or patterns present in the input image. It is

usually expressed as a matrix (MxMx3), with smaller dimensions than the input size, but

with the same depth. This filter is convolved (slided) across the width and height of the

input file, moving horizontally, starting from the upper left pixel, and a dot product is

calculated to produce an activation map. The number of pixels the filter shifts over the

input volume is called stride. When the stride is 2 then the filter moves 2 pixels at a

time.

DeepFoldit - A Deep Reinforcement Neural Net Folding Proteins

D. Panou
 31

The parameters of the convolutional layer are mainly the set of its filters or weights that

are learned through the training process. Every filter is small spatially but it extends in

the entire depth of the input volume. For example, we have an input image of size

160x160x3. The receptive field will also have depth of size 3, the same depth as the

input for example 15x15x3. During the forward pass, the filter slides over the width and

the height of the input and the responses of the filter at every spatial position is given by

the activation map. Each filter has one activation map as a result (Figure 6) and all the

activation maps along the depth of the input, produce the output volume. If we

symbolize the input size as IS, and the receptive field or filter size as RFS, the number

of zero padding (zeros around the input on border) as P and the stride as S, then the

output size is given by:

in this example, the output of the first layer will be 30 activation maps with size:

Every neuron of the convolutional layer will have weights to a [15x15x3] region in the

input volume, having 15x15x3 equal to 675 total weights (+ 1 bias) parameters. That

makes 15x15x30 connections equal to 6750.

So, the output size will be 146x146x30. This is the input for the second convolutional

layer and 10 receptive fields of 20x20x30 (same depth as the input) are applied with

146x146x30 = 639480 neurons and 12000 connections. The output of the second layer

would produce 10 activation maps of size

So, the output would be 127x127x10. In Figure 7 we can see the results of the

convolution of an 7x7x3 input with 2 filters 3x3, stride = 2 and zero padding = 1.

DeepFoldit - A Deep Reinforcement Neural Net Folding Proteins

D. Panou
 32

Figure 7: Convolution of an RGB image with 2 filters and the computation of the activation maps.

DeepFoldit - A Deep Reinforcement Neural Net Folding Proteins

D. Panou
 33

1.2.1.2 Activation Function Layersa

The activation function layer is the layer where the activation function is applied. The

ReLU function is the most widely used activation function in CNNs today. One of its

greatest advantages, over other activation functions, is that it does not suffer from the

vanishing gradient problem [45]. In practice, ReLU converges six times faster than tanh

and sigmoid activation functions.

A disadvantage ReLU possesses is that it is saturated at the negative region, meaning

that the gradient in that region is zero. With the gradient equal to zero, during

backpropagation all the weights will not be updated. To fix this, we use a handy tool,

Leaky ReLU. Also, ReLU functions are not zero-centered. This means that for them to

get to their optimal point, they have to use a zig-zag path which may be longer.

1.2.1.3 Pooling Layer

A Pooling Layer is very important for the operation of the CNN. The addition of a pooling

layer after a convolutional layer is a common step that is used to reduce the spatial size

of the representation, the amount of data and the amount of required moves. It is

usually placed between two convolutional layers. This step may be repeated one or

more times in a given model. With pooling layers in CNNs, a down sampling feature

map is created that summarizes the presence of different features in patches. The

common pooling methods are max pooling, average pooling and sum pooling. Max

pooling summarizes the maximum presence of a feature ,while the average pooling the

average presence of a feature. A Max-Pooling Layer slides a window of a given size

over the input matrix with a given stride and gets the max/average/summarized value

in the scanned submatrix.

An example of average and max pooling operation is shown in Figure 8. Here as input

we have a 4x4, the window size or kernel is 2 () and the stride is 2 (). The

window is applied on the input array and slides with stride 2 until it reaches the final

pixel. For max pooling, the output is the maximum value of the first sub-array (green),

which is 21 (between 8 ,12, 19, 21). Then we slide the window 2 pixels right, so the first

pixel of the new window (orange) is now 8. The second output is the maximum between

7, 8, 9, 12, which is 12. We follow the same procedure with the average.

The average in the first window (green) is

 and in orange window

 .

Pooling is capable except for the reduction of data, to increase receptive fields.

DeepFoldit - A Deep Reinforcement Neural Net Folding Proteins

D. Panou
 34

Figure 8: Average pooling and max pooling with stride 2

1.2.1.4 Fully Connected

The layer that receives the output of the previous layer as input and specifically the

output of the final pooling or Convolutional layer is named as the fully connected layer.

The output of the final layer is a 3D matrix which is flattened by a flattened vector that

makes the values of the matrix separate values and perform the same mathematical

operation the matrix does. In the fully connected layer each node of the hidden layers is

connected to each node in the input layer.

Dropout

There is a large variety of methods we use to reduce the test errors of a learning model,

but when the neural network is big enough, these methods are computational expensive

and take a lot of time to train the model.

Figure 9: Dropout active Figure 10: Dropout inactive

A remedy for this is the dropout technique. Dropout [38] is a regularization technique to

train sub-networks by dropping non-output units from the original network randomly.

DeepFoldit - A Deep Reinforcement Neural Net Folding Proteins

D. Panou
 35

This increases the generalization ability of the network and prevents overfitting. In this

technique the output for each hidden neuron is set to zero (turned off) with probability

equal to 0.5 called the dropout rate, so the network is forced to learn new

representations for the data. In each learning state the individual nodes are either

dropped out with probability 1-p or they are kept (turned on) with probability p. The units

which are ignored in this way do not contribute to the forward pass and do not

participate in back-propagation. The remaining system is a reduced complex network

with different architecture but with shared weights (Figure 9). Dropout usually needs a

larger number of iterations to converge.

1.2.2 Classification

The classification in CNN is the assignment of every input pattern to its class. Each

class in a classification problem has specific features that differentiate it from other

classes. For example, in the number classification problem some features can be

horizontal lines, vertical lines and holes-circles. Number eight (one class of 9 numbers-

classes) can be identified easily using as criteria 2 hole-features and zeros have one

hole- feature. Assuming that we have a 2-class classification problem where the

convolutional network recognizes only mice. The first class answers the question if the

input image is a mouse and the second class if is not. Some features the CNN may

detect-consider as features are the trunk or large ears. Those characteristics practically

are translated to boundaries matrixes or curves. During the training the network must

identify those features that characterize the input. If every or some characteristics of a

given input agree with the list of those learnable features, then we can predict the

output.

DeepFoldit - A Deep Reinforcement Neural Net Folding Proteins

D. Panou
 36

1.3 REINFORCEMENT LEARNING

1.3.1 Introduction

Researchers from many scientific fields have started using deep neural nets to model a

wide range of new tasks including how to learn intelligent behavior in complex dynamic

environments. In most machine learning applications people use supervised learning.

This means that you give an input to your neural network model knowing the output

your model should produce and therefore you can compute gradients and the

backpropagation algorithm to train the network to produce your desirable outputs. If we

want to train a network to play a game, what we should do in a supervised setting is to

have a human gamer play this game for a couple of hours and create a data set where

we log all of the frames that human saw on the screen and the actions that he

performed in response to those frames. Then, we can feed these input frames through a

very simple neural network. The output of this net can produce two simple actions. By

training on the data set of the human game-play using backpropagation, we can actually

train that neural network to replicate the actions of the human gamer. Although, there

are two significant downsides to this approach. First, the construction of the data set is

not an easy task, with very high computational cost, and second, if we train our neural

network model to imitate the actions of the human player, by definition our agent can

never surpass the human player. So, if we want to surpass the best human

performance we can’t use supervised learning. In reinforcement learning the

mechanism is quite similar with supervised models, but we don’t know the target label.

Reinforcement learning is a set of machine learning algorithms based on trial and error

in an environment. This technique lets an AI agent learn to complete an objective in an

environment using time delayed labels, or what we call rewards, as a signal.

Reinforcement learning (RL) is the branch of machine learning that is concerned with

making sequences of decisions. It considers an agent placed in an environment. The

agent is trying to achieve judging the kind of progress through its actions toward a

desired goal. It is possible to know the agent’s function, but we cannot know the

function of the environment and the interactions with it. RL algorithms, under the right

conditions, can achieve superhuman performance. The environment penalizes or

rewards the agents, according to the choice of action they make. One characteristic of

reinforcement learning algorithms, is what we meet also in humans’ decisions. Planning

doesn't always lead to a certain result. In this way, it is difficult to understand which

action leads to which outcome. Reinforcement learning algorithms perform sometimes

DeepFoldit - A Deep Reinforcement Neural Net Folding Proteins

D. Panou
 37

in more ambiguous, real-life environments while choosing from an arbitrary number of

possible actions, and video games are the best test-beds for them. With time we expect

them to be valuable in achieving goals in the real world. Unlike other types of machine

learning (supervised, unsupervised learning), reinforcement learning can only be viewed

sequentially in terms of pairs of state-action occurring one after the other.

1.3.2 Markov Decision Process (MDP)

Ulam in 1940 [46] invented the Monte Carlo method to help him with his experiments.

The idea is simple, to use randomness in order to solve problems. It is used a lot in the

field of artificial intelligence. Deepmind used the Monte Carlo method to complete a tree

search to find the best move in the game of GO [47, 48], which ended up beating the

world champion. It is a useful technique since it lets our agent learn the optimal

behavior directly from its interaction with the environment. The agent starts at a state

and follows its internal policy. At each step, it records the rewards obtained and saves

the history of all visited states until reaching a terminal state. This sequence of states,

from the starting state until reaching the terminal, we call an episode. This sequence,

together with the transitioning rules, forms a Markov decision process.

where is the state in timestep, are the action and the reward after

performing the action .

Every time our agent steps into a state, it is as if we are picking a value from the state

set for the random variable . For each state of each episode, we can calculate the

returned reward and store it in a list. Repeating this process for a large number of times,

the expected Q -value is guaranteed to converge to true utility.

DeepFoldit - A Deep Reinforcement Neural Net Folding Proteins

D. Panou
 38

1.3.3 Definitions of RL

Reinforcement learning is defined using the concepts of agents, environments, states,

actions and rewards. In Figure 11 we can see all the elements of a Markov decision

process (MDP).

Figure 11: The agent–environment interaction in a Markov decision process.

At time the agent receives state from the environment. The agent uses its policy to choose an

action . Once the action is executed, the environment transitions a step, providing the next state

 as well as feedback in the form of a reward . The agent uses its knowledge of state

transitions, of the form (), in order to learn and improve its policy.

 Agent: An agent is somebody or something that takes actions. Here when we

refer to agents, we mean the algorithm, the running program.

 Environment: The environment is either a simulation of the world through which

the agent moves or the real world. It takes the agent’s current state and action as

input, and returns the agent’s potential reward and the next state as output.

 Action (): A is the set of all possible moves an agent can make in the

environment. Possible moves we can meet in some video games are up, down,

left and right. So, every time an agent performs a move, it chooses among this

list of possible actions.

 State (): A state is a current, immediate, situation returned by the environment.

A specific place and moment, an instantaneous configuration that puts the agent

in relation to other significant things.

 Reward (): A reward is the feedback send back from the environment to

evaluate the last action. Rewards can be immediate or delayed. Using rewards,

we effectively measure the success or failure of an agent’s actions. Negative

rewards are penaltied

 Policy (): A policy is the strategy an agent employs to determine the next action

based on the current state.

DeepFoldit - A Deep Reinforcement Neural Net Folding Proteins

D. Panou
 39

 Discount factor (): The parameter is a number between 0 and 1. This

quantifies the importance between immediate and future rewards. Τhe further

into the future the reward is, the less we take it into consideration. For example, if

 is 0.8, and there’s a reward of 10, after 3 time steps the present value of that

reward is 0.8³ x 10. A discount factor of 1 would make future rewards worth just

as much as immediate rewards.

 Value (): is defined as the expected long-term return of the current state

under policy π.

 Q-value or action-value (): Q-value is similar to Value, except that it takes an

extra parameter, the current action . refers to the long-term return of

the current state , taking the action under policy . maps state-action pairs

to rewards.

 Trajectory (): Transitions between states. A sequence of states and actions that

influence those states.

DeepFoldit - A Deep Reinforcement Neural Net Folding Proteins

D. Panou
 40

1.3.4 MDP Policies

Figure 12: Taxonomy of model-free RL algorithms, (source [17])

There are two paths for computing optimal policies for an AI system, the policy iteration

and the value iteration. In policy iteration, we study how an AI agent chooses its actions.

We modeled our environment using a Markov decision process and we use a transition

model to describe the probability of moving from one state to the other. This is the most

common way to formalize a reinforcement learning problem.

When an agent provides an action to the environment as a function of the state and

reward, this causes the environment to update and to provide a new state and reward to

the agent in a feedback loop. So far, we have assumed that the agent knows what all

the elements of the Markov decision process are. We can just compute the solution (the

result after taking performing an action) to this decision-making problem, before actually

executing this action in the environment.

Both value iteration and policy iteration algorithms are examples of planning algorithms

but there is a big difference between planning algorithms and reinforcement learning

algorithms. What makes a problem a reinforcement learning problem is that the agent

does not know all the elements of the Markov decision process, so it would not be able

to plan a solution. The agent has to try taking actions in the environment, observing

what happens until somehow it finds a good policy and builds a model. The model

doesn’t know how the world would change in response to its actions, the transition

function or what immediate reward it will receive. The pressing is how to find a good

policy. There are two approaches that answer this question. The first approach for the

agent to learn a model is through observations of the environment. Then by using all

these observations the agent can plan a solution. If an agent is currently in a state ,

DeepFoldit - A Deep Reinforcement Neural Net Folding Proteins

D. Panou
 41

takes an action and then observes the environment's transition to the next state with a

reward, all that information can be used to improve the estimate of transition function

and reward function . Once the agent has a model for the environment, it can use a

planning algorithm like policy iteration or value iteration with its learned model to find a

policy. Reinforcement learning solutions that follow this framework are called model-

based algorithms. This is when an agent exploits a previously learned model to

accomplish a task in hand. But, it turns out that the agent doesn’t have to learn a model

of the environment to find a good policy. Sometimes, our agent can simply rely on trial

and error experience from action selection. This is called model-free learning. In model-

free reinforcement learning, the first thing we miss is the transition model and the

second the reward function, which gives the agent the reward associated to a particular

state. There are two approaches here, a passive and an active one. In passive

approach we have a policy which the agent can use to move in the environment. In

state , the agent always produces an action given by a policy . The goal here, is

for the agent to learn the utility function. This is the case for Monte Carlo prediction. But

it is also possible to estimate the optimal policy while moving in the environment and in

this case, we are in the active approach.

1.3.5 Discounted Future Reward

To consider also long-term rewards we have to define the reward function in a way that

the current reward is a linear function of the current and the future rewards. For an

episode the total future reward from time until the end of the episode is

The environment is stochastic and we need to focus on closer in time rewards. For that

reason, it is common to use discounted future reward instead:

If we set the discount factor , then the strategy will be short-sighted relying only on

the immediate rewards.

DeepFoldit - A Deep Reinforcement Neural Net Folding Proteins

D. Panou
 42

1.3.6 Q-learning

If we want our agent to always choose an action that maximizes the discounted future

reward, we want to use some form of TD (Temporal Difference) learning. We can define

a function that represents the maximum discounted feature reward when we perform an

action in state and continue optimally from that point on. This function gives the best

possible score/reward at the end of the game after performing the action . It is called

Q-function because it represents the quality of a certain action in a given state [49]. We

want to select the action that has as a result, the highest score at the end of the game.

Once we built the Q function, things can become really simple, because all we have to

do is to select the action with the highest Q value. Using the Q function we can estimate

the score at the end of the game knowing just the current state and action and not

knowing actions and rewards coming after that. The main idea is that we can iteratively

approximate the Q-function using the Bellman equation:

where a is the learning rate, and γ is the discount factor described in 1.3.5 section.

The that we use to update is an approximation, which in the

early stages of learning is wrong but is getting through iterations until it reaches the true

Q-value [50]. For , the update is the same as the Bellman equation. In the

simplest case, Q is implemented as a state-action table, where the states are the rows

of the table and actions the columns (Figure 13). Starting running the algorithm, the Q

table is initialized randomly. Then, the agent starts to interact with the environment and

upon each iteration, the agent will observe the reward of its action and the state

transmission.

DeepFoldit - A Deep Reinforcement Neural Net Folding Proteins

D. Panou
 43

Figure 13: Q-matrix

The Q-learning algorithm needs to learn what actions can maximize the reward, and

which actions need to be avoided. The algorithm (Algorithm 1) works as follows at a

general level [51]:

The game starts and the action is selected randomly. Then, the system receives the

current state and performs an action randomly or on the basis of its neural network,

depending on Often, it selects random behavior during the first iterations, in order to

DeepFoldit - A Deep Reinforcement Neural Net Folding Proteins

D. Panou
 44

maximize exploration. Later, the system is increasingly relying on its neural network and

collects the reward when the AI agent conducts the action. Receiving the new state

 , it updates its Q-value as stated above with the Bellman equation. It also stores the

original state, the action, the state reached after the action has been performed.

Q learning is a direct TD-method which learns the function in order to map state-

action pairs to the expected return. In the traditional Q-learning algorithm the collected

experiences through trial and error are used to adjust the network once and they are

never reused again. Apart from the state-action table, the Q function can be

implemented using a neural network where its final nodes represents actions. There is a

technique called experience replay [52] that speeds up reinforcement learning by

combining RL with teaching from experiences.

Algorithm 1

In conclusion, Reinforcement learning is a technique that lets an AI agent learn how to

complete an objective in an environment, using time delayed labels as a signal. We can

formally call all this representation a Markov decision process, which relates states,

actions and rewards for an agent. Two fundamental ways of solving MDP problems are

either value iteration or policy iteration algorithms.

DeepFoldit - A Deep Reinforcement Neural Net Folding Proteins

D. Panou
 45

1.4 DEEP LEARNING

Deep learning is a new and developing field of machine learning whose main objective

is to bring machine learning closer to artificial intelligence. Deep learning models and

algorithms learn representations of data with multiple levels of abstraction, realized by

computational models that consist of multiple processing layers. The word "deep",

refers to the number of layers of the neural network. In most common cases, deep

learning models are based on CNNs.

In images, lower layers comprise local combinations of features for example dots or

edges. The edges form motifs, then motifs combine into parts, and parts form objects.

Similar hierarchies exist in speech and text from sounds to phones, phonemes,

syllables, words, and sentences. Deep learning identifies data structure in large

datasets consisting of raw data using the backpropagation algorithm.

Deep Learning was introduced to the ML community in the 60s [53-55] . There are two

main reasons why Deep learning has become popular today. The first is related to the

fact that the computational complexity needed to train deep networks with thousands of

neurons is very large and it would be extremely difficult or even impossible for a single-

threaded computer or a computer cluster of the past to complete it. Nowadays, training

such networks is much faster by using graphic cards (GPUs) that are able to achieve

data parallel processing at high speed. The second reason was the lack of data for the

training. Deep learning’s specialty is that it requires big data as the network needs

millions of instances to be trained and work properly. Deep networks are popular due to

its ability to deal with large amounts of data, and today there are countless datasets

available online from databases that can be used.

Lately, deep learning applications have gained much attention in the field of

computational biology and bioinformatics. DNNs aid important studies, such as the

activity of drug molecules [56, 57], the effects of mutations in non-coding DNA, gene

expression and diseases [58-62]. Splice junctions can be identified easily using as input

DNA sequences [63], sequence analysis [64], predict enhancers and regulatory regions

[65-68], identify potential long non-coding RNA [69, 70], predict DNA methylation state

[71, 72], single cell sequencing analysis [72-75], X-Ray classification, prediction of

protein-protein interactions in PPI network, discovery of biomarkers [76], and RNA-

protein binding sites prediction [66, 77] are some of the applications in bioinformatics.

DeepFoldit - A Deep Reinforcement Neural Net Folding Proteins

D. Panou
 46

1.4.1 Deep Reinforcement learning

Deep reinforcement learning belongs to the category of standard reinforcement learning

where a deep neural network approximates a policy or a value function. The state is

given as the input and the Q-value of all possible actions is generated as the output. To

achieve high level of accuracy, it is required to train a deep neural network with a huge

amount of data and a lot of real/simulated interactions with the environment. Despite the

computational complexity, we can reduce the time of training effectively by trying

parallel implementations in order to gather more interactions within the simulated

environment.

1.4.2 Deep Q-Learning with experience replay

1.4.2.1 Deep Q-Networks (DQN)

Neural networks are exceptionally good at learning good features for highly structured

data. Q-function can be represented with a neural network, which will take every time

the state and the action as input and will output the corresponding Q-value. A deep

Q-network (DQN) is a combination of reinforcement learning with deep neural networks,

which acts as the approximate function to represent the Q-value in Q-learning. Deep Q-

learning is an introduction to deep reinforcement learning. In fact, Deep Q-learning is

using a deep neural network function approximator, called the Q-network and leverages

the advanced deep learning to learn policies from a high dimensional sensory input. In

addition, it uses a discrete and finite set of actions A. The agent uses epsilon-greedy

policy see section 1.4.2.2 to select actions and probabilistically choose between the

action with the highest Q value and a random action. The core idea is for the neural

network to learn a non-linear hierarchy of features-feature representations that gives

accurate Q-value estimates. The neural network has a separate output unit for each

possible action, which gives estimated Q-value for that action given the input state and

is trained using mini-batch stochastic gradient updates and experience replay.

1.4.2.2 Epsilon-greedy Policy

Q-learning is an online action-value function learning with an exploration policy. In

epsilon- greedy policy the Q function is able to maximize Q at a given state . More

specifically in the epsilon-greedy policy, the agent either follows the greedy strategy with

probability 1- , or a random action with probability . At each time step, the agent

selects an action to take place. If ε has a higher value than a randomly generated

number , , the AI agent picks a random action from the action space.

Otherwise, the action is chosen according to the .

DeepFoldit - A Deep Reinforcement Neural Net Folding Proteins

D. Panou
 47

1.4.2.3 Exploration vs. exploitation

One of the main challenges in reinforcement learning, is to find a balance between

exploration and exploitation [17, 78, 79]. An RL agent must always discover new actions

that hasn’t selected before (explore), but at the same time prefer the ones that have

proved their effectiveness in the past. The agent has to exploit what has already been

experienced in order to obtain more rewards, but it also has to explore in order to make

better action selections in the future. The key to the dilemma is to find the point where

the agent will stop using its time and resources to explore new and more efficient

solutions and start capitalizing its already known methods (exploit). The exploration–

exploitation dilemma has been studied by mathematicians for many decades. One

simple strategy is to use 80% of its time for exploitation and the other 20% for exploring

new actions.

1.4.2.4 Experience Replay

We have to use random sample experiences instead of sequential experiences

because, sequential experiences are highly correlated with each other. More

specifically, each state is a sequence of actions and observations (states), a tuple

We store the agent’s experiences at each time step t, as

in a dataset and pool over many episodes into a replay memory.

Random sampling of experiences, breaks this temporal correlation of behavior and

distributes it over many of its previous states. In practice, we only store the last

 experience tuples in the replay memory and sample uniformly from when

performing updates. Then we sample a random mini-batch of experience tuples

uniformly at random from . The following pseudo-algorithm (Algorithm 2) [80]

implements the Deep-Q Learning with Experience Replay.

DeepFoldit - A Deep Reinforcement Neural Net Folding Proteins

D. Panou
 48

Algorithm 2: Deep Q-learning with Experience Replay [80]

1.4.3 DRL Applications

In this subsection we will discuss about the applications of deep reinforcement learning

that have been released in recent years and we’ll further analyze the most important

achievements in the history of DRL in electronic games. Deep Reinforcement learning

has various application domains including but not necessarily limited to computer vision

[81-83] field, which is dealing with how computers gain understanding from digital

images or videos, computer systems [84-86], robotics [87-89] and games [80].

Also, application of machine learning in healthcare focused mostly on diagnosing has

yielded many impressive results. Ιn 2017 Google DeepMind launched the DeepMind

Health [90] to develop effective healthcare technologies. Advice on selecting treating

methods can indirectly help at treating people where there are many available treatment

options, figuring out the best treatment policy to use for a particular patient is

challenging for human decision makers. n RL literature this is referred to as “Off-Policy

Evaluation”. Many RL algorithms such as Q-learning can, “in theory,” learn the optimal

policy effectively in the off-policy context. In a normal RL context to evaluate a policy we

would simply have the agent make decisions then compute the average reward based

on the outcome. However, as mentioned above, this is not possible due to ethical and

logistical reasons. There are several biomedical applications of DRL, such as new

designed molecules can be optimized using DDQN (Double Deep Q-Network) [91] and

classification of skin cancer [92],. In 2017 [93] one of the first articles to discuss the

application of DRL to healthcare problems was published featuring a Double-Deep Q

DeepFoldit - A Deep Reinforcement Neural Net Folding Proteins

D. Panou
 49

Network working on identifying a policy for sepsis treatment. Another similar work for

sepsis treatment was published later [94] focusing on the slightly different approach of

looking only at glycemic control. In cancer treatment, another study [95] with a model

consisted of actions in the form of quantities of doses for given durations and an agent

equipped with a Q learning algorithm rewarding reductions in tumor diameter, attempted

to propose the best chemotherapy treatment. Furthermore, a paper using supervised

RL in conjunction with 3 RNNs utilized the full MIMIC-III dataset to provide a treatment

plan among 1000 possible medications [96]. Last but not least a study on RL on Graft

Versus Host Disease (GVHD) [97] stands out for challenging a dynamic state-action

space (diseases-treatments). Another interesting, trained a CNN to classify open source

images of suspect lesions as melanoma or atypical nevi and its results were

outperformed 136 of 157 dermatologists and physicians.

All these methods utilize a range of neural network architectures, including CNN,

multilayer perceptrons, restricted Boltzmann machines and RNN.

Figure 14: Applications of DRL, source [98]

DeepFoldit - A Deep Reinforcement Neural Net Folding Proteins

D. Panou
 50

Games and especially board games like backgammon and chess, are very popular

testbeds for DRL algorithms and research companies like DeepMind use games to test

their algorithms. The reason is that games support the concept of an environment

where the agent has to explore it and best interact with it by performing actions. Most

games have enough diversity in simulation environments to be an important first step

towards AI. Methods like DQN are especially successful for video games, where one

can learn using video frames and the instant reward.

The primary work in the field started with the development of agents, appropriate to

interact with humans through conversation as a tech support helpdesk. The big change

on the field started in 2015 by Google [80] when Google trained an AI agent that could

discuss morality, express opinions, and answer general facts-based questions. At the

same time, DeepMind [80, 99] developed an agent that surpassed human-level

performance at 49 classic Atari 2600 games, receiving only the pixels and game score

as inputs. This research filled the gap between high-dimensional sensory inputs and

actions, developing the first artificial agent capable to succeed in a variety of

challenging tasks. Soon after, in 2016, DeepMind released a new game play method

called A3C [100]. Go is a Chinese war strategy game that has 10170 possible board

positions and 46 million players all over the world. This game was still dominated by

humans for two decades after machines first conquered chess (Deep Blue) [101].

AlphaGo [47] managed to defeat one of the best human players, using a combination

of supervised, reinforcement learning and traditional heuristic search algorithm. In

addition, in March 2017, OpenAI [102] created agents that invented their own language

to cooperate and achieve more effectively their goal. Facebook also, has reportedly

trained agents to negotiate and even lie [103]. Recently (August 2017), OpenAI reached

another milestone by defeating, at world-competitive levels in 1-on-1 matches, the

world’s top professionals of the online multiplayer game Dota 2 [104], using Proximal

Policy Optimization (PPO) algorithm [105].

In January of 2017 [106], a superhuman AI for Texas hold'em poker was presented.

The environment was created by two researchers, Noam Brown and Tuomas

Sandholm, of Carnegie Mellon University and Facebook. The name of the agent was

Libratus and it was able to defeat 10.000 hands of a multiplayer poker with 6 human

players. Among all the achievements this was considered the most impressive for two

reasons. The first is that poker is a multiplayer game and the most referred research

until then was only on 1-to-1 matches. The second is that Texas hold'em has an extra

DeepFoldit - A Deep Reinforcement Neural Net Folding Proteins

D. Panou
 51

difficulty in performing the best action than chess and GO, because most of the

elements are not visible. Therefore, it is not possible to predict the necessary

information. Other examples of DRL agents playing games are Ms. Pac-Man [107, 108],

Project Malmo [109, 110], Brood War API (BWAPI) [111], StarCraft II [112] ,Quake III

Arena and Montezuma's revenge [113].

Many implementation tools exists for AI applications, including libraries and toolkits such

as TensorFlow, PyTorch, OpenAI Gym [114], which are integrated with many game

engines (Unity, Unreal Engine). There are many libraries that allow researchers to

rapidly build controllable environments for their experiments. One famous library for

developing game applications is Pygame [115]. Pygame is free and Open Source and

has more than 4845 games so far. On the other hand, there are frameworks with

interesting learning environments along with the necessary APIs to interact with them.

Their extensive use consolidated them as benchmarks for game AI applications. Some

of the most famous examples are:

 Arcade Learning Environment [116, 117]: An object-oriented environment that

offers more than 50 different Atari video games to develop AI agents on [78, 80,

118]. It is mostly used for General Video Game Artificial Intelligence (GVGAI)

applications.

 VizDoom [119]: A reinforcement learning environment based on “Doom” game.

The learning process is focused on raw visual data, it is thus suited for deep

reinforcement learning applications.

 TORCS: An AI research platform for car racing agents in a 3D environment,

primarily focused on visual reinforcement learning to test DLR algorithms with

continuous actions. It offers built-in data structures for neural networks

applications [120].

 Project Malmo [109, 110] from Microsoft, is an AI research and experimentation

platform built on top of Minecraft.

 Twitter torch-twrl: an open-source framework for RL development [121].

DeepFoldit - A Deep Reinforcement Neural Net Folding Proteins

D. Panou
 52

Table 2: DRL Frameworks & SDKs

Deep Learning Frameworks

a. Frameworks
 Tensorflow https://www.tensorflow.org CNTK

(Microsoft)
https://github.com/Microsoft/CNTK

 Caffe
http://caffe.berkeleyvision.org

 MatConvNet http://www.vlfeat.org/matconvnet/

 KERAS https://keras.io MINERVA https://github.com/dmlc/minerva
 Theano http://deeplearning.net/softw

are/theano
 MXNET https://github.com/dmlc/mxnet

 Torch http://torch.ch OpenDeep http://www.opendeep.org/
 PyTorch http://pytorch.org PuRine https://github.com/purine/purine2
 Lasagne https://lasagne.readthedocs.i

o/en/latest
 PyLerarn2 http://deeplearning.net/software/pyl

earn2
 DL4J
(DeepLearning4J)

https://deeplearning4j.org
TensorLayer

https://github.com/zsdonghao/tens
orlayer

 DIGITS https://developer.nvidia.com/
digits

 LBANN https://github.com/LLNL/lbann

Tensorforce https://github.com/hill-
a/stable-baselines

Stable
Baselines

https://github.com/hill-a/stable-
baselines

OpenAI Baselines https://github.com/openai/bas
elines

TF Agents https://github.com/tensorflow/agent
s

b. SDKs
 cuDNN https://developer.nvidia.com/c

udnn
 cuBLAS https://developer.nvidia.com/cublas

 TensorRT https://developer.nvidia.com/te
nsorr

cuSPARSE

http://docs.nvidia.com/cuda/cuspars
e/

 DeepStream
SDK

https://developer.nvidia.com/d
eepstream-sdk

 NCCL https://devblogs.nvidia.com/parallelfo
rall/fast-multi-gpu-collectives-nccl/

DeepFoldit - A Deep Reinforcement Neural Net Folding Proteins

D. Panou
 53

2. BIOLOGICAL BACKGROUND

Part 1.2 is an introduction to the main problem we examine in this thesis, the protein

folding problem. At the end of this section we suggest the novel approach Deep Foldit,

which is analyzed further in Chapter 3. In the first section we describe the problem we

face and the current scientific work around it. Section 2.2.2 describes a gamification

approach to the protein folding problem, its rules and a modified version called Foldit

Standalone.

2.1 PROTEIN FOLDING

Protein structure prediction (PSP) is a developing and very important subfield of

bioinformatics. Based on a protein’s amino acid sequence, PSP targets to infer the

protein three dimensional folded structure, which in turn, determines to a great extent

the protein’s biological function. Advances in PSP can be of invaluable importance to

the study of many proteins, the functionality of which is still to be determined. The more

information we know about how a certain protein folds, the better we can design new

protein structures to combat diseases that are related to proteins. PSP and protein

folding are considered as NP-complete problems in computational theory [122] and are

among the most difficult in terms of computational requirements. The complexity is due

to the protein's size, that determines the size of the conformational space reflects all the

positions and orientations a protein can take. Among many possible folds we have to

find the one structure the protein folds into, which is usually the one with the minimal

free energy.

Figure 15: Stages of a folding protein

Every protein can fold up into a very specific shape, the same shape every time. Some

proteins form their 3D structure in space by themselves and some others need extra

help from chaperone proteins. These unique shapes proteins have is the most stable

DeepFoldit - A Deep Reinforcement Neural Net Folding Proteins

D. Panou
 54

state a protein can adopt, the point where the total free energy is minimized. To

determine which of all the possible structures is the best one is regarded as one of the

hardest problems in biology today and current methods are expensive and very slow.

There has been an important research focus on the protein structure prediction

computationally, mainly through distributed large-scale computers. Unfortunately, these

projects have shown promising but limited success [123].

Proteins are long sequences of amino acids (each amino acid is one of out of the 20

amino acids), linked together into contiguous chains, the polymers. A protein proceeds

through three main structural classes to obtain its final form, primary, secondary and

tertiary. Primary is the simplest form and essentially the linear amino acid sequence.

Secondary structure includes local folded structures, helices, sheets, and coils that are

formed when the sequences of primary structures tend to arrange themselves into

regular conformations due to interactions between atoms of the backbone. Tertiary or

3D structure is the overall three-dimensional structure of a polypeptide when secondary

structure elements are packed against each other in the most stable configuration [124].

The tertiary structure is formed primarily due to interactions between the R groups,

which are the side chains, (hydrogen bonding, ionic bonding, dipole-dipole interactions,

and London dispersion forces) of the amino acids that make up the protein. In some

proteins, there is another final level called quaternary structure. Quaternary structure

defines the arrangement of multiple polypeptide chains, that are grouped together.

Although there has been a rapid growth in the sequencing of considerable genomes in

the last decades, in the post-genomics there is a huge gap between the proteins that

have been identified experimentally in Protein Data Bank (PDB) [125] and proteins with

unknown structures, whose sequences are identified and stored in databases [126]. The

Human Genome project has produced a huge amount of protein sequences by large-

scale DNA sequencing, but the identification of their 3D shape, through experimental

methods such as X-ray crystallography, electron microscopy or nuclear magnetic

resonance (NMR), is hugely, computationally expensive, time-consuming and lagging

far behind the current output of protein sequences. Only a small portion of the protein

sequences that have been discovered , have had their 3D structures experimentally

uncovered , which is less than 1% [127].

The need for computational methods rather than laboratory techniques alone to predict

protein structure becomes inevitable. In the past ten years several computational

methodologies and algorithms have been employed to predict the three-dimensional

DeepFoldit - A Deep Reinforcement Neural Net Folding Proteins

D. Panou
 55

protein structure and can be separated into three major categories ,namely, homology

modeling, threading (fold recognition) and ab initio modeling methods. Homology

modeling was founded by Greer on 1981 [128] and it was the first semi-automated

program. The basic idea is to predict an unknown protein by comparing and utilizing the

available information with known homologous sequences [129]. The homological

approach is very successful because there are experimental data for at least one

member of every protein family, which can be used as a template for modeling.

Threading algorithms are used to find a good homologous protein to use it as a

template structure. In threading, the number of folds is limited and that’s why

homologous proteins have similar structures. The threading method is based on the

distance between the optimal alignment score and the mean alignment scored and is

called the Z-score. This is obtained by random shuffling of the target sequence. With

this method, we create a database for standard protein structures and a minimization

scoring function that is used to find the optimal alignment between the target and the

standard protein.

If the target protein has a homolog, the task is relatively easy and high-resolution

models can be built by copying the solved structure framework. However, this

procedure does not answer the question of how and why a protein adopts its particular

structure. If structure homologs do not exist or exist but it is difficult to be recognized,

models must be built from scratch. This procedure called ab initio modeling, and is

essential in finding a universal solution to the predictive problem of the protein structure

[130]. Ab initio modeling conducts a conformational search under the guidance of a

designed energy function using thermodynamic laws and molecular energy parameters.

Ab initio protein folding is considered a global optimization problem, where the goal is to

find optimal positions for the atoms. Ab initio modeling can also guide us to realize the

physicochemical principle of the way a protein folds through its natural code and why it

adopts this particular shape. Only these methods can obtain novel protein folds.

However, the conformational space is really big, even for small molecules, making ab

initio modeling a difficult problem to solve, and is thus restricted to small proteins (less

than 100 residues).

Some tools and algorithms that are worth mentioning are Rosetta [[131] (generate a

substantial number of protein models due to the typically large number of local minima

using Monte Carlo method), CHARMM [132], AMBER [133] and GROMOS [134]

(molecular dynamics simulations by solving Newton’s equations).

DeepFoldit - A Deep Reinforcement Neural Net Folding Proteins

D. Panou
 56

2.2 FOLDIT

Despite considerable progress, ab initio protein structure prediction remains unsolved.

Protein folding is computationally a very difficult task due to the large numbers of protein

solutions that need to be tested. A crowdsourcing approach to this is the online puzzle

video game Foldit [1]. Foldit attempts to predict the structure of a protein by taking

advantage of humans' puzzle-solving intuitions and having people play competitively to

fold the best proteins. It has provided several useful results that matched or

outperformed algorithmically computed solutions. Foldit manages to pool creative

solutions of protein folding from people around the world, while at the same time being

amusing as a game..

In May 2008, Foldit was developed by the University of Washington, Center for Game

Science, in collaboration with the UW Department of Biochemistry, Northeastern

University, Vanderbilt University, University of California and University of

Massachusetts. The idea was to build a game that is fun and approachable but also

motivates people to play it. Foldit started as a 3D Tetris but designed for proteins. In

Tetris, the only rule is to fit all the blocks together and fill as much empty spaces as

possible to remove the lines. It resembles protein folding in the sense that we try to

remove , the empty space from the interior of the protein and pack everything as tightly

as possible. So, instead of the different types of blocks that Tetris has, Foldit has amino

acids.

A protein is presented to Foldit players, which they can fold using a host of provided

tools. The game evaluates how good every move a player performed was, by returning

them a score (positive or negative) as also a total score of the fold. There is also a

ranking for every player, that is calculated in comparison with other online players’

scores.

In addition, the game records structures, moves and strategies of its players and uses

all these gathered data to improve the game in every aspect (more qualified results,

how many introductory levels the game has etc). Foldit often releases updates with new

features, aiming to endear the game to its players. Once a week, Foldit publishes new

sets of puzzles keeping its audience connected.

Except from the puzzles that are just protein structure prediction, which are already

existing problems, Foldit can be a really creative game, as it allows users to build their

own molecules like MineCraft [135]. Players are free to design and build a protein from

scratch combining amino acids, or use tools to add, replace and move amino acids

DeepFoldit - A Deep Reinforcement Neural Net Folding Proteins

D. Panou
 57

changing the protein structure with no constraints. This creative site is more attractive to

players instead of just trying to fold an existing protein. Foldit attempts to predict the

structure of a protein by having people play competitively to fold the best proteins.

With over 460,000 players, Foldit produced some predictions that outperform the best

known computational methods [1] and showed that non experts can work together and

develop new strategies and algorithms that differ from traditional software solutions.

Foldit players managed to design an enzyme that catalyzes the Diels-Alder reaction and

was about 20 times more efficient in catalyzing the reaction than the one the scientists

had started with [136]. Foldit has contributed to many applications. In May of 2008 it

was used as the first computer game that could predict the 3D crystal structure of a

protein with human ability [3]. In 2011 player of Foldit helped to decipher an accurate

crystal 3D structure of the Mason-Pfizer monkey virus (M-PMV) retroviral protease. The

puzzle was solved in 10 days and the solution that was investigated then used to find

the structure with the method of molecular replacement [137]. The strategies and

mechanics of the best players of Foldit can be formalized and structured and contribute

in this way to the creation of algorithms. These algorithms can be used by computers or

further modified and expanded by other users [138].Foldit’s rules are simple. Every

week, players are presented a problem to solve and their goal is to reach the best

score. Every time a player performs a move, the game returns the score of the folding.

Proteins fold at the lowest energy states, although in the original game the score is

computed by multiplying the energy with -100, so higher scores are better. A player acts

using simple mouse moves, dragging parts of the protein and observing which moves

increase the score and which return penalties. Then, he constructs strategies that can

lead him to better folds. In the introductory levels he learns some already existing

techniques and adopts them for other puzzles. In Figure 16 we can see the Foldit

online environment.

Players can interact with the protein in a variety of ways:

 pull on some parts directly,

 place bands and indirectly pull whole chains,

 freeze pieces in place and block movement to some parts.

and some more complex automatic moves (optimizations) from Rosetta package [131]

that will computationally improve the protein:

DeepFoldit - A Deep Reinforcement Neural Net Folding Proteins

D. Panou
 58

 “Shake” (combinatorial sidechain rotamer packing),

 Global “wiggle” (gradient-based minimization),

 Local “wiggle” (gradient-based minimization with loop closure) and

 “Rebuild” (fragment insertion)

 “Tweak” (helix rotation or shift)

Figure 16: Figure from [1]. Foldit guide

1) a hydrogen bond, 2) an exposed hydrophobic sidechain (yellow), 3) a hydrophilic sidechain, 4)

segment of the backbone that is red due to high residue energy, 5) players can make

modifications including bands, 6) add constraints, 7) freeze parts, 8) score, 9) leaderboard for

players and groups 10) toolbar, 11) chat for interacting with other players, 12) cookbook

Foldit uses an achievement system that gives extra points to players for sharing

solutions, complete the introductory levels and solve many puzzles. In this way it

attracts players to share solutions and strategies they have developed, with other

players online, as well as to form teams, leading faster to better protein structure

results. Players can form groups, work together and share their solutions. The score of

the player’s solution is updated in real-time. There is also a leaderboard where the best

scores are displayed and an extra leaderboard for the teams.

DeepFoldit - A Deep Reinforcement Neural Net Folding Proteins

D. Panou
 59

2.2.1 Cookbook and Foldit recipes

A recipe is an automated move that runs multiple simple game actions at the same time

and is written by Foldit players to make things more interesting. A recipe is practically a

written strategy or a part of a player’s strategy. Players can expose their strategies by

sharing their recipes within the WeFold [3] community or along with their teammates.

Most known Foldit recipes are shake, wiggle, rebuild and remix. The Foldit website has

a section for recipes [139], contributed by Foldit players over the years.

The Cookbook [140] is a tool of Foldit, created to store all the recipes and to provide an

interface to write new ones. This GUI uses Lua scripting language [141] which has

custom functions that enable players to execute game moves and query game state.

Cookbook is one of the most important features of the game.

2.2.2 Foldit Standalone

In order to open Foldit for biochemistry applications by experts, the designers decided

to develop another separate version, a stand-alone desktop application for protein

structure manipulation, called Foldit Standalone [4]. Derived from the user interface of

the puzzle game Foldit, the Standalone version misses all the game competitive

features, while adapting more advanced ones, centered to biochemists, as well as many

options for visualization.

First of all, users are able to load their own molecules and easily reshape them in real

time and save them, using the powerful Rosetta molecular modeling package [142].

Rosetta algorithm, is one of the most useful and successful methods that are able to

accomplish prediction, design and analysis on a diverse set of bio-molecular systems.

Rosetta is most known for its energy function, parameterized from small-molecule and

X-ray crystal structure data, used to approximate the energy associated with each

molecular conformation. This method is based on the Monte Carlo technique, achieved

accuracy between 3 and 6 Ao [143] and has been used in a variety of computational

modeling applications. Foldit is an interface for Rosetta tool as it uses the same

mechanism for the energy computation as Rosetta does, but rather than having a

computer doing this (finding the best conformation), humans do it.

DeepFoldit - A Deep Reinforcement Neural Net Folding Proteins

D. Panou
 60

Figure 17: Foldit Standalone interface

Foldit Standalone supports a variety of visualization options, including electron density

and contact map, different geometries such as lines, spheres and cartoon, different

colorings such as energy-based, CPK and rainbow. It also enables to hide/show

elements (hydrogens, sidechains). Among other features, the Standalone version of

Foldit contains sequence alignment tools for template modeling, rigid body

transformation controls and an embedded Lua interpreter.

DeepFoldit - A Deep Reinforcement Neural Net Folding Proteins

D. Panou
 61

3. IMPLEMENTATION

Using deep reinforcement learning we are trying to discern an optimal strategy for the

puzzle game Foldit. Our future and main goal is to use Foldit to predict 3D protein

structures from their amino-acid sequence. This calls for the design of an agent that

needs to learn an optimal policy in order to solve our input “puzzles”, in other words,

proteins with no homologues. The agent is built using a CNN architecture based on the

Flappy bird implementation [144] and the algorithm Q learning with experience replay

[52, 145]. The AI agent starts with no knowledge of the environment, only some

possible moves. Exploring the problem space, blindly at first by executing random

moves, the AI agent quickly develops an intuition of how the game is played through the

rewards and the penalties it receives after each move.

Using the Rosetta algorithm [4, 131] as a black box, the best so far for computing the

energy of a molecule, we feedforward our network with the current difference in energy.

The rewards here are how much the energy is minimized (score maximized) and the

penalties are the growth (score reduction). As more episodes pass, the agent starts

realizing more ways to handle different proteins and prefers actions that maximize its

payoff. Once the training is complete we examine the average rewards each training

model had. Using this as an indicator of its accuracy we experiment with different

parameters in order to optimize the number of total rewards and choose the best model

for extended training and testing. The agent receives game screenshots as input in the

form of a pixel array. The image will be fed into a convolutional neural network which

will give a decision about which action is best to executed. Then, the network will be

trained millions of times via an algorithm called Q-learning, to maximize the future

expected reward.

This was an overview of the Implementation chapter. The first section is about the input

of the DQN, the different dataset and the image preprocessing. Next, is the Q-learning

algorithm and the differences with the classical Q-learning method and the set-up

environment and final section is about the DQN architecture and the required libraries

for the implementation.

DeepFoldit - A Deep Reinforcement Neural Net Folding Proteins

D. Panou
 62

3.1 Data

Our dataset consists of 40 proteins from the PDB database obtained by the X-ray

Diffraction method. These proteins have no sequence homologues with known

structure, as we choose the ones that had less than 30% similarity and contain less

than 100 residues. Deep Foldit has as main its goal to be able to fold the input proteins

in a fixed number of moves. Initially, we set this number at 200 iterations, and we chose

molecules with small number of residues in order to fold them within 200 moves. Also,

with small proteins we reduce complexity and the network will learn faster.

The original set of 40 molecules was split into 20 proteins for training and 20 for testing.

Table 3: List of proteins in each dataset

Training Set Test Set

1aho 2e3i

1eoe 2hdz

1h75 2igd

1hyp 3e4h

1lpl 3e21

1nh9 3kzd

1t2i 3rjp

1tud 3uci

1ulr 3zhi

1wkx 3zzp

1xak 4cvd

1yu5 4hcs

1zeq 4hti

2f15 4pti

2fht 4zai

2nls 4zc3

2och 5gua

2pko 5nod

3e4h 6atn

6atn 6av8

The structures in each set were modified as follows: For deepFoldit-Soloist, linear

extended conformations were created by processing the extracted amino acid

sequences using the LEaP program of Amber tool, a suite of biomolecular simulation

programs [133]. Tleap is a function that builds extended protein chains given only a

DeepFoldit - A Deep Reinforcement Neural Net Folding Proteins

D. Panou
 63

sequence. However, several warnings and breaks occurred over the protein sequence.

It was observed that the amino acid HIE was not recognized by the Foldit program, thus

breaking the chains at the sites where HIE was ,replaced by HIS. For deepFoldit-

Evolver, the native structures were first optimized until convergence by the energy

minimization function of FolditStandalone, global “wiggle”. Then 100 random moves

were performed to denature the rest of the proteins, selected from our action set

creating the deepFoldit-Evolver dataset. This dataset was used only to observe the

improvement of the score in the first trials and justify whether the implemented algorithm

and the interaction between the constructed actions and Foldit environment is working

satisfyingly. As the Soloist dataset is consisted only of linear conformations, the

changes in the score and the protein structure are difficult and not easy to be observed,

because the constructed actions are very specific (fixed mouse positions).

For data visualization we kept the default Cartoon display and for color the option

AAColor, which displays a unique color for each amino acid (see Figure 18). Other

displays were also tested, but this one seemed more appropriate for image processing

after checking the pre-processing results.

Figure 18: Colors used in Foldit for amino acids

3.2 Applying Deep Reinforcement Learning to Foldit

3.2.1 Preprocessing

Working directly with raw Foldit Standalone frames, which are 1024x1024 pixel images

with a 256-colour palette, can be computationally demanding affecting runtime and

memory requirements. We apply a basic preprocessing step by cropping the original

image, forming an 600x600 window, aimed at reducing the input dimensionality and

dealing with some artifacts of Foldit (menu bar, cookbook). To further reduce the

dimensionality and the computational cost, we down-size (rescale) the input to 160x160

pixels (square images are more suitable for processing). In some runs we applied a

DeepFoldit - A Deep Reinforcement Neural Net Folding Proteins

D. Panou
 64

grayscale filter as an extra step to reduce the three-color channels to one. However, this

didn’t have promising results and we continued with the original idea for the network to

identify as features the 20 amino acids using the shape and the color as identifiers.

Foldit uses different colors for each amino acid and colors could help the network

identify easier the features. The final input representation is obtained by applying log

polar transformation, to obtain invariance with respect to rotations and scaling [146].

The log-polar coordinates (or logarithmic polar coordinates) is a coordinate system in

two dimensions that is performed by remapping points from the 2D Cartesian coordinate

system (x, y) to the 2D log-polar coordinate system (ρ, θ) according to the

transformation below:

where ρ is the logarithm of the distance of a random point from the origin

and θ is the angle of the line through the random point and the center. By using this

transformation, both rotations and the scaling between two images can be represented

by translations.

Figure 19: Log-polar transform, source [147]

Using this log-polar remapping, the objects occupying the central high-resolution portion

of the visual field become dominant over coarsely sampled background elements in the

image periphery. This focuses the attention in the visual center field where the target is

supposed to be. Rotation and scaling differences between two images can be converted

to translation differences of the polar-transformed images. In Figure 20 we can see the

transformed input using log polar transform.

DeepFoldit - A Deep Reinforcement Neural Net Folding Proteins

D. Panou
 65

Figure 20: a. Linear input, b. log-polar transformation of a, c. Evolver input, d. log-polar

transformation of c

3.2.2 Actions

An action is a command that you can give in the game in the hope of reaching a certain

state and reward. Most of Atari games are implemented in python and there are libraries

such as pygame, which provide an interaction with the game and its actions. Foldit does

not have a library that allows users to interact with it and poses extra difficulty for move

specification.

As mentioned in Section 2.2.2, Foldit has many automatic moves through the shortcut

keys and it has also plenty tested recipes from WeFold community on cookbook. These

recipes contain automatic moves, which correspond to multiple actions using mousepad

and keys, and it’s natural to bring major changes in the protein's structure. One

really famous and commonly used Foldit move is the "wiggle" recipe, which is activated

using the key "w". Wiggle applies changes in the molecule, in order to achieve a

conformation with less energy. the more time this movement is used in the game, the

more changes are made to the structure until the energy reaches a minimum. However,

it does not seem to be responsive to linear molecules that are used as inputs, since it

only modifies the local structure. As a result, the molecule can’t fold and take a 3D

structure.

DeepFoldit - A Deep Reinforcement Neural Net Folding Proteins

D. Panou
 66

From the Foldit moves, DeepFoldit skipped the following:

Table 4: List of Foldit automatic moves

Band Rebuild

Freeze Secondary structure

Global/ local wiggle Tweak

Shake

All these automated actions have great impact on score-energy and, during the training

phase, the neural network tries to learn those which affect the score the most and seeks

to use them more than others. Choosing only actions like "freeze", "Wiggle" etc it is

impossible to get the optimal structure. Most of the times, by using those operations, we

can find some local minimums but not the optimal structure. The shortcut keys can

improve the initial structure's state, but staying focused on applying small moves that

don’t affect the backbone’s structure much. Although Foldit has lots of shortcut keys for

main moves (mouse moves), we have to construct new actions. The only way to interact

with the game screen, is by using xdotool, a simulation of keyboard input and mouse

activity. In Table 5: DeepFoldit action set we can see our scripted actions that interact

with Foldit Standalone environment.

Table 5: DeepFoldit action set

Up Up Less Shift Up

Down Down Less Down Up

Right Right Less Shift Right

Left Left Less Shift Left

Zoom in Zoom out Home

DeepFoldit - A Deep Reinforcement Neural Net Folding Proteins

D. Panou
 67

Figure 21: Original image, b) Action up with energy penalty, c) Action down, d) Action left with

reward, e) Action right with energy penalty, f) Action shift to the left (Rotation), g) Action zoom

out, h) Action Home (place protein to the center), i) Restore best score

DeepFoldit - A Deep Reinforcement Neural Net Folding Proteins

D. Panou
 68

3.2.3 Algorithm

The goal of an RL algorithm is to maximize the total game score. We use the Bellman

equation as an iterative update:

where, st+1 and at+1 are the state and action at the next timestep, r is the reward, γ the

discount factor and is the Q-value for at timestep

A sequence of observations , becomes an input point to the learning

algorithm. The Q-function should fit these inputs to the model, in a way that it will prefer

the ones that maximize the total reward. For the update of the weights we use a loss

function and its gradient:

where are non-updated weights for the Q-value function. We apply stochastic

gradient descent and backpropagation on the above loss function to update the weights

 . The pipeline for the entire DQN algorithm for training is presented in Algorithm 3.

The agent selects and executes actions according to an e-greedy policy based on .

The reward should essentially be the score of the game. It starts out as the energy the

lined molecule has and every time we apply a move the game returns a positive score if

it’s a reward or negative if it is a penalty. As mentioned previously in this section, the

experiences are stored in a replay memory and at regular intervals, a random mini-

batch of experiences are sampled from the memory queue and used to perform a

gradient descent on the DQN parameters. Then we update the exploration probability

as well as the target network parameters The reward is:

where is the Foldit score difference before and after an action. The usual Q-learning

algorithm with experience replay uses replay memory that contains all state-action

pairs, irrespective of the reward received. As rewards (or penalties) occur very sparsely,

we split the replay memory into two queues that contain the more informative states

with non-zero reward (queue) and the non-reward states (queue). Training is

DeepFoldit - A Deep Reinforcement Neural Net Folding Proteins

D. Panou
 69

accelerated by randomly selecting the mini-batch so that it contains equal shares of

each queue.

Algorithm 3: DeepFoldit Algorithm of Q-learning

3.3 Architecture

The input to the neural network is a game screenshot, specifically a 160x160x3 RGB

image, sampled from Foldit-standalone, followed by 3-5 rectifier hidden layers. Two or

three of them are convolutional layers, for feature extraction and one or two fully

connected with ReLU layer for prediction. The first layer of the model is a convolutional

layer of 30 filters of size 15x15x3 with stride 1 and with zero padding, followed by a

nonlinear rectifier. In some implementations the first layer is convolving one 1x1 filter

with stride 1 (for adaptive RGB to gray conversion). The second layer is another

convolutional layer with of 10 filters of size 20x20 with stride 1, followed by a nonlinear

rectifier unit. The final hidden layer with 200 fully-connected rectifier units is connected

to the output layer. The output layer is a fully-connected linear layer with a single output

for each valid action. The number of valid actions is 15. In some implementations,

between the fully connected layer of 200 rectifier units, there is another one fully

connected layer of 30 rectifier units. Figure 22 depicts our model’s architecture. With (*)

we mark the extra layers that are used in some implementations. For a shorter and

DeepFoldit - A Deep Reinforcement Neural Net Folding Proteins

D. Panou
 70

better representation, the following abbreviations are used for the different types of

layers and their configurations:

Table 6: Acronyms of the components of the DQNN

Code Meaning

ISi Input Size Layer i

RFSi Receptive field size layer i

CLDi Convolutional layer i depth

Si Convolutional layer stride i

ND Dense size

Figure 22: Model Architecture (designed using NN-SVG tool [148])

The behavior policy during training was ε-greedy ,decreased the ε linearly from 1 to 0.1

over the first million frames, and fixed at 0.1 thereafter. We trained for a total of 30

thousand frames and used a replay memory of the 8 thousand most recent frames. All

of these CNNs use a RELU activation function in all layers except for the output layer

where a ReLU activation function is applied. Furthermore, a learning rate of 1e−4 was

chosen. Moreover, the “Nestrovs Updater” with a momentum of 0.9 was used. As the

optimization function “Stochastic Gradient Descent” was used and the loss function in

the output layer was “Mean squared error”. The weights were initialized using the

“Identity Weight Initializer”.

DeepFoldit - A Deep Reinforcement Neural Net Folding Proteins

D. Panou
 71

3.4 Tools and Libraries

In order to execute and reproduce all the tests and the implementations that are

explained in this thesis, a computer with enough processing power was required. In the

case of this project the server used was provided by the Bioinformatics Group at the

BSRC “Alexander Fleming”. The server has 2 CPUs with 20 cores per CPU and 256 GB

of accessible RAM. We used 20 CPUs to train the network and 10 GB memory is

needed to store the temporary files. We also requested the use of the supercomputer

"Aris" from National Infrastructures [149] to speed up the parameter optimization. There,

each run to finish a game training epoch lasted 12 to 20 hours, which is equal to 30000

game timesteps. GRNET "Aris" computing system does not support graphic

environments and the libraries needed by Foldit, so we built a container using

Singularity. Singularity is an open source software library that implements virtualization

at the Operating System level. A container was built with the game and all the

necessary packages within. Using virtual displays in virtual framebuffer X servers (Xvfb)

we interacted with the Foldit-standalone session making the NN learning faster. We also

used xdotool lib, which allows for programmatically or manually simulated keyboard

input and mouse activity, by using X11's XTEST extension and other Xlib functions, to

construct the interactive actions with FolditStandalone.

Implementation Architecture

Figure 23: Parallel system architecture for parameter optimization

We consider two system architectures. The first architecture (Figure 23) includes

multiple implementations using the same training data, which updates different models.

This architecture was implemented to parallelize parameter optimization. In our case

10-20 different models were trained at the same time.

Input Input Input Input

Display 1 Display 2 Display 3 Display Ν

Model 1 Model 2 Model 3 Model N

…

…

…

DeepFoldit - A Deep Reinforcement Neural Net Folding Proteins

D. Panou
 72

The second system architecture (Figure 24), is parallelizing the training process. It is

the same implementation, but uses different displays to update the same model. For

example, if we use 20 displays, one for each protein, we can pass through all the data

20 times faster. Within this thesis, the first architecture was implemented

Figure 24: Parallel system architecture for model training

All versions of the CNNs were coded and tested in Python using the high-level neural

network API Keras [150]. Keras can run on top of different Deep Learning frameworks

like Tensorflow, CNTK, and Theano. In this case, the Tensorflow backend was chosen.

The main reason we selected TF and therefore Keras was that both systems are

optimized for deep learning tasks. Also, all frameworks are implemented in Python,

allowing the user to work with them in a lightweight manner without multiple files being

used. With Keras, the user firs has to define a model which can be chosen between a

sequential model or a Graph model. In the first case the layers are stacked and the

output from a previous layer feeds the input of a next layer until it reaches the output

layer. In the second case, Graph model allows the user to get the output from a desired

layer and feed that output to a desired layer, allowing either for multiple output networks

to be produced to receive the output in the model's intermediate layer.

The software required is Python 2.7 and Keras with the following libraries:

Python Libraries

Input 1 Input 2 Input 3 Input N

Display 1 Display 2 Display 3 Display N

Model

…

…

DeepFoldit - A Deep Reinforcement Neural Net Folding Proteins

D. Panou
 73

 Keras — Python Deep Learning library

 Tensorflow — Python Deep Learning library

 subprocess — Subprocess management

 pickle — Python object serialization

 sympy — Hyperbolic functions

 datetime — Basic date and time types

 argparse — Parser for command-line options, arguments and sub-commands

 random — Generate pseudo-random numbers

 collections — High-performance container datatypes

 sys — System-specific parameters and functions

 matplotlib — Python for 2D plotting library

 json — JSON encoder and decode

Python Packages

 scikit-image - package for image processing in Python

 numpy — a general-purpose array-processing package

 opencv-python — Image Processing & Feature detection

 freeglut3 — OpenGL Utility Toolkit

Ubuntu tools

 xdotool — command-line X11 automation tool

 Xvfb — virtual framebuffer X server for X Version 11

 xinput — utility to configure and test X input devices

 vncviewer — VNC, is a connection system that allows you to use your keyboard and

mouse to interact with a graphical desktop environment on a remote server.

DeepFoldit - A Deep Reinforcement Neural Net Folding Proteins

D. Panou
 74

4. RESULTS

In this thesis, we focused on the identification of a model improving solutions to the

problem we face, which is the protein folding. As we mentioned in the Foldit section, the

more our implementation improves the game score, the closer we get to the unique

native fold of a protein. Our target is very specific, which is the construction of a model

that can improve the fold a given protein within 200 iterations.

We used our access to the National HPC facility – ARIS to run our implementation. The

results are presented as follows, for each model's parameter, different values from a

range of suggested options were tested and then compared via boxplots. Every

parameter section has a figure with a group of boxplots showing all the value

comparisons during the tests. In most cases the first group of boxplots (R1) contains

128 different runs (7 parameters were tested with 2 variants in each parameter, make

 combinations), while the second column/ group of boxplots contains 5 replicates for

each value of the parameter we examine. Each boxplot corresponds to a specific

parameter value. In section 4.2 we present the results for the best model architecture.

4.1 Parameter Optimization

The identification of optimal parameter values is of crucial importance and has direct

impact on the accuracy of the obtained classification results. Hyperparameters are

numerous and difficult to manually tune. The problem gets worse when the

hypeparameters are not independent and it becomes necessary to tune them at the

same time. Usually, it is impossible to prove the optimality of a solution without testing

all solutions. In practice, the accepted solution is the best found in the budget allocated

by the user to the search. To demonstrate the importance of some hyperparameters

and also to optimize their values we run deepFoldit for different variations using Aris

national high-performance computing system (HPC). We run each test for the same

time (a day) and then further studied the system with the greatest performance (highest

average reward, average positive rewards). Every day, we run 10 variations

simultaneously testing one parameter at a time. We completed 80 different runs which

are 800 different implementations for variable testing. To describe the procedure we

followed for optimization in detail, we consider a model with standard specifications as a

starting point. In most of the variations of those 80 runs, we can meet groups of

replicates. Those groups have five repetitions of the same implementation, using

different random seeds to assess statistically significant differences between the

DeepFoldit - A Deep Reinforcement Neural Net Folding Proteins

D. Panou
 75

parameter settings, using a two-sided Wilcox test [151]. Wilcox test is applied to

implementations that differ in one parameter and have the same number of samples-

replicates (usually 5). Variables that show significant statistical differences are marked

in the boxplots and the p-value is indicated.

Basic Model

In the first trials, there is no basic model and we start with hyperparameters derived

from related works that use models to play video games. After the first 5 runs, we form a

basic model that is updated during the runs. The most common properties along the

runs were the following (see Table 6 for the layers’ names):

Table 7: Basic Model

CLD1 60 Replay Memory Size 8000

RFS1 15 Learning Rate 1,00E-04

S1 1 Momentum 0.95

CLD2 20 Decay 2,00E-06

RFS2 20 Dropout Rate 0

S2 1 Input Image Size 150

ND 100 Score Scaling 0.1

Gamma 0.95 Random seed Current time

Observation 100 Mini Batch Size 50

Final Exploration Frame 8000 Actions per Training 10

Initial Epsilon 0.8 Maximum Running Steps 29999

Final Epsilon 0.05 Log polar Yes

Architecture

For more about the settings of the tested runs, check ANNEX II.

DeepFoldit - A Deep Reinforcement Neural Net Folding Proteins

D. Panou
 76

1. First Convolutional layer Depth (CLD1)

Depth represents the dimensionality of the convolutional layer, meaning the number of

output filters. The convolutional layer takes as input the raw image as input and then

different neurons may activate in the presence of various features such as oriented

edges, or blobs of color. We mentioned that depth corresponds to the number of

features. Each of them will produce a separate 2-dimensional activation map. In Figure

25 we observe how the depth size of the first layer affects the game score.

Figure 25: Convolutional layer's depth comparison for 30, 40 and 60.

Figure 25 has three different groups, based on the implementations' settings. The

tested values for the depth of the first convolutional layer are 30, 40 and 60. In the first

group there is only one test, Run 1 (cyan color). It is shown separately because other

network architecture parameters are also altered. The cases where Depth is 40 yield

better results, while in the second group (Run 18, 30 and 31 all contain 5 replicates with

the same hyperparameter settings and different random weight initializations), the layer

depth of 60 stands out with a small difference from the depth of 40. The third group

(Run 34 in purple) compares 30 with 40, has different hyperparameters (see Annex II)

than the other groups and appears to produce better results for Depth of 30.

DeepFoldit - A Deep Reinforcement Neural Net Folding Proteins

D. Panou
 77

2. First layer Receptive field (RFS1)

The receptive field of a convolutional layer is a hyperparameter that shows the partial

connectivity of the neurons around a local region of the input volume. In other words,

the size of the applied filter and therefore the size of the feature. This parameter along

with the stride control the size of the output volume. For example, in Figure 26 we can

see the performance of three different receptive fields of values, 15, 20 and 30. The

input image has a size of 160x160x3. The filters have sizes of 15x15x3 (3 is for color

channels), 20x20x3 and 30x30x3 for each case, so the output of the first layer for stride

of 1, would be 145x145, 140x140 and 130x130. Every neuron in the Conv Layer will

now have a total of (receptive-field * receptive-field *depth) connections to the input

volume, that are local in space (15x15).

Figure 26: Presents the value of the first layer's receptive field as a function of Average rewards.

The optimal value for receptive field is 15.

Figure 26 demonstrates how the receptive field of the first layer influences earning

positive rewards. There are 2 different run sets (Run1, Run13). In the first group, (Run

1), the receptive field parameter is 15 and 30, with better results for the receptive field

equal to 30. In the second group, Run13, we test values 15 and 20, with better results

DeepFoldit - A Deep Reinforcement Neural Net Folding Proteins

D. Panou
 78

with no significant difference, for receptive field equal to 20. Receptive field 15 is

preferred in the following runs.

3. First Layer Convolution Subsample (Stride S1)

Stride is another hyperparameter that controls the size of the output volume in a

convolutional layer. Stride expresses how many pixels we slide the filter. When the

stride is 1, we shift the filter one pixel at a time. When the stride is 2 or more, the filter

jumps 2 pixels at a time as we slide it around. This will produce smaller output volumes

spatially. There are some limitations to the selection of the stride, as the size of the

output volume is calculated as the difference of input size with the receptive field and

then all divided by stride.

 However, the size of the output must be an integer, so if we set the value to 2, the

numerator has to be divided by 2. This is why large values are avoided.

Figure 27: This boxplot outlines the first convolutional layer's stride size as a function of Average

Rewards. The tested values were 1,2 no differences in their performance.

As we do not observe big difference in the results, we select the stride with value 1 for

our tests.

DeepFoldit - A Deep Reinforcement Neural Net Folding Proteins

D. Panou
 79

4. Second layer Convolution Depth (CLD2)

Figure 28: Depth of the second convolutional layer as a function of Average Rewards. Group 2

(yellow), group 3 (purple), group 5 (light blue), group 6 (yello) and group 7 (light green) boxplots

show that depth = 15 had better performance. In the Figure the significance level is annotated.

The above Figure shows the hyperparameter depth in the second convolutional layer as

a function of Average Rewards. There are 7 different groups based on their runs'

settings.

 Group 1 (see Figure 25) compares values 10 and 20. Between these two, slightly

better results appear for depth of 20.

 Group 2 (in yellow with runs R1, R2, R3) examines 3 different values for depth

(10, 20, 30). Best results observed for 10 and worse for 30. Values 10 and 20

have significant difference with 30.

 Group 3 (purple) is Run11 with depths are 15, 20 and 25. Best was depth = 15,

while depth = 20 has significant difference with depth = 30. Worst case is also

here depth = 30.

 Group 4 (Run 12) the Depth values are 5,10 and 15 respectively with best results

value 10.

 In Group 5 (Runs 22, 23, 24) the best Depth value with small difference is again

15. Depth 25 and 30 give similar results and Depth 10 is the worst.

 Group 6 (Run 28) takes two different values 10 and 15. Highest value for

average rewards is for depth = 10.

DeepFoldit - A Deep Reinforcement Neural Net Folding Proteins

D. Panou
 80

 Runs 31 and 33 have replicates and the best Depth here is also 15. The optimal

value among all the examined groups was for depth = 15.

5. Second layer Convolution Receptive field (RFS2)

Figure 29: Second Convolutional layer receptive field (filter size) comparison for values 5, 10, 15,

20, 25 and 40. The significance level is annotated.

The above Figure shows the receptive field of the second convolutional layer as a

function of average wined rewards. There are 3 different run sets Run1, Run 11

(multiple runs with the same implementation) and Run 12 (also with replicates). In

Group 1 we examined receptive fields 20 and 40 and both had similar results. In Run 11

values 15, 20, 25 were tested for the receptive field and average rewards are

decreasing respectively as is increasing the receptive field. In Run 12 we tested values

5,10,15 for receptive field with different settings than the previous groups (color purple).

The optimal receptive field is 10. Between values 5 and 15 there is a significant

difference with p-value 0.1.

DeepFoldit - A Deep Reinforcement Neural Net Folding Proteins

D. Panou
 81

6. Second Layer Convolution Subsample (Stride S2)

Contrary to the first layer subsample size, the second layer subsample, has a reduction

in average rewards using filter of size 2. We didn't experiment more with other stride

sizes and we kept the smallest for the next runs.

Figure 30: This boxplot outlines the second convolutional layer's stride size as a function of

Average Rewards. The tested values were 1,2 with slightly difference in their performance.

DeepFoldit - A Deep Reinforcement Neural Net Folding Proteins

D. Panou
 82

7. Dense

Dense is the fully connected layer of a CNN, a linear operation in which every input is

connected to every output by weight. For dense dimensions, we evaluated the values

32, 64, 100, 128, 200 and 256. Figure 1 shows a list of boxplots of the average rewards

by the dimension of the fully connected layer. Three different groups have been formed

and declare which values/metrics can be compared, as long as those in the same group

share common settings. In the first group, there is only one test Run 1 (cyan color). It is

computed separately because the variations lie in all the network's architecture

parameters. Second, third and fourth Run form the second group (yellow). Here, only 2

parameters differentiate and dense = 100 had the highest average rewards. The rest

runs (35, 36, 37) (in purple) are replicates of the same implementation and only

examine dense parameter. Results showed that dense equals to 200 had better

performance.

Figure 31: Fully connected layer's dimensions comparison. Boxplots with the same color can be

compared with each other. For dense = 100 (yellow) and for dense = 200 (purple) we had the best

results

DeepFoldit - A Deep Reinforcement Neural Net Folding Proteins

D. Panou
 83

8. Input Image Size (IS)

At preprocessing the game screenshots are reshaped to smaller size images in order to

reduce the time cost of training. The size of the input image during the training plays an

important role as it affects the number of filters and the receptive field size in each

hidden layer. In Figure 8 we can see the already tested values for the input.

Figure 32: Input size comparison for 150, 160 and 200 in function of the average rewards. There

are 3 groups with different properties in each case. In first group (green) size 150 stands out.

Also, both second (R4) and third (R38) group had better results for size 150.

9. Max Running Steps

Running steps that required to finish the training procedure. In Figure 33 we can see the

tested values (20000, 30000, 40000). For more running steps it seems that we have

better results in average rewards. However, during the testing of 40000 parameter

some tests failed to finish, so we used 30000 instead to next trials.

DeepFoldit - A Deep Reinforcement Neural Net Folding Proteins

D. Panou
 84

Figure 33: Required running steps as a function of Average Rewards.

10. Number of Hidden Layers

This is one of the most important hyperparameters to experiment with, as more layers

are able to create more complex functions but also make the learning process slower.

Adding more hidden layers of neurons generally improves accuracy, to a certain limit

which can differ depending on the problem.

In Figure 34, a 2-hidden layer architecture is compared with a 3-layer architecture. Both

of them have share the same settings for the first two convolutional layers and the extra

layer is the last. We observe that better results appear in the smaller network.

In Figure 35, values equal to (10, 20 and 30) for 3-layer convolutional depth are

compared using as index the average rewards that achieved until the end of the

training. We used the 3-layer architecture of Figure 10 and depth=10 had the highest

average reward. Figure 10-12 and Figure 15 are referred to the same models

hyperparameters, while Figure 13-14 have to do with the position of the extra layer.

Figure 13 shows that deeper and wider neural networks may not always work better.

Although larger architectures tend to learn more complex data, in our case it does not

seem to work because it is an DRL model [152].

DeepFoldit - A Deep Reinforcement Neural Net Folding Proteins

D. Panou
 85

Figure 34: Comparison of different architectures based on the number of hidden layers. Two-layer

architecture versus a three hidden layer network. The two architectures have same settings in the

two layers. Better results with no significant difference had the 2-hidden layer architecture.

Figure 35: 3-Layer architecture depth comparison for values 10, 20 and 30.

Figure 36: 3-Layer architecture rectified field comparison for values 20, 30 and 40.

DeepFoldit - A Deep Reinforcement Neural Net Folding Proteins

D. Panou
 86

Figure 37: Architecture of 2-hidden layers compared with 3-hidden layers. Both architectures have

same settings for the last two convolutional layers and the extra layer is the first. Better results

appear in the smaller network.

Figure 38: Optimal position for the extra layer. First layer (with 0) versus last layer (with 3). As first

the same extra layer appeared to have better performance with statistically significant difference.

Figure 39: Learning rate hyperparameter performance in a 3-layer convolutional neural network.

The learning rate can take values 10
-4

 and 2*10
-4

. Better results appear for 10
-4

.

DeepFoldit - A Deep Reinforcement Neural Net Folding Proteins

D. Panou
 87

11. Protein Iterations

Is the number of iterations for each training sample- protein. This number is fixed and

equals 200. Firstly, we tested this fixed number, and then we tried to increase the

timestep randomly in range [1,200]. This will have as result to load more proteins in less

training steps and Q will have random moves in all protein samples. The best results

are shown for the step of 200.

Figure 40: Protein iterations for each input as a function of Average Rewards.

12. Mini Batch size

An epoch is a group of samples which are passed through the model together and then

run through backpropagation (backward pass) to determine their optimal weights. If the

epoch cannot be run all together due to the size of the sample or complexity of the

network, it is split into batches, and the epoch is run in two or more iterations. The

number of epochs and batches per epoch can significantly affect model fit and

determine the rate at which samples are fed to the model for training.

Figure 41: Mini batch size comparison for values 50 and 70. The significance level is annotated.

DeepFoldit - A Deep Reinforcement Neural Net Folding Proteins

D. Panou
 88

In Figure 41, we compare the running tests for Mini Batch value. We use Run 38, Run 6

and Run 25 for the first value (batch size = 50), while Run 17 and Run 18 are used to

compute batch size 70. Better results appeared for size 70 where, the p-value is less

than 5% so we can consider statistical significance.

13. Actions per Training and dropout

Figure 18 shows actions per training as a function of average rewards. Four groups

were examined. The first group (light blue) contains only Run 18 with 10 actions per

training and no use of dropout). Second group (in yellow) we find two runs (Run 20 and

Run 21) with similar properties. We used 0.1 dropout in that case for 3 and 15 actions

per training. Between those two, 15 actions per training had better results in the gained

rewards, with p-value = 0.0545 < 0.01 so, we have statistically significant difference.

Next group contains some runs from Run 20 and Run 21. The dropout rate is 0.2 and

we performed 6 and 20 actions per training. The optimal value for actions in that case

was 6. In the last group, except the different dropout we also have different properties.

Better results appeared for 5 actions.

Figure 42: Number of actions per training in function of Average rewards. Compared values 3, 5,

6, 10, 15 and 20. The level of significance is annotated.

DeepFoldit - A Deep Reinforcement Neural Net Folding Proteins

D. Panou
 89

14. Dropout Rate

Dropout rate is practically what percentage of neurons should be randomly “killed”

during each epoch to prevent overfitting. Dropout is applied only during the training

process.

Figure 43: Dropout rate performance

In Figure 43, we can see how game rewards are affected by the dropout rate. There are

six different groups because of the different settings. All groups have different number

of actions per training. The first group (light blue) performs 10 actions and uses for

dropout rate the values 0.05, 0.1 and 0.2. The best results found for dropout rate 0.2. In

the next four groups we use the same hyperparameter settings (Run 20, Run 21) but

different actions per training. Last group with Run 41 compares implementations with

dropout rate = 0.2 with implementations with no use of dropout. We get similar average

rewards in both cases. From these results we can assume that Dropout doesn't work in

our model. This is a logical result as dropout rate essentially introduces a bit more

variance and in Reinforcement Learning, additional variance is an issue for learning

stability and for learning speed [152]. Randomness in actions along with randomness

inherent to the environment itself, leading to variance in observations.

DeepFoldit - A Deep Reinforcement Neural Net Folding Proteins

D. Panou
 90

15. Score Scaling

Figure 44:Score scaling comparison. With the same color are the implementations with similar

settings in the other hyperparameters.

In Figure 44, we focus in finding the optimal value for score scaling. With the same color

are the implementations with similar settings in the other hyperparameters. Run 41 has

different the image size (150) while the rest implementations have input size 160x160.

Run 43, 44 and 45 tested 6 different values 0.05, 0.125, 0.15, 0.175, 0.2 and 0.25 for

score scaling. Better performance had the implementation with score-scaling = 0.175

DeepFoldit - A Deep Reinforcement Neural Net Folding Proteins

D. Panou
 91

16. Learning Rate

The Learning rate expresses how fast the backpropagation algorithm performs gradient

descent. The learning rate may be the most important hyperparameter when configuring

a neural network. A lower learning rate makes the network train faster but might result in

missing the minimum of the loss function. During the parameter optimizing we tested

three different values for learning rate (). Figure 45, shows

how fast the model is learning. Best results appear for learning rate 10-4. The p-value is

5.56%, less than 10% that means that we can consider statistical significance between

the second best values.

Figure 45: Learning rate performance. Tested runs: 46, 56-58.

DeepFoldit - A Deep Reinforcement Neural Net Folding Proteins

D. Panou
 92

17. Momentum

Momentum exists to increase the speed of training gradually, with a reduced risk of

oscillation. We used Nesterov momentum update in most implementations.

Figure 46: Momentum as a function of Average Rewards. Runs for testing: 47, 48.

The p-value for the range of momentum between 0.75 and 0.99 is less than 0.1 that

means we can consider statistically significant difference. Between 0.75 and 0.95 the p-

value is less 0.05 and between 0.75 and 0.9 the p-value is < 0.1. Better results we

observed for momentum = 0.175.

DeepFoldit - A Deep Reinforcement Neural Net Folding Proteins

D. Panou
 93

18. Gamma

Gamma is a hyperparameter that controls the percentage of future awards that count for

the computation of Q value. In this Figure we compared 4 different values

(0.5,0.75,0.95,0.99) for γ, with best γ = 0.95

Figure 47: Gamma value as a function of Average Rewards. Runs for testing: 49-52.

19. Initial Epsilon

Initial value for exploration hyperparameter which controls the probability to perform a

random action. This value is reduced during training (until it reaches final epsilon).

Figure 48: Average rewards by initial ε. Five values were tested with better results for ε is 0.25.

Runs for testing: 54, 55.

DeepFoldit - A Deep Reinforcement Neural Net Folding Proteins

D. Panou
 94

20. Final Epsilon

Final Epsilon Is the minimum value that reaches epsilon during training. Final epsilon

also has a connection with the random moves. In our implementation the tested values

for ε are (0.005, 0.5, 0.2). Optimal final ε is 0.05

Figure 49: In this boxplot, it appears how the average rewards are affected by the value of final ε.

21. Exploration Rate

DeepFoldit - A Deep Reinforcement Neural Net Folding Proteins

D. Panou
 95

Figure 50: Average rewards by exploration rate. Five values were tested with better results for ε is

0.25. Runs for testing: 54, 55.

Figure 50 presents the exploration rate variations. There are 2 groups with different

settings. In run 52, ε is 0.8 and exploration rate is 8000. In Run 56, ε= 0.25 and

exploration rate takes values 4000 and 16000. Results show that variations in

exploration rate make no difference in the gained rewards.

22. Replay Memory

DeepFoldit - A Deep Reinforcement Neural Net Folding Proteins

D. Panou
 96

Replay memory is a parameter works as a buffer and stores the most recent transitions

that the agent observes, allowing us to reuse this data later. The size of replay memory

controls the history that the network can use.

Figure 51: Replay memory as a function of average rewards

We have 5 different tested values for replay memory that range from 800 to 10000. The

best results appear when for replay memory = 6000

23. Batch Normalization

DeepFoldit - A Deep Reinforcement Neural Net Folding Proteins

D. Panou
 97

Batch normalization [153] normalizes the output of a previous activation layer by

subtracting the batch mean and dividing by the batch standard deviation. This increases

the stability of a neural network. For better testing in batch normalization, we created

four architectures. Architecture 1 applies batch normalization before the activation

function, while in architecture 2 the batch normalization step, comes after the activation

function. In Architectures 3, 4 we apply once the batch normalization, one in the final

layer and the other in the first layer. Figures 51-55 presents the comparison of the

following architectures:

Architecture 1: Runs 390-394

Conv2D

Batch Normalization

Activation ReLU

Conv2D

Batch Normalization

Activation ReLU

Dense

Batch Normalization

Activation ReLU

Architecture 2: Runs 395-399

Conv2D

Activation ReLU

Batch Normalization

Conv2D

Activation ReLU

DeepFoldit - A Deep Reinforcement Neural Net Folding Proteins

D. Panou
 98

Batch Normalization

Dense

Activation ReLU

Batch Normalization

Architecture 3 : Runs 400-404

Conv2D

Activation ReLU

Conv2D

Activation ReLU

Dense

Activation ReLU

Batch Normalization

Architecture 4: Runs 405-409

Conv2D

Activation ReLU

Batch Normalization

Conv2D

Activation ReLU

Dense

Activation ReLU

Figure 54, shows that Batch normalization isn't suitable for our model. The

implementation without Batch normalization had better performance. This is also

another logical conclusion, which is verified in [154]

DeepFoldit - A Deep Reinforcement Neural Net Folding Proteins

D. Panou
 99

Figure 52: Architecture 1 vs Architecture 2

Figure 53: Architecture 4 vs basic architecture

DeepFoldit - A Deep Reinforcement Neural Net Folding Proteins

D. Panou
 100

Figure 54: Architecture 3 vs basic architecture

Figure 55: Architecture 3 vs Architecture 4

DeepFoldit - A Deep Reinforcement Neural Net Folding Proteins

D. Panou
 101

Figure 56: Batch normalization vs Basic model

24. MaxPooling2D

Max Pooling is a downsampling strategy in CNN. For each of the regions represented

by the filter, we will take the max of that region and create a new, output matrix where

each element is the max of a region in the original input.

Figure 57: MaxPooling vs Basic model

DeepFoldit - A Deep Reinforcement Neural Net Folding Proteins

D. Panou
 102

25. Log-polar transformation

Log-polar transformation described in Preprocessing subsection. We trained 5

replicates with log-polar preprocessing step and other 5 without log-polar. Initially, for

one training epoch, 30000 iterations, the log-polar replicates had worse results than

those without the use of log-polar transformation. However, we retrained our networks

for other 30000 iterations and log-polar had better results (average 0.00622) than non-

log polar (0.00524) results with more training steps. The most important part is that we

tested those 2 sets of implementations using the test set as input and logpolar

implementation had average positive rewards 0.0107 in 5 replicates and non-logpolar

had average positive rewards 0.005568. Results showed that log-polar transformation

has better generalization than non-logpolar.

4.2 Optimized Model

After the previous tests and studying the hyperparameters to optimize them, we came

up with the following model parameters and architecture:

4.2.1 Model Parameters

CLD1 30 Replay Memory Size 8000

RFS1 15 Learning Rate 1,00E-04

S1 1 Momentum 0.95

CLD2 15 Decay 2,00E-06

RFS2 20 Dropout Rate 0

S2 1 Input Image Size 160

ND 200 Score Scaling 0.175

Gamma 0.95 Random seed Current time

Observation 100 Mini Batch Size 50

Final Exploration Frame 8000 Actions per Training 10

Initial Epsilon 0.25 Maximum Running Steps 29999

Final Epsilon 0.05 Log polar Yes

DeepFoldit - A Deep Reinforcement Neural Net Folding Proteins

D. Panou
 103

4.2.2 Model Architecture

Figure 58: Model architecture and layers’ structure

DeepFoldit - A Deep Reinforcement Neural Net Folding Proteins

D. Panou
 104

4.2.3 Model Convolved features

Figure 59: Input Image

Figure 60: CLD1 convolved features of optimized model

Figure 61: CLD2 convolved features of optimized model

DeepFoldit - A Deep Reinforcement Neural Net Folding Proteins

D. Panou
 105

Figure 62: CLD1 Activation maps

Figure 63: CLD2 Activation maps

Each convolved feature in Figure 60, Figure 61 results by applying a filter to the

original image. Some filters seem to identify colors, others focus on border detection,

others emphasize in the picture's frame. In Figure 62 with the activation maps, the

results 1,2,3 and 7 seem that didn't pass from the corresponding filters. That means that

those filters, which are made to detect features, did not find the corresponding feature in

the input image. This could be a specific amino-acid or a color (ex. yellow) that is not in

the tested image.

DeepFoldit - A Deep Reinforcement Neural Net Folding Proteins

D. Panou
 106

4.2.4 Other implementations' results

Here are the results of another model trained for 220000 timesteps. The input to the

neural network is an 160x160x3 RGB image sampled by 3 rectifier hidden layers

convolving 1 1x1 filter with stride 1 (for adaptive RGB to gray conversion), 40 20x20

filters with stride 2 and 5 40x40 filters with stride 8. The final hidden layer with 256 fully-

connected rectifier units is connected to the output layer of 15 actions. The behavior

policy during training was ε-greedy with annealed linearly from 0.8 to 0.2 over the first

8000 frames, and fixed at 0.2 thereafter. We trained for a total of 30000 frames and

used a replay memory of 10000 most recent frames. All of these CNNs use a RELU

activation function in all layers except for the output layer where a ReLU activation

function is applied. Furthermore, a learning rate of 1e−4 were chosen. Moreover, the

“Nestrovs Updater” with a momentum of 0.9 was used.

Figure 64: Relative score improvements

In Figure 64, the relative score improvements are shown both for deepFoldIt-Soloist

and deepFoldIt-Evolver on the training and test sets after 220000 training steps. For

the Soloist, the score improvement is 5.8% on the training set and 4.5% on the test set,

indicating that the trained action sequences can generalize to novel proteins with

unrelated sequences.

Model Learned features

DeepFoldit - A Deep Reinforcement Neural Net Folding Proteins

D. Panou
 107

Figure 65: Amino acid feature layer of Evolver dataset

Figure 66: Amino acid feature layer of Soloist dataset

In Figure 64 & 65, the trained weights of the amino-acid feature layer are visualized for

deepFoldIt-Evolver and Soloist, respectively. As the features of the Evolver net are

directly connected to the RGB image, is evident that the net has developed feature

detectors specific to groups of amino acids that exploit the amino acid color code used

by Foldit (shown in Figure 18).

DeepFoldit - A Deep Reinforcement Neural Net Folding Proteins

D. Panou
 108

5. CONCLUSIONS & FUTURE WORK

We were able to successfully implement a deep reinforcement learning framework

DeepFoldit to play the protein game Foldit. Though the results did not show

superhuman performance, it was definitely a step in the right direction. It can be seen

on the testing results from the improvement of the structure, along with the protein's

energy, within 200 moves. It can be seen also in the number of predicted rewards and

the network's weights Figure 65, which resemble amino acids.

There were some cases where the combination of moves placed the molecule in a

position, that occupied the entire window and no actions could applied. In some cases,

this ended up with the worst scenario, not to be able to load new proteins. This was one

of the problems we face and was treated with continuous zoom out, until the agent can

perform actions during the training. If "Zoom out" condition fails, the program will check

previous iterations and their respective results. if the number of iterations without moves

exceeds a limit, the program will terminate.

With the optimization process we managed to build more than one optimal model

and we came up with useful conclusions that can lead to better architectures and help

other similar implementations, produce better models. We also achieved to implement

the first parallelization structure, which is shown in Figure 23. An implementation of the

second structure (Figure 24) would boost the number of training iterations per second.

The number of training steps that are required for other similar architectures, in order to

produce interesting results is about 10 million timesteps [152]. As the longest run in our

current implementation performed 1.3 million iterations this upgrade has high priority.

Another interesting approach that could give great results, is the image conversion from

RGB to grayscale in the first layer of our neural network. This method was tested in pre-

mature models, however with not adequate outcomes. The problem was that we were

unable to evaluate the produced filters and feature maps from each convolutional layer.

Foldit uses different colors to present a protein not only depending in the 20 different

amino-acids but also has a color differentiation for hydrophilic and hydrophobic

molecules. We can exploit the use of this parameter to limit the characteristics/features

to 2 instead of 20 that we had initially. Also, by using grayscale we manage to reduce

the size of the image from three colorful channels to one. By reducing the number of

characteristics we create a more simple and smaller feature space that need to cover

with a DNN. In order to successfully test this approach, first we should provide a model

architecture with optimal values for the hyper-parameters and the weight factors that

DeepFoldit - A Deep Reinforcement Neural Net Folding Proteins

D. Panou
 109

can exported in each level through training. In test settings we could update the weights

only when we apply the grayscale filter.

Overall, our current results show that given a set of small unfolded training proteins,

DeepFoldit learns action sequences that improve the score both on the training-set and

on novel test proteins. Our approach combines the intuitive user interface of Foldit with

the power of deep reinforcement learning.

Finally, another approach is to use Asynchronous Advantage Actor-Critic Agents (A3C)

instead of DQN. A3C along with DeepMind’s synchronous variant A2C are a popular

and efficient deep learning approach to actor-critic methods. In contrast to DQN, where

a single agent implements an NN to interact successfully with a single environment,

A3C algorithm uses multiple incarnations of the above to learn more effectively. In A3C,

there is a global network and several worker agents each with their own set of network

parameters, which communicate with their environment's own copy. This may work

better than having a single agent, as each agent's experience is independent of each

other's experience and the overall learning experience becomes more complex. Our

method is based in Q-learning algorithm with experience replay. It is focused on value-

iteration policy. Using Actor-Critic algorithm, the benefits of both policies, value iteration

and policy iteration, are combined. In A3C, both a value function V(s), which shows how

good a certain state is and a rule π(s), which is a set of probability outcomes for action,

will be calculated.

Our next steps include to test all the above gathering more training steps than the

current implementation, in order to finalize our model. We hope that soon we will be

able to provide a deepFoldit optimization module to the Foldit players community.

DeepFoldit - A Deep Reinforcement Neural Net Folding Proteins

D. Panou
 110

TABLE OF TERMINOLOGY

Ξενόγλωσσος όρος Ελληνικός Όρος

Convolutional Neural Networks Συνελικτικά Νευρωνικά Δίκτυα

Deep Learning Βαθειά Μάθηση

Deep Reinforcement Learning Βαθιά Ενισχυτική Μάθησης

Experience replay Επανάληψη εμπειρίας

Interface Διεπαφή

Neural Network Νευρωνικό Δίκτυο

DeepFoldit - A Deep Reinforcement Neural Net Folding Proteins

D. Panou
 111

ABBREVIATIONS - ACRONYMS

ΕΚΠΑ Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών

AI Artificial Intelligence

ALE Arcade Learning Environment

ANN Artificial Neural Networks

API Application programming Interface

BP Back Propagation

CLD Convolutional Layer Depth

CNN Convolutional Neural Network

CPU Central Processing Unit

DBN Deep Belief Network

DL Deep Learning

DNN Deep Neural Network

DQN Deep Q Network

DRL Deep Reinforcement Learning

GPU Graphics Processor Unit

IS Input Size

LSTM Long Short-Term Memory

MDP Markov Decision Process

ML Machine Learning

MLP Multi-Layer Perceptron

MSE Mean Squared Error

NN Neural Networks

PPO Proximal Policy Optimization

PSP Protein structure prediction

RELU Rectified Linear Unit

DeepFoldit - A Deep Reinforcement Neural Net Folding Proteins

D. Panou
 112

RGB Red Green Blue

RL Reinforcement Learning

RNN Recurrent Neural Networks

RFS Receptive Field Size

SGD Stochastic Gradient Descent

TF TensorFlow

TD Temporal Difference

PDB Protein Data Bank

PPO Proximal Policy Optimization

DeepFoldit - A Deep Reinforcement Neural Net Folding Proteins

D. Panou
 113

ANNEX Ι

Table 8: Hyperparameters

Parameter Description Default
Value

Tested Values Best

Minibatch Number of training cases over which each
stochastic gradient decent update is
computed

32 We used 2 Minibatches
with size [40,50,70] and
the other [80,100,170]

50

Replay Memory Stochastic gradient decent updates are
sampled from this number of recent frames

10000 800, 2000, 6000, 8000,
9000, 10000, 50000

2000,
6000

Discount factor
or Gamma

Gamma that is used in the Q-learning
update

0.99 0.5, 0.75, 0.95, 0.99 0.95

Learning Rate The learning rate used by SGD activation
function.
This parameter will define how much the
weights are updated after each epoch

0.00025 0.0001, 0.0002, 0.0003,
0.00001, 0.00007,
0.000003, 0.000005,
0.000008,

0.0001

Gradient
Momentum

The gradient momentum used by activation
function

0.95 0.75, 0.9, 0.95, 0.99 0.95

Initial
Exploration
(Initial epsilon)

Initial value for e-greedy exploration.
Associated with how random you take an
action

1.00 0.08, 0.1, 0.25, 0.3, 0.5,
0.8, 0.95

0.25

Final Exploration
(Final epsilon)

Final value for e-greedy exploration.
Associated with how random you take an
action

0.1 0.005, 0.05, 0.08, 0.2, 0.
3

0.05

Final Exploration
Frame or
Explore

Number of Frames over which the initial
value of e is linearly annealed to its final
value

1000000,
2000000

100, 1000, 4000, 8000,
16000, 3000000

8000

Replay Start or
Observation

Timesteps to observe before training 100000 100, 320 100

Protein
Ιterations

Number of actions for each protein - 200, random -

Image Size Input image Dimensions 80x80 120, 150, 160, 200 160

Maximum
running steps

Total steps to terminate the program - 20000, 30000, 40000 30000

Actions per
Training

 10 3, 6, 10, 15, 20 6

Decay It is the weight decay which is an additional
term in the weight update rule that causes
the weights to exponentially decay to zero,
if no other update is scheduled

0.000002 0.000002 0.000002

Score Scaling 0.05, 0.1, 0.125, 0.15,
0.175, 0.2, 0.25

0.175

Dropout Rate Specifies the probability at which outputs of
the layer are dropped out, or inversely, the
probability at which outputs of the layer are

0.5-1.0 0.05, 0.1, 0.175 0

DeepFoldit - A Deep Reinforcement Neural Net Folding Proteins

D. Panou
 114

retained.

Loss Function Will define the objective of the training that
the model has to optimize

DeepFoldit - A Deep Reinforcement Neural Net Folding Proteins

D. Panou
 115

ANNEX ΙI

Runs’ Parameter values

Run 1 (R1): Same as basic model parameters, input image size is 160x160 and maximum running steps

are 20000. Variations in parameters of Convolutional Layers are:

Dense: 128, 256

First convolutional layer depth: 40, 60

First convolutional layer receptive field: 15, 30

First & Second convolutional layer filters: 1,2

Second convolutional layer depth: 10,20

Second convolutional layer receptive field: 20,40

Run 2 (R2): Same as basic model parameters, input image size is 160x160 and maximum running steps

are 40000. Variations in parameters of Convolutional Layers are:

Dense: 64,128, 256

Second convolutional layer depth: 10,20,30

Run 3 (R3): Same as basic model parameters, Image size is tested for 150 and 200 and maximum

running steps are 40000. Variations in parameters of Convolutional Layers are:

Dense: 64,128, 256

Second convolutional layer depth: 10,20,30

Run 4 (R4): Same as basic model parameters, image size is tested for 150 and 200 and maximum

running steps are 30000. Variations in parameters of Convolutional Layers are:

Dense: 32,64,100

Run 5 (R5): Same as basic model parameters with an extra layer as last layer and image size is 150.

Variations in parameters of Convolutional Layers are:

Dense: 32,64,100

Third convolutional layer depth: 10,20,30

Third convolutional layer receptive field: 20,30,40

Run 6 (R6): Same as basic model parameters, image size is tested for 120x120 size, learning rate is

tested for 2e-4, number of actions per training for 5 actions, no use of log polar and random seed for a

specific number or current daytime.

Run 7 (R7): Same as basic model parameters with an extra layer as first layer and image size 150.

Variations in parameters of Convolutional Layers are:

First convolutional layer depth: 30, 40, 50 ,60 with a 3x3 receptive field.

Run 8 (R8): Basic model parameters with an extra layer as first layer and image size 150.

Tested for dropout in each layer

Run 9 (R9): Same model as R7, tested for learning rate 2e-4.

Run 10 (R10): Same model as R9 with first convolutional layer depth 40 and learning rate 2e-4. Tested

with and without dropout rate for 3x3 and 5x5 receptive field.

DeepFoldit - A Deep Reinforcement Neural Net Folding Proteins

D. Panou
 116

Run 11 (R11): Same as basic model parameters with image size 150. Variations in parameters of

Convolutional Layers are:

Second convolutional layer depth: 15,20,25

Second convolutional layer receptive field: 15,20,25

Run 12 (R12): Same as basic model parameters, with image size 150 and some variations in parameters

of Convolutional Layers, which are:

Second convolutional layer depth: 5,10,15

Second convolutional layer receptive field: 5,10,15

Run 13 (R13): Single Cases. Same as basic model parameters with image size 150. Variations in batch

size, protein iterations, score scaling and activation function.

Run 14 (R14): Same as basic model parameters, tested for random number of protein iterations.

Run 15 (R15) & Run 16 (R16): Same as basic model parameters with some variations in parameters of

Convolutional Layers, which are:

First convolutional layer depth: 55,60,65

Second convolutional layer receptive field: 10,15,20

Run 17 (R17) & Run 18 (R18): Same as basic model parameters, random seed is the running daytime

and mini batch size is tested for 70. Total replicates are 16.

Run 19 (R19): Same as basic model parameters with 70 mini batch size and random seed is the running

daytime. Added dropout rate (0.05, 0.1, 0.2), 3 replicates per dropout value.

Run 20 (R20): Same as basic model parameters with 70 mini batch size, random seed the current

daytime and some variations in:

Number of Actions per training: 3, 6 (Basic model has 10 actions)

Dropout rate: 0.1, 0.2

Run 21 (R21): Same as basic model parameters with 70 mini batch size, random seed the current

daytime and variations in the number of Actions per training (15, 20)

Run 22 (R22): Same as basic model parameters with 70 mini batch size, number of actions per training

are 6 and the random seed is the current daytime. Depth of the second layer is tested for values 10 and

20.

Run 23 (R23): Same as model of Run 22. Depth of the second layer is tested for values 15 and 25.

Run 24 (R24): Same as model of Run 22. Depth of the second layer is tested for values 10 and 15.

Run 25 (R25): Same as model of Run 24. Add batch normalization before activation function RELU.

Run 26 (R26): Same as model of Run 24 with depth 15. Add batch normalization after activation function

RELU.

Run 27 (R27): Same as model of Run 24 with depth 15. Add batch maxPooling after activation function

RELU.

Run 28 (R28): Same as model of Run 24, tested for less memory

DeepFoldit - A Deep Reinforcement Neural Net Folding Proteins

D. Panou
 117

Run 29 (R29): Same as model of Run 24, tested for less memory

Run 30 (R30): Same as basic model parameters with image size 160 and 10 second layer depth. Tested

for first layer depth (40, 60)

Run 31 (R31):

Tested for second layer depth (10, 20)

Model Parameters

Dense 100 1st & 2nd layer filters 1

1st layer depth 40 2nd layer receptive field 20

1st layer receptive

field

 15 Image size 160

The rest of parameters are the same as the basic models.

Run 32 (R32): ReLU vs LeakyReLU

Run 33 (R33): Tested for second layer depth (15,20)

Model Parameters

Dense 100 1st & 2nd layer filters 1

1st layer depth 40 2nd layer receptive field 20

1st layer receptive

field

 15 Image size 160

The rest of parameters are the same as the basic model.

Run 34 (R34): Same as basic model’s parameters with image size 160 and 15 second layer depth.

Tested for first layer depth (30,40)

Run 35 (R35): Same as basic model’s parameters with image size 160 and 15 second layer depth.

Tested for Dense size (64,100)

Run 36 (R36): Same as basic model’s parameters with image size 160 and 15 second layer depth.

Tested for Dense size (100,128)

Run 37 (R37): Same as basic model’s parameters with image size 160 and 15 second layer depth.

Tested for Dense size (128,200)

Run 38 (R38): Same as basic model’s parameters.Tested for image size (150,160)

Run 39 (R39): Same as basic model’s parameters.Tested for logpolar functions.

Run 40 (R40): Model of Run 39 in test set.

DeepFoldit - A Deep Reinforcement Neural Net Folding Proteins

D. Panou
 118

Run 41 (R41): Same as basic model’s parameters with 30 as first layer convolutional, 15 as second layer

depth and 200 as dense.Tested for dropout rate (0, 0.2)

Run 42 (R42): Same as basic model’s parameters with 30 as first layer convolutional, 15 as second layer

depth.Tested for different actions per training (5, 15)

Run 43 (R43), Run 44 (R44) & Run 45 (R45): Same as basic model’s parameters with 30 as first layer

convolutional, 15 as second layer depth and 200 as dense.Tested for score scaling (0.05,0.125, 0.150,

0.175, 0.200, 0.250)

Run 46 (R46): Same as basic model’s parameters with 30 first layer depth, 15 second layer depth, 0.175

score scaling and 200 as dense.Tested for learning rate (7e-5,3e-4)

Run 47 (R47) & Run 48 (R48): Same as basic model’s parameters with 30 first layer depth, 15 second

layer depth, 0.175 score scaling and 200 as dense.Tested for momentum (0.75, 0.9, 0.95, 0.99)

Run 49 (R49): Same as basic model’s parameters with 30 first layer depth, 15 second layer depth, 0.175

as score scaling and 200 as dense.Tested for gamma (0.75, 0.99)

Run 50 (R50): Same as basic model’s parameters with 30 first layer depth, 15 second layer depth, 0.175

as score scaling and 200 as dense.Tested for gamma (0.75, 0.99)

Run 52 (R52): Same as basic model’s parameters with 30 first layer depth, 15 second layer depth, 0.175

as score scaling and 200 as dense. Different moving functions. Tested for gamma (0.5, 0.75)

Run 53 (R53): Same as basic model’s parameters with 30 first layer depth, 15 second layer depth, 0.175

as score scaling, 200 as dense and 0.75 as gamma. Different moving functions. Tested for final epsilon

(0.005, 0.2)

Run 54 (R54) & Run 55 (R55): Same as basic model’s parameters with 30 first layer depth, 15 second

layer depth, 0.175 as score scaling, 200 as dense and 0.75 as gamma. Different moving functions.

Tested for initial epsilon (0.1, 0.25, 0.5, 0.95)

Run 56 (R56): Same as basic model’s parameters with 30 first layer depth, 15 second layer depth, 0.175

as score scaling, 200 as dense and 0.75 as gamma. Different moving functions. Tested for exploration

(4000, 16000)

Run 57 (R57): Same as basic model’s parameters with 30 first layer depth, 15 second layer depth, 0.175

as score scaling, 200 as dense and 0.75 as gamma. Different moving functions. Tested for replay

memory (800, 2000)

Run 58 (R58): Same as basic model’s parameters with 30 first layer depth, 15 second layer depth, 0.175

as score scaling, 200 as dense and 0.75 as gamma. Different moving functions. Added second dense

after the original dense and tested for (50, 100)

Run 59 (R59): Same as basic model’s parameters with 30 first layer depth, 15 second layer depth, 0.175

as score scaling, 200 as dense and 0.75 as gamma. Different moving functions. Added second dense

before the original dense and tested for (15, 25)

Run 60 (R60): Same as basic model’s parameters with 30 first layer depth, 15 second layer depth, 0.175

as score scaling, 200 as dense and 0.75 as gamma. Tested for replay memory (6000, 10000)

DeepFoldit - A Deep Reinforcement Neural Net Folding Proteins

D. Panou
 119

REFERENCES

1. Cooper, S., et al., Predicting protein structures with a multiplayer online game. Nature, 2010.
466(7307): p. 756.

2. Horowitz, S., et al., Determining crystal structures through crowdsourcing and coursework.
Nature communications, 2016. 7: p. 12549.

3. Khoury, G.A., et al., WeFold: a coopetition for protein structure prediction. Proteins: Structure,
Function, and Bioinformatics, 2014. 82(9): p. 1850-1868.

4. Kleffner, R., et al., Foldit Standalone: a video game-derived protein structure manipulation
interface using Rosetta. Bioinformatics, 2017. 33(17): p. 2765-2767.

5. Silver, D., et al., Mastering the game of Go with deep neural networks and tree search. nature,
2016. 529(7587): p. 484.

6. Yuan, G.-X., C.-H. Ho, and C.-J. Lin, Recent advances of large-scale linear classification.
Proceedings of the IEEE, 2012. 100(9): p. 2584-2603.

7. Heckerman, D., A tutorial on learning with Bayesian networks, in Innovations in Bayesian
networks. 2008, Springer. p. 33-82.

8. Cover, T. and P. Hart, Nearest neighbor pattern classification. IEEE transactions on information
theory, 1967. 13(1): p. 21-27.

9. Rabiner, L.R. and B.-H. Juang, An introduction to hidden Markov models. ieee assp magazine,
1986. 3(1): p. 4-16.

10. Kohavi, R. and J.R. Quinlan. Data mining tasks and methods: Classification: decision-tree
discovery. in Handbook of data mining and knowledge discovery. 2002. Oxford University Press,
Inc.

11. Hinton, G.E., Connectionist learning procedures, in Machine learning. 1990, Elsevier. p. 555-610.

12. Dempster, A.P., N.M. Laird, and D.B. Rubin, Maximum likelihood from incomplete data via the
EM algorithm. Journal of the Royal Statistical Society: Series B (Methodological), 1977. 39(1): p.
1-22.

13. Kohonen, T., Self-organized formation of topologically correct feature maps. Biological
cybernetics, 1982. 43(1): p. 59-69.

14. Ball, G.H. and D.J. Hall, ISODATA, a novel method of data analysis and pattern classification.
1965, Stanford research inst Menlo Park CA.

15. Dunn, J.C., A fuzzy relative of the ISODATA process and its use in detecting compact well-
separated clusters. 1973.

16. Hartigan, J.A., Clustering algorithms. 1975.

17. Sutton, R.S. and A.G. Barto, Reinforcement learning: An introduction. 2018: MIT press.

18. Mikolov, T., et al. Recurrent neural network based language model. in Eleventh annual
conference of the international speech communication association. 2010.

19. Krizhevsky, A., I. Sutskever, and G.E. Hinton. Imagenet classification with deep convolutional
neural networks. in Advances in neural information processing systems. 2012.

20. Hochreiter, S. and J. Schmidhuber, Long short-term memory. Neural computation, 1997. 9(8): p.
1735-1780.

21. Chung, J., et al., Empirical evaluation of gated recurrent neural networks on sequence modeling.
arXiv preprint arXiv:1412.3555, 2014.

22. Vincent, P., et al., Stacked denoising autoencoders: Learning useful representations in a deep
network with a local denoising criterion. Journal of machine learning research, 2010. 11(Dec): p.
3371-3408.

23. Lee, H., et al. Convolutional deep belief networks for scalable unsupervised learning of
hierarchical representations. in Proceedings of the 26th annual international conference on
machine learning. 2009. ACM.

DeepFoldit - A Deep Reinforcement Neural Net Folding Proteins

D. Panou
 120

24. Snoek, J., H. Larochelle, and R.P. Adams. Practical bayesian optimization of machine learning
algorithms. in Advances in neural information processing systems. 2012.

25. Bergstra, J.S., et al. Algorithms for hyper-parameter optimization. in Advances in neural
information processing systems. 2011.

26. Franceschi, L., et al. Forward and reverse gradient-based hyperparameter optimization. in
Proceedings of the 34th International Conference on Machine Learning-Volume 70. 2017. JMLR.
org.

27. Li, L., et al., Hyperband: A novel bandit-based approach to hyperparameter optimization. arXiv
preprint arXiv:1603.06560, 2016.

28. McDonald, C. Machine learning fundamentals (II): Neural networks. Medium 2017; Available
from: https://towardsdatascience.com/machine-learning-fundamentals-ii-neural-networks-
f1e7b2cb3eef.

29. Herculano-Houzel, S., The human brain in numbers: a linearly scaled-up primate brain. Frontiers
in human neuroscience, 2009. 3: p. 31.

30. Course231. Convolutional Neural Networks (CNNs / ConvNets). Available from:
http://cs231n.github.io/neural-networks-1/.

31. Rosenblatt, F., The perceptron: a probabilistic model for information storage and organization in
the brain. Psychological review, 1958. 65(6): p. 386.

32. Sibi, P., S.A. Jones, and P. Siddarth, Analysis of different activation functions using back
propagation neural networks. Journal of Theoretical and Applied Information Technology, 2013.
47(3): p. 1264-1268.

33. Lau, M.M. and K.H. Lim. Investigation of activation functions in deep belief network. in 2017 2nd
international conference on control and robotics engineering (ICCRE). 2017. IEEE.

34. Geva, 7 Types of Neural Network Activation Functions: How to Choose? MissingLink.ai:
MissingLink.ai.

35. Zhu, X. and A.B. Goldberg, Introduction to semi-supervised learning. Synthesis lectures on
artificial intelligence and machine learning, 2009. 3(1): p. 1-130.

36. Masters, D. and C. Luschi, Revisiting small batch training for deep neural networks. arXiv preprint
arXiv:1804.07612, 2018.

37. Ge, R., et al. Escaping from saddle points—online stochastic gradient for tensor decomposition.
in Conference on Learning Theory. 2015.

38. Srivastava, N., et al., Dropout: a simple way to prevent neural networks from overfitting. The
journal of machine learning research, 2014. 15(1): p. 1929-1958.

39. Hubel, D.H. and T.N. Wiesel, Receptive fields of single neurones in the cat's striate cortex. The
Journal of physiology, 1959. 148(3): p. 574-591.

40. Hubel, D.H. and T.N. Wiesel, Receptive fields and functional architecture of monkey striate
cortex. The Journal of physiology, 1968. 195(1): p. 215-243.

41. Hubel, D.H. and T. Wiesel, Shape and arrangement of columns in cat's striate cortex. The
Journal of physiology, 1963. 165(3): p. 559-568.

42. Medium, M.P., A Brief Guide to Convolutional Neural Network(CNN). 2019.

43. Convolutional Neural Networks (CNNs / ConvNets). Available from:
http://cs231n.github.io/convolutional-networks/.

44. Medium, P. Understanding of Convolutional Neural Network (CNN) — Deep Learning. Medium
2018; Available from: https://medium.com/@RaghavPrabhu/understanding-of-convolutional-
neural-network-cnn-deep-learning-99760835f148.

45. Hochreiter, S., et al., Gradient flow in recurrent nets: the difficulty of learning long-term
dependencies. 2001, A field guide to dynamical recurrent neural networks. IEEE Press.

46. Metropolis, N. and S. Ulam, The monte carlo method. Journal of the American statistical
association, 1949. 44(247): p. 335-341.

47. Silver, D., et al., Mastering the game of go without human knowledge. Nature, 2017. 550(7676):
p. 354.

DeepFoldit - A Deep Reinforcement Neural Net Folding Proteins

D. Panou
 121

48. Hassabis, D. and D. Silver, Alphago zero: Learning from scratch. deepMind official website, 2017.
18.

49. Watkins, C.J.C.H., Learning from delayed rewards. 1989.

50. Melo, F.S., Convergence of Q-learning: A simple proof. Institute Of Systems and Robotics, Tech.
Rep, 2001: p. 1-4.

51. Matiisen, T. Demystifying Deep Reinforcement Learning. 2015; Available from:
https://www.intel.ai/demystifying-deep-reinforcement-learning/#_ftn1.

52. Lin, L.J. Programming Robots Using Reinforcement Learning and Teaching. in AAAI. 1991.

53. Joseph, R.D., Contributions to perceptron theory. 1961: Cornell Univ.

54. Ivakhnenko, A.G.e. and V.G. Lapa, Cybernetic predicting devices. 1966, PURDUE UNIV
LAFAYETTE IND SCHOOL OF ELECTRICAL ENGINEERING.

55. Ivakhnenko, A.G., The Group Method of Data of Handling; A rival of the method of stochastic
approximation. Soviet Automatic Control, 1968. 13: p. 43-55.

56. Ma, J., et al., Deep neural nets as a method for quantitative structure–activity relationships.
Journal of chemical information and modeling, 2015. 55(2): p. 263-274.

57. Kadurin, A., et al., The cornucopia of meaningful leads: Applying deep adversarial autoencoders
for new molecule development in oncology. Oncotarget, 2017. 8(7): p. 10883.

58. Leung, M.K., et al., Deep learning of the tissue-regulated splicing code. Bioinformatics, 2014.
30(12): p. i121-i129.

59. Xiong, H.Y., et al., The human splicing code reveals new insights into the genetic determinants of
disease. Science, 2015. 347(6218): p. 1254806.

60. Zhavoronkov, A., et al., Deep learning enables rapid identification of potent DDR1 kinase
inhibitors. Nature biotechnology, 2019. 37(9): p. 1038-1040.

61. Gupta, A., H. Wang, and M. Ganapathiraju. Learning structure in gene expression data using
deep architectures, with an application to gene clustering. in 2015 IEEE International Conference
on Bioinformatics and Biomedicine (BIBM). 2015. IEEE.

62. Chen, L., et al. Learning a hierarchical representation of the yeast transcriptomic machinery using
an autoencoder model. in BMC bioinformatics. 2016. BioMed Central.

63. Lee, B., et al., DNA-level splice junction prediction using deep recurrent neural networks. arXiv
preprint arXiv:1512.05135, 2015.

64. Rives, A., et al., Biological structure and function emerge from scaling unsupervised learning to
250 million protein sequences. bioRxiv, 2019: p. 622803.

65. Zhou, J. and O.G. Troyanskaya, Predicting effects of noncoding variants with deep learning–
based sequence model. Nature methods, 2015. 12(10): p. 931.

66. Alipanahi, B., et al., Predicting the sequence specificities of DNA-and RNA-binding proteins by
deep learning. Nature biotechnology, 2015. 33(8): p. 831.

67. Hassanzadeh, H.R. and M.D. Wang. DeeperBind: Enhancing prediction of sequence specificities
of DNA binding proteins. in 2016 IEEE International Conference on Bioinformatics and
Biomedicine (BIBM). 2016. IEEE.

68. Lanchantin, J., et al., Deep motif: Visualizing genomic sequence classifications. arXiv preprint
arXiv:1605.01133, 2016.

69. Tripathi, R., et al., DeepLNC, a long non-coding RNA prediction tool using deep neural network.
Network Modeling Analysis in Health Informatics and Bioinformatics, 2016. 5(1): p. 21.

70. Hill, S.T., et al., A deep recurrent neural network discovers complex biological rules to decipher
RNA protein-coding potential. Nucleic acids research, 2018. 46(16): p. 8105-8113.

71. Wang, Y., et al., Predicting DNA methylation state of CpG dinucleotide using genome topological
features and deep networks. Scientific reports, 2016. 6: p. 19598.

72. Angermueller, C., et al., DeepCpG: accurate prediction of single-cell DNA methylation states
using deep learning. Genome biology, 2017. 18(1): p. 67.

DeepFoldit - A Deep Reinforcement Neural Net Folding Proteins

D. Panou
 122

73. Lin, C., et al., Using Neural Networks To Improve Single-Cell RNA-Seq Data Analysis. bioRxiv,
2017: p. 129759.

74. Arvaniti, E. and M. Claassen, Sensitive detection of rare disease-associated cell subsets via
representation learning. Nature communications, 2017. 8: p. 14825.

75. Shaham, U., et al., Removal of batch effects using distribution-matching residual networks.
Bioinformatics, 2017. 33(16): p. 2539-2546.

76. Putin, E., et al., Deep biomarkers of human aging: application of deep neural networks to
biomarker development. Aging (Albany NY), 2016. 8(5): p. 1021.

77. Zheng, J., et al., Deep-RBPPred: Predicting RNA binding proteins in the proteome scale based
on deep learning. Scientific reports, 2018. 8(1): p. 15264.

78. Stadie, B.C., S. Levine, and P. Abbeel, Incentivizing exploration in reinforcement learning with
deep predictive models. arXiv preprint arXiv:1507.00814, 2015.

79. He, Z.-L. and P.-K. Wong, Exploration vs. exploitation: An empirical test of the ambidexterity
hypothesis. Organization science, 2004. 15(4): p. 481-494.

80. Mnih, V., et al., Human-level control through deep reinforcement learning. Nature, 2015.
518(7540): p. 529.

81. Bohg, J., et al., Interactive perception: Leveraging action in perception and perception in action.
IEEE Transactions on Robotics, 2017. 33(6): p. 1273-1291.

82. Liu, F., et al. 3DCNN-DQN-RNN: A deep reinforcement learning framework for semantic parsing
of large-scale 3D point clouds. in Proceedings of the IEEE International Conference on Computer
Vision. 2017.

83. Brunner, G., et al. Teaching a machine to read maps with deep reinforcement learning. in Thirty-
Second AAAI Conference on Artificial Intelligence. 2018.

84. Mestres, A., et al., Knowledge-defined networking. ACM SIGCOMM Computer Communication
Review, 2017. 47(3): p. 2-10.

85. Gavrilovska, L., et al., Learning and reasoning in cognitive radio networks. IEEE Communications
Surveys & Tutorials, 2013. 15(4): p. 1761-1777.

86. Haykin, S., Cognitive radio: brain-empowered wireless communications. IEEE journal on selected
areas in communications, 2005. 23(2): p. 201-220.

87. Kober, J., J.A. Bagnell, and J. Peters, Reinforcement learning in robotics: A survey. The
International Journal of Robotics Research, 2013. 32(11): p. 1238-1274.

88. Deisenroth, M.P., G. Neumann, and J. Peters, A survey on policy search for robotics.
Foundations and Trends® in Robotics, 2013. 2(1–2): p. 1-142.

89. Abbeel, P. Deep Learning for Robotics. [Keynote Speech slides] 2017; 105]. Available from:
https://www.dropbox.com/s/fdw7q8mx3x4wr0c/2017_12_xx_NIPS-keynote-final.pdf.

90. Powles, J. and H. Hodson, Google DeepMind and healthcare in an age of algorithms. Health and
technology, 2017. 7(4): p. 351-367.

91. Zhou, Z., et al., Optimization of molecules via deep reinforcement learning. Scientific reports,
2019. 9(1): p. 1-10.

92. Esteva, A., et al., Dermatologist-level classification of skin cancer with deep neural networks.
Nature, 2017. 542(7639): p. 115.

93. Raghu, A., et al., Deep reinforcement learning for sepsis treatment. arXiv preprint
arXiv:1711.09602, 2017.

94. Weng, W.-H., et al., Representation and reinforcement learning for personalized glycemic control
in septic patients. arXiv preprint arXiv:1712.00654, 2017.

95. Yauney, G. and P. Shah. Reinforcement learning with action-derived rewards for chemotherapy
and clinical trial dosing regimen selection. in Machine Learning for Healthcare Conference. 2018.

96. Wang, L., et al. Supervised reinforcement learning with recurrent neural network for dynamic
treatment recommendation. in Proceedings of the 24th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining. 2018. ACM.

DeepFoldit - A Deep Reinforcement Neural Net Folding Proteins

D. Panou
 123

97. Liu, Y., et al. Deep reinforcement learning for dynamic treatment regimes on medical registry
data. in 2017 IEEE International Conference on Healthcare Informatics (ICHI). 2017. IEEE.

98. Schmidhuber, J., Deep learning in neural networks: An overview. Neural networks, 2015. 61: p.
85-117.

99. Mnih, V., et al., Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602,
2013.

100. Mnih, V., et al. Asynchronous methods for deep reinforcement learning. in International
conference on machine learning. 2016.

101. Campbell, M., A.J. Hoane Jr, and F.-h. Hsu, Deep blue. Artificial intelligence, 2002. 134(1-2): p.
57-83.

102. OpenAI. OpenAI. Openai five. 2018; Available from: https://blog.openai.com/openai-five.

103. Lewis, M., et al., Deal or no deal? end-to-end learning for negotiation dialogues. arXiv preprint
arXiv:1706.05125, 2017.

104. Semenov, A., et al. Applications of Machine Learning in Dota 2: Literature Review and Practical
Knowledge Sharing. in MLSA@ PKDD/ECML. 2016.

105. Schulman, J., et al., Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347,
2017.

106. Brown, N. and T. Sandholm, Superhuman AI for heads-up no-limit poker: Libratus beats top
professionals. Science, 2018. 359(6374): p. 418-424.

107. Pac-Man, M., Ms. Pac-Man Competition Ms. Pac-Man Competition Ms. Pac-Man Competition

108. Williams, P.R., D. Perez-Liebana, and S.M. Lucas. Ms. pac-man versus ghost team CIG 2016
competition. in 2016 IEEE Conference on Computational Intelligence and Games (CIG). 2016.
IEEE.

109. Microsoft, Project Malmo.

110. Johnson, M., et al. The Malmo Platform for Artificial Intelligence Experimentation. in IJCAI. 2016.

111. Brood-War, A.T.G.R. bwapi. 2016; Available from: https://github.com/bwapi/bwapi.

112. Vinyals, O., et al., Starcraft ii: A new challenge for reinforcement learning. arXiv preprint
arXiv:1708.04782, 2017.

113. Juliani, A. On “solving” Montezuma’s Revenge. 2018; Available from:
https://medium.com/@awjuliani/on-solving-montezumas-revenge-2146d83f0bc3.

114. Brockman, G., et al., Openai gym. arXiv preprint arXiv:1606.01540, 2016.

115. Pygame. Pygame. 2000; Available from: https://www.pygame.org/news.

116. ALE. Arcade Learning Environment (ALE) Github Repository. 2013; Available from:
https://github.com/mgbellemare/Arcade-Learning-%20Environment.

117. Bellemare, M.G., et al., The arcade learning environment: An evaluation platform for general
agents. Journal of Artificial Intelligence Research, 2013. 47: p. 253-279.

118. Oh, J., et al. Action-conditional video prediction using deep networks in atari games. in Advances
in neural information processing systems. 2015.

119. Kempka, M., et al. Vizdoom: A doom-based ai research platform for visual reinforcement
learning. in 2016 IEEE Conference on Computational Intelligence and Games (CIG). 2016. IEEE.

120. Koutník, J., et al. Evolving large-scale neural networks for vision-based reinforcement learning. in
Proceedings of the 15th annual conference on Genetic and evolutionary computation. 2013.
ACM.

121. Twitter. Twitter torch-twrl: an open-sourced framework for RL development. 2016 [cited 2019;
Available from: https://github.com/twitter/torch-twrl.

122. Crescenzi, P., et al., On the complexity of protein folding. Journal of computational biology, 1998.
5(3): p. 423-465.

123. Gupta, C.L., S. Akhtar, and P. Bajpai, In silico protein modeling: possibilities and limitations.
EXCLI journal, 2014. 13: p. 513-515.

DeepFoldit - A Deep Reinforcement Neural Net Folding Proteins

D. Panou
 124

124. Andersen, N.H., Protein Structure, Stability, and Folding. Methods in Molecular Biology. Volume
168 Edited by Kenneth P. Murphy (University of Iowa College of Medicine). Humana Press:
Totowa, New Jersey. 2001. ix+ 252 pp. $89.50. ISBN 0-89603-682-0. 2001, ACS Publications.

125. Berman, H., et al., The protein data Bank nucleic acids research, 28: 235-242. URL: www. rcsb.
org Citation, 2000.

126. Bairoch, A., et al., The universal protein resource (UniProt). Nucleic acids research, 2005.
33(suppl_1): p. D154-D159.

127. Flock, T., et al., Deciphering membrane protein structures from protein sequences. Genome
biology, 2012. 13(6): p. 160.

128. Greer, J., Comparative model-building of the mammalian serine proteases. Journal of molecular
biology, 1981. 153(4): p. 1027-1042.

129. Šali, A. and T.L. Blundell, Comparative protein modelling by satisfaction of spatial restraints.
Journal of molecular biology, 1993. 234(3): p. 779-815.

130. Lee, J., P.L. Freddolino, and Y. Zhang, Ab initio protein structure prediction, in From protein
structure to function with bioinformatics. 2017, Springer. p. 3-35.

131. Fleishman, S.J., et al., RosettaScripts: a scripting language interface to the Rosetta
macromolecular modeling suite. PloS one, 2011. 6(6): p. e20161.

132. Brooks, B.R., et al., CHARMM: a program for macromolecular energy, minimization, and
dynamics calculations. Journal of computational chemistry, 1983. 4(2): p. 187-217.

133. Salomon‐Ferrer, R., D.A. Case, and R.C. Walker, An overview of the Amber biomolecular
simulation package. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2013.
3(2): p. 198-210.

134. Van Gunsteren, W., et al., Groningen molecular simulation (GROMOS) system. Groningen, The
Netherlands: University of Groningen, 1996.

135. Minecraft, MineCraft. https://www.minecraft.net/en-us/.

136. Eiben, C.B., et al., Increased Diels-Alderase activity through backbone remodeling guided by
Foldit players. Nature biotechnology, 2012. 30(2): p. 190.

137. Khatib, F., et al., Algorithm discovery by protein folding game players. Proceedings of the
National Academy of Sciences, 2011. 108(47): p. 18949-18953.

138. Khatib, F., et al., Crystal structure of a monomeric retroviral protease solved by protein folding
game players. Nature structural & molecular biology, 2011. 18(10): p. 1175.

139. Foldit. Foldit Recipes. 2009; Available from: http://fold.it/portal/recipes.

140. Cookbook. Cookbook 5.1. 2016; Available from: http://foldit.wikia.com/wiki/101_-_Cookbook.

141. Lerusalimschy, R., L.H. De Figueiredo, and W.C. Filho, Lua—an extensible extension language.
Software: Practice and Experience, 1996. 26(6): p. 635-652.

142. Rohl, C.A., et al., Protein structure prediction using Rosetta, in Methods in enzymology. 2004,
Elsevier. p. 66-93.

143. Colowick, S.P., et al., Methods in enzymology. Vol. 1. 1955: Academic press New York.

144. Chen, K., Deep reinforcement learning for flappy bird. 2015, Stanford University.

145. Schaul, T., et al., Prioritized experience replay. arXiv preprint arXiv:1511.05952, 2015.

146. Sarvaiya, J.N., S. Patnaik, and K. Kothari, Image registration using log polar transform and phase
correlation to recover higher scale. Journal of pattern recognition research, 2012. 7(1): p. 90-105.

147. Thoduka, S. Log-polar transform. 2017; Available from:
https://sthoduka.github.io/imreg_fmt/docs/log-polar-transform/.

148. LeNail, A. Alexander LeNail. 2017; Available from: http://alexlenail.me/NN-SVG/AlexNet.html.

149. GRNET. National Infrastructures for Research and Technology S.A.; Available from:
https://hpc.grnet.gr/supercomputer/.

150. Chollet, F., Keras. 2015.

DeepFoldit - A Deep Reinforcement Neural Net Folding Proteins

D. Panou
 125

151. O'Brien, P.C. and T.R. Fleming, A paired Prentice-Wilcoxon test for censored paired data.
Biometrics, 1987: p. 169-180.

152. Bootcamp, D.R. Deep RL Bootcamp

2017; Available from: https://sites.google.com/view/deep-rl-bootcamp/lectures.

153. Szegedy, C., et al. Going deeper with convolutions. in Proceedings of the IEEE conference on
computer vision and pattern recognition. 2015.

154. Salimans, T. and D.P. Kingma. Weight normalization: A simple reparameterization to accelerate
training of deep neural networks. in Advances in Neural Information Processing Systems. 2016.

